An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics

Abstract : We propose a new explicit pseudo-energy and momentum conserving scheme for the time integration of Hamiltonian systems. The scheme, which is formally second- order accurate, is based on two key ideas: the integration during the time-steps of forces between free-flight particles and the use of momentum jumps at the discrete time nodes leading to a two-step formulation for the acceleration. The pseudo- energy conservation is established under exact force integration, whereas it is valid to second-order accuracy in the presence of quadrature errors. Moreover, we devise an asynchronous version of the scheme that can be used in the framework of slow- fast time-stepping strategies. The scheme is validated against classical benchmarks and on nonlinear or inhomogeneous wave propagation problems.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Frédéric Marazzato <>
Soumis le : jeudi 8 novembre 2018 - 14:25:40
Dernière modification le : lundi 15 avril 2019 - 18:08:01


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01661608, version 3



Frédéric Marazzato, Alexandre Ern, Christian Mariotti, Laurent Monasse. An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics. 2018. ⟨hal-01661608v3⟩



Consultations de la notice


Téléchargements de fichiers