An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics

Abstract : We propose a new explicit pseudo-energy and momentum conserving scheme for the time integration of Hamiltonian systems. The scheme, which is formally second-order accurate, is based on two key ideas: the integration during the time-steps of forces between free-flight particles and the use of momentum jumps at the discrete time nodes leading to a two-step formulation for the acceleration. The pseudo- energy conservation is established under exact force integration, whereas it is valid to second-order accuracy in the presence of quadrature errors. Moreover, we devise an asynchronous version of the scheme that can be used in the framework of slow-fast time-stepping strategies. The scheme is validated against classical benchmarks and on nonlinear or inhomogeneous wave propagation problems.
Type de document :
Article dans une revue
Computer Methods in Applied Mechanics and Engineering, Elsevier, In press, 〈10.1016/j.cma.2019.01.013〉
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-01661608
Contributeur : Frédéric Marazzato <>
Soumis le : mercredi 9 janvier 2019 - 12:38:16
Dernière modification le : lundi 21 janvier 2019 - 01:16:38

Fichier

Article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Données associées

Citation

Frédéric Marazzato, Alexandre Ern, Christian Mariotti, Laurent Monasse. An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics. Computer Methods in Applied Mechanics and Engineering, Elsevier, In press, 〈10.1016/j.cma.2019.01.013〉. 〈hal-01661608v5〉

Partager

Métriques

Consultations de la notice

22

Téléchargements de fichiers

5