Fitting surfaces with the Miura tessellation

Abstract : The paper characterizes Miura surfaces defined as smooth surfaces that the regular periodic Miura ori can fit in the limit where the size of the creases is infinitely small compared to the typical radius of curvature. Based on a model due to Schenk and Guest, the Miura crease pattern is enriched so as to allow access to non-planar configurations. In contrast with previous work where the pattern is modified in order to fit different target surfaces, here we are interested in the converse problem of determining all the surfaces that can be fitted by one and the same pattern. The central result is a constrained nonlinear partial differential equation satisfied by the parametrization of any Miura surface. As an application, examples of bounded and unbounded Miura surfaces are presented along with a complete classification of axisymmetric and ruled ones.
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-01978795
Contributeur : Arthur Lebée <>
Soumis le : vendredi 1 février 2019 - 09:21:19
Dernière modification le : lundi 15 avril 2019 - 18:08:04
Document(s) archivé(s) le : jeudi 2 mai 2019 - 14:20:10

Fichier

7OSME-paper-Nassar-Lebee-Monas...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01978795, version 1

Citation

Arthur Lebée, Laurent Monasse, H. Nassar. Fitting surfaces with the Miura tessellation. 7th International Meeting on Origami in Science, Mathematics and Education (7OSME), Sep 2018, Oxford, United Kingdom. pp.811. ⟨hal-01978795⟩

Partager

Métriques

Consultations de la notice

83

Téléchargements de fichiers

69