Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351




A partir de cette page, vous pouvez :
    • Accéder au site de la Bibliothèque du laboratoire
    • Consulter l'ensemble des dépôts du laboratoire grâce au menu de gauche
    • Déposer des publications sur HAL ou sur HAL UNICE

 

DERNIERS DÉPÔTS

 


 

NOMBRE DE DOCUMENTS

2 260

NOMBRE DE NOTICES

1 462

EVOLUTION DES DÉPÔTS

RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT

MOTS CLÉS

Convergence Solitary waves Source terms Hyperbolic systems Finite elements Saint-Venant Entropy solution Operads Stabilité Convergence analysis Chemotaxis Large deviations Hybridizable discontinuous Galerkin method Seismic imaging Finite volume method Inverse problems Friction Magnetohydrodynamics Scalar conservation laws Duality PDE Hydrostatic reconstruction Finite element Shape optimization Simulation Discontinuous Galerkin Water waves Segmentation Rheology Tokamak Blow-up Elastic waves Shallow water equations Nanophotonics Homogenization VOLUMES FINIS Bifurcation theory Domain decomposition Finite volume scheme Équations de Maxwell Small divisors Boundary conditions Combinatorial enumeration Workflows Descent direction Stability Maxwell's equations Fault-tolerance Consistency Centre Discontinuous Galerkin method Diffusion Nonlinear elliptic equations Dynamical systems Finite volume Synchronization Periodic solutions Gibbs distributions Adaptive estimation Operator splitting Implicitization Discontinuous Galerkin methods Numerical analysis Aerodynamics Shallow water ALE FORMULATION Optimal control Well-balanced scheme Green-Kubo formula Game theory Finite volume methods Maxwell equations Parallel computing Complexity Finite volumes Normal form Density estimation Optimization Coextrusion Model selection Interacting particle systems Normal forms Bifurcations Finite volume schemes CFD NAVIER-STOKES EQUATIONS SHAPE OPTIMIZATION Finite element method Harmonic domain Modélisation Nonlinear water waves Operad Euler equations Inverse problem A priori estimates Conservation laws Turbulence Convexity Image segmentation Chaos