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Chapitre 1

Résumé des travaux de

recherche

Mes recherches portent sur la comparaison d'images et les sujets connexes.
Ma thèse de doctorat (Monasse, 2000) se concentrait sur le recalage d'images
(Monasse, 1999; Dibos et al., 2003a) dans un sens restreint : seul le recalage
par similitude était considéré. Cela a été étendu au recalage par homographie
(Moisan et al., 2012), ce qui est plus ou moins la limite du recalage rigide.
Dans presque tous les cas, la comparaison d'images implique une détection de
zones ou points d'intérêt et leur mise en correspondance. Une construction utile
fournissant de telles zones d'intérêt a été introduite dans ma thèse et nommée
l'arbre des formes (Ballester et al., 2003), qui peut être vu comme le résultat de
la fusion des deux arbres des composantes (Caselles et al., 2008). Cet arbre met
en évidence de riches propriétés concernant la structure géométrique de l'image,
et une description de la structure de l'image à la manière de la théorie de Morse
est possible sous des conditions assez générales. Ma collaboration avec Vicent
Caselles a exploré ces aspects (Caselles and Monasse, 2010) et en particulier
une notion équivalente aux points selles a été généralisée en régions selles pour
des fonctions continues, de la même manière que les extrema se généralisent en
régions extrêmes. Cela a conduit à une dé�nition cohérente des lignes de niveau
avec des applications utiles : des opérateurs invariants par contraste peuvent
être implémentés par des schémas géométriques et numériques de haute préci-
sion (Moisan, 1998) ; l'analyse des �ltres auto-duaux de la morphologie mathé-
matique en est facilitée (Heijmans and Keshet, 2002) ; des contours contrastés
de régions peuvent être extraits (Desolneux et al., 2001; Cao et al., 2005) ; le
mouvement par courbure moyenne peut être calculé avec une bonne stabilité
numérique (Ciomaga et al., 2010). Pour la plupart de telles applications, une
extraction de lignes de niveau moins pixelisées est nécessaire. J'ai développé une
variante de la Fast Level Set Transform (FLST) issue de ma thèse pour traiter
de l'image interpolée en bilinéaire. En explorant ces sujets, mon attention était
toujours dirigée vers la comparaison d'images.

Le premier usage des arbres de composantes pour la comparaison d'images a
été exposé en 2002 par Matas et al. avec les fameux Maximally Stable Extremal
Regions (MSER) (Matas et al., 2004). Leur interprétation en termes d'arbres
de composantes n'était pas explicite dans l'article original, et leur dé�nition est
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8 CHAPITRE 1. RÉSUMÉ DES TRAVAUX DE RECHERCHE

restée ambiguë. Par conséquent, il y a au moins deux implémentations publiques
d'extraction de MSER et leurs dé�nitions di�èrent. Bien que la robustesse des
MSER en termes d'invariance et de répétabilité ait été reconnue (Mikolajczyk
et al., 2005), leur défaut principal par rapport au désormais standard Scale In-
variant Feature Transform (SIFT) de David Lowe (Lowe, 2004) est leur faible
nombre. Il peut y avoir un ordre de grandeur de di�érence entre le nombre de
descripteurs MSER et SIFT. Ce défaut a été corrigé dans une récente collabo-
ration avec le doctorant Yongchao Xu et ses encadrants, Laurent Najman et
Thierry Géraud : nous avons proposé d'utiliser toutes les régions de Morse (ex-
trêmes et selles) (Xu et al., 2013). Les résultats prouvent une amélioration de
l'état de l'art en recalage d'images et dans quelques domaines de la reconstruc-
tion 3D.

La reconstruction de la géométrie 3D à partir d'images stéréo, que ce soit
des paires ou des images multiples, peut être considérée comme la tâche de com-
paraison d'images par excellence. Motivé en particulier par les applications en
imagerie spatiale stéréo, telles qu'explorées par le groupe de recherche MISS,
conduit par le CNES, l'agence spatiale française, et l'ENS Cachan, groupe dans
lequel je suis un participant actif, mon attention s'est tournée vers la recons-
truction 3D et sujets proches. Lorsque des mesures précises sont visées, toute la
chaîne stéréo doit être revisitée. Cela commence par la calibration interne des
caméras. L'expérience a montré que corriger la distorsion due à l'objectif tout
en estimant les paramètres internes de la caméra peut conduire à des compen-
sations numériques malvenues, où l'apparence d'une texture observée peut être
expliquée par de la distorsion ou par un changement de point de vue. Curieuse-
ment, aucune évaluation quantitative satisfaisante de la correction de distorsion
n'a pu être trouvée dans la littérature. La thèse de doctorat de Zhongwei Tang
(Tang, 2011) répondait à ce problème en utilisant une �harpe de calibration�, un
montage assez facile avec des �ls opaques et �exibles tendus à travers un cadre
rigide. Des photographies de cette harpe permettent de mesurer la distorsion
résiduelle après correction (Tang et al., 2012). Il s'avère que des niveaux de cor-
rections sans précédent, de l'ordre de 0.03 pixel, peuvent être atteints avec cette
harpe. L'inconvénient est qu'une composante homographique ne peut pas être
retrouvée par ce processus, et les images corrigées correspondent à une caméra
sténopée virtuelle, dont les paramètres internes n'ont pas de raison de corres-
pondre à une caméra réelle (Grompone von Gioi et al., 2010). Cela se traduit
par une calibration externe déformée par une transformation globale rigide de
l'espace, ce qui n'est pas une poblème dans la plupart des applications car cela
peut être corrigé par quelques points de contrôle au sol si nécessaire. Dans le cas
de paires stéréo, la recti�cation épipolaire doit aussi être e�ectuée. Un nouvel
algorithme (Monasse et al., 2010) améliorant la méthode de référence de Fusiello
et Irsara (Fusiello and Irsara, 2008) a été proposé ; il évite le risque de tomber
dans un minimum local de l'énergie minimisée. Tout comme dans l'algorithme
original de Fusiello et Irsara, une recti�cation épipolaire quasi-euclidienne est
appliquée, donc la distorsion est minimale.

L'autre composante de la calibration stéréo multi-vues est la calibration ex-
terne. Elle suppose généralement que les paramètres internes sont déjà connus,
bien que ce ne soit pas strictement nécessaire. La méthode consiste en l'estima-
tion des positions et orientations relatives de la caméra dans les di�érentes vues.
La première étape cherche des points correspondants dans des paires d'images, le
plus souvent par la méthode SIFT. De fausses correspondances sont écartées en
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utilisant RANSAC ou une variante (Fischler and Bolles, 1981). Les trajectoires
à travers les images sont alors construites par suivi des points correspondants
par transitivité. Une solution élégante et économique de calculer ces trajectoires
a été exposée dans un travail conjoint avec Pierre Moulon (Moulon et al., 2012).
Après cela, la manière la plus standard d'e�ectuer la calibration externe est
la méthode incrémentale : une paire d'images avec su�samment de correspon-
dances est choisie, sa matrice essentielle calculée (Longuet-Higgins, 1981; Nis-
tér, 2004; Li and Hartley, 2006) et les rotation et translation relatives déduites.
Puis des vues avec des points correspondants sont ajoutés de façon incrémen-
tale. Chaque nouvelle vue est positonnée par rapport à la scène en utilisation
des correspondes de points 3D-2D (Haralick et al., 1989). Régulièrement on
applique quelques itérations d'une optimisation non-convexe impliquant toutes
les variables (positions de caméra, orientations et points 3D) (Triggs et al.,
2000). Le logiciel le plus connu suivant cette procédure est Bundler. Dans cette
chaîne, modi�er tous les paramètres d'estimation de modèle par la méthodo-
logie a contrario (Desolneux et al., 2008) a permis d'obtenir des améliorations
signi�catives de précision dans un travail conjoint avec Pierre Moulon et Re-
naud Marlet (Moulon et al., 2013a). Le problème de la méthode incrémentale
est sa sensibilité à l'ordre d'ajout des images, avec des erreurs qui s'accumulent
et provoquent une dérive. Quelques méthodes globales de calibration ont été
introduites dans les quelques dernières années. La calibration globale évite la
dérive des méthodes incrémentales mais se heurte souvent à un problème d'opti-
misation trop di�cile à résoudre directement, donc des solutions sous-optimales
sont recherchées. Nous avons developpé notre propre méthode (Moulon et al.,
2013b), qui passe à l'échelle et donne une calibration plus précise que l'état de
l'art.

Je suis également impliqué dans le journal en ligne IPOL (Image Processing
On Line), en particulier en ce qui concerne la comparaison d'images, le recalage
et la reconstruction 3D. Le but est de fournir une implémentation de référence
en logiciel libre d'algorithmes d'état de l'art, en particulier dans le domaine
du calcul de cartes de disparités à partir de paires d'images et de publier leur
description algorithmique exacte, facilement reproductible dans n'importe quel
langage.
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Chapter 1

Research Summary

My central research area revolves around image comparison. My PhD dis-
sertation (Monasse, 2000) focused on image registration (Monasse, 1999; Dibos
et al., 2003a) in a restricted sense: only similarity registration was investigated.
This has been extended to homographic registration (Moisan et al., 2012) and
this is roughly as far as rigid registration can lead. In almost all cases, image
comparison involves a detection of interest areas or points and their correspon-
dence. A useful construction yielding such interest areas was introduced during
my PhD as the tree of shapes (Ballester et al., 2003), which can be seen as the
result of merging the two component trees (Caselles et al., 2008). This tree has
rich properties concerning the geometry of the image, and a description of the
image structure in the manner of Morse theory is possible under mild condi-
tions. This has been investigated in detail in collaboration with Vicent Caselles
(Caselles and Monasse, 2010) and in particular a notion equivalent to saddle
points was generalized to saddle regions for continuous functions, in the same
manner as extrema generalize to extremal regions. This has led to a consis-
tent de�nition of level lines with useful applications: contrast-invariant opera-
tors can be implemented with high accuracy geometric and numerical schemes
(Moisan, 1998); analysis of self-dual �lters of mathematical morphology is facili-
tated (Heijmans and Keshet, 2002); contrasted contour regions can be extracted
(Desolneux et al., 2001; Cao et al., 2005); mean curvature map can be computed
with numerical stability (Ciomaga et al., 2010). For many such applications,
an extraction of less pixelized level lines is necessary. I developed a variant of
the Fast Level Set Transform (FLST) of my PhD work to deal with the bilinear
image interpolation. While investigating these topics, my main focus was still
directed toward image comparison.

The �rst use of the component trees for image comparison has been demon-
strated by Matas et al. in 2002 with the celebrated Maximally Stable Extremal
Regions (MSER) (Matas et al., 2004). Their interpretation in terms of compo-
nent trees was not quite clear in the original paper, and their de�nition remained
ambiguous. As a consequence, there are at least two public implementations of
MSER detectors and their de�nitions di�er. While the robustness of MSER in
terms of invariance and repeatability was recognized (Mikolajczyk et al., 2005),
their main defect with respect to the now standard Scale Invariant Feature
Transform (SIFT) of David Lowe (Lowe, 2004) is their sparsity. There can be
an order of magnitude di�erence in the number of MSER descriptors and SIFT
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descriptors. This has been remedied, in a recent collaboration with the PhD
student Yongchao Xu and his advisors, Laurent Najman and Thierry Géraud:
we proposed to use all Morse regions (extremal and saddle regions) (Xu et al.,
2013). Results show that it improves the state of the art in image registration
and in some areas of 3D reconstruction.

The reconstruction of 3D geometry from stereo images, whether pairs or
multiple images, can be considered the image comparison task par excellence.
Motivated in particular by applications to spatial stereo imagery, as investigated
by the MISS research group, led by CNES, the French space agency, and ENS
Cachan, group in which I am an active participant, my focus turned to 3D re-
construction and all related aspects. When precise measurements are aimed at,
the whole stereo pipeline needs to be revisited. It starts with the internal cam-
era calibration. It was observed that correcting lens distortion while estimating
internal camera parameters can lead to detrimental numerical compensations,
where the apparence of an observed pattern can be explained by distortion or
by change of point of view. Curiously, no satisfying quantitative assessment of
distortion correction could be found in the literature. The PhD thesis of Zhong-
wei Tang (Tang, 2011) answered that by using the so called �calibration harp�,
a device fairly easy to build with opaque and �exible strings tensely stretched
across a rigid frame. Photographs of this harp allow measuring the residual
distortion after correction (Tang et al., 2012). It turns out that unprecedented
levels of correction accuracy, in the order of 0.03 pixel, can be reached with
this harp. The drawback is that a homographic component cannot be recovered
by this process, and the corrected images correspond to a virtual pinhole cam-
era, whose internal parameters have no reason to correspond to the real camera
(Grompone von Gioi et al., 2010). This is re�ected in the external calibration
as a global rigid transform of the space, which is not a problem in most applica-
tions because it can be corrected by a few ground control points if necessary. In
the case of stereo pairs, the epipolar recti�cation step must also be performed.
A new algorithm (Monasse et al., 2010) improving a state of the art method of
Fusiello and Irsara (Fusiello and Irsara, 2008) was proposed and avoids being
trapped in a local minimum of the optimized energy. As in the original algo-
rithm of Fusiello and Irsara, a quasi-Euclidean epipolar recti�cation is applied,
so the distortion is minimal.

The other component of multiple view stereo calibration is the external cal-
ibration. It usually assumes that the internal parameters are already known,
though not strictly necessary. The method consists in estimating the relative po-
sitions and orientations of the camera in the di�erent views. The �rst step is to
�nd corresponding points or features in image pairs, usually achieved through
the SIFT method. False correspondences are discarded using RANSAC or a
variant (Fischler and Bolles, 1981). Tracks across images are then built by fol-
lowing corresponding points by transitivity. An elegant and economical way to
compute the tracks was exposed in a joint work with Pierre Moulon (Moulon
et al., 2012). Then, the most standard way to achieve external calibration is
the incremental method: an image pair with enough correspondences is cho-
sen, its essential matrix computed (Longuet-Higgins, 1981; Nistér, 2004; Li
and Hartley, 2006) and the relative rotation and translation deduced. Then
views with corresponding points are incrementally added. Each new view is
positioned with respect to the scene using pose estimation from 3D-2D point
matches (Haralick et al., 1989). Regularly one applies a few iterations of a non-
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convex optimization involving all variables (camera positions, orientations and
3D points) (Triggs et al., 2000). The popular software following this procedure
is Bundler. In this pipeline, modifying all model estimation parameters using
the a contrario methodology (Desolneux et al., 2008) was proved to yield sig-
ni�cant calibration precision improvements in a joint work with Pierre Moulon
and Renaud Marlet (Moulon et al., 2013a). The problem of the incremental
method is its sensitivity to the order in which images are added, with accumu-
lating errors provoking drift. A few global calibration methods were presented
in the last few years. Global calibration avoids the drift of incremental methods
but often has a problem of optimization that is too di�cult to solve directly, so
suboptimal solutions are sought. We developed our own method (Moulon et al.,
2013b), which is scalable and yields more precise calibration than state of the
art methods.

I am also involved in the online journal IPOL (Image Processing On Line),
especially in the areas of image comparison, registration, and 3D reconstruction.
The goal is to provide reference open source implementations of state of the art
algorithms, in particular in the area of disparity map computation from a stereo
pair and to publish their accurate algorithmic description, easily reproducible
in any language.
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Chapter 2

Research Details

2.1 Tree of shapes

The component trees, namely the min- and max-trees of connected com-
ponents of level sets, were introduced by Salembier et al. (Salembier et al.,
1998) in order to study connected �lters of mathematical morphology. A more
e�cient algorithm for their extraction in the case of high bit-depth images was
proposed by Najman and Couprie (Najman and Couprie, 2006) using the union-
�nd data structure (Tarjan, 1975). Noticing the rather low performance of the
latter algorithm on 8-bit images, Nister proposed a new algorithm (Nistér and
Stewénius, 2008). It happens that Nister's algorithm is exactly a non-recursive
reimplementation of the original Salembier et al. �ooding method. Meanwhile, a
unique tree built from min- and max-components was introduced (Monasse and
Guichard, 2000; Ballester et al., 2003). The proposed 2D bottom-up algorithm,
while fast in general, could be made much faster by a top-down approach (Song,
2007), but using the unusual hexagonal connectivity. The higher dimensional
extraction of the tree of shapes was made possible by fusion of the min- and
max-trees (Caselles et al., 2008). However, it was shown that a slight modi�ca-
tion of the digital image interpretation leads to a very e�cient algorithm in any
dimension (Géraud et al., 2013) using again the union-�nd data structure. The
algorithm interprets the image as a set-valued function, where a modi�cation of
the de�nition of level set is necessary (Najman and Géraud, 2013).

Using the components as features for image comparison was pioneered in
rigid registration (Monasse, 1999). Each component is described by a few in-
variant moments, which are used for feature correspondence. The same principle
was rediscovered in the highly in�uencial work of Matas et al. and applied to
estimation of fundamental matrix (Matas et al., 2004). On top of that, a sta-
bility criterion to select distinctive components was introduced, hence the name
maximally stable extremal regions (MSER). The robustness of MSER in com-
parison to linear scale-space based features as SIFT was checked (Mikolajczyk
et al., 2005). The low number of MSERs is their main drawback. However, a
di�erent criterion that is truly contrast invariant could be used instead, leading
to a much higher number of features (Xu et al., 2013).

The geometric analysis of a function by means of its level lines can be traced
back to Marston Morse, though preliminary works in the �eld of topography
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16 CHAPTER 2. RESEARCH DETAILS

already appeared in the 19th century. This is known as Morse theory (Milnor,
1963). In the search of a generalization of total variation to functions de�ned on
a multi-dimensional domain, the tree structure associated to the level lines was
�rst noticed by Kronrod in the 1940's (Kronrod, 1950). Using connected com-
ponents of iso-level lines as points and deriving a topology from the topology
of the de�nition domain, he showed the resulting connected dendrite structure.
It presents many similarities to the graph developed by Reeb (Reeb, 1946). An
equivalence relation is established between points of the domain: two points
are equivalent if they belong to the same connected component of iso-level set.
The quotient topology by this equivalence relation gives the connection between
equivalence classes, which are connected components of iso-level sets. A com-
putational equivalent is known as digital Morse theory (Cox et al., 2003). The
nestedness structure of the connected components of iso-level sets was used in
computer graphics for data visualization (Bajaj et al., 1996; van Kreveld et al.,
1997). The topological analysis using level lines was also investigated in the con-
text of robotics (Kweon and Kanade, 1994). In image processing, the level sets
hierarchy was proposed as a fundamental contrast invariant representation of
image (Caselles et al., 1999a; Caselles et al., 1999b). This provides the adequate
framework for the analysis of connected operators of mathematical morphology
(Salembier and Serra, 1995).

2.1.1 Theoretical justi�cation of the tree of shapes

The tree of shapes was introduced in my PhD thesis (Monasse, 2000) as a
fusion of the component trees, namely the min- and max-trees. Given an image
u : Ω ⊂ Rn → R, we de�ne its

� Upper level sets [u ≥ λ] := {x : u(x) ≥ λ]};
� Lower level sets [u < λ] := {x : u(x) < λ]},

where λ ∈ R. The maps λ→ [u ≥ λ] and λ→ [u < λ] are respectively decreas-
ing and increasing for the inclusion relation among subsets of Ω. When switching
to connected components (assuming most visual �objects� should appear con-
nected), this translates to an inclusion tree structure. This easy to prove result
depends neither on any regularity of u nor on the topology of Ω. Each one of
these trees is su�cient to reconstruct the full image, so they are redundant.
A unique tree containing both upper and lower components is interesting, but
depends on two assumptions:

1. u is upper semicontinuous;

2. Ω is unicoherent 1.

Then components must also be modi�ed with a saturation operator sat, an
increasing and idempotent set operator such that for all A ⊂ Ω connected:

1. Ω \ satA ∈ {∅} ∪ CC(Ω \A),

2. sat(Ω \ satA) ∈ {∅,Ω}.
In other words, a saturation operator adds to a set all connected components of
its complement (called the holes) except at most one (called the exterior), and
the saturation of the exterior is the full domain Ω. For example, we can �x a

1. A notion akin but di�erent from simple connectedness: for any U , V connected open

sets such that Ω = U ∪ V , U ∩ V is connected.
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Figure 2.1: Trees of components and tree of shapes. In the min-tree, nodes are
connected components of lower level sets. In the max-tree, nodes are connected
components of upper level sets. For the tree of shapes, the point p∞ was chosen
in e. Notice the nodes of the tree of shapes that are not components, but
saturations of components: af = sat f and abdf = sat bd.

point p∞ ∈ Ω and de�ne as exterior of A ∈ Ω the component cc(Ω \A, p∞) and
the saturation as the complement of the exterior.

A saturation operator preserves the topology: to a connected/closed/open
set A it associates a connected/closed/open set satA. An important property
is that for a closed set, satA = sat ∂A.

Under these conditions, it was shown that the saturations of all upper and
lower components (called shapes) of u can be organized in a single inclusion tree
structure (Ballester et al., 2003), see Figure 2.1. The elements of this tree are
thus not necessarily components of u but saturated components of u. As with
component trees, the tree of shapes is su�cient to recover the image u. The
proof of the tree structure relies on the important fact that shapes are either
closed or open, as the components they are built from. This is ensured by the
de�nition of large/strict inequality for upper/lower level sets in conjunction with
the upper semicontinuity hypothesis.

2.1.2 Fusion of component trees

As the tree of shapes was presented as a mix of the component trees, it
is logical that an appropriate fusion of the component trees would yield the
tree of shapes (Caselles et al., 2008). For that, the notion of limit node of a
tree is important. An interval [A,B] of an inclusion tree is de�ned as the set
of all elements of the tree between two sets A and B: they all contain A and
are contained in B, where A and B can be any subsets of Ω, not necessarily
elements of the tree itself. A limit node is de�ned as the intersection or union of
all subsets of an interval. Elements of the tree are limit nodes, but they are not
alone. In the same manner as Dedekind's construction of the real numbers from
rational ones by using �cuts�, the �irrational� elements of an inclusion tree are
the limit nodes which are not in the original tree: the completion of the rational
numbers using their order relation can be transposed in the same manner to the
tree of subsets with its partial order relation of inclusion.

The irrational elements of the max-tree U(u) are sets of CC([u > λ]) and the
irrational elements of the min-tree L(u) are sets of CC([u ≤ λ]). Notice that
they are not components, so a limit node in a tree is not found in the dual tree.
Also, the hole of an element of one tree is the saturation of a component in the
dual tree.
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A branch of an inclusion tree T is an interval [A,B] with A ∈ T such that

∀A′ ∈ T , A′ ⊂ B ⇒ A ∩A′ 6= ∅. (2.1)

The inclusion relation is a total order when restricted to a branch. It happens
that the set {satC : C ∈ [A,B]} is an interval of the tree of shapes when [A,B]
is an interval of U(u) or L(u). That means that branches of the component
trees are not interrupted in the tree of shapes. Therefore, the fusion algorithm
can begin with segmentations of U(u) and L(u) into their maximal branches.
The question is how to reconnect the branches in the tree of shapes, which we
detail in the next paragraph. It looks like we put components into the tree of
shapes, not their saturation. Actually a post-processing step should happen,
where each element A is replaced by the union of all elements in the subtree
rooted at A, which is actually satA.

The connection of segmented maximal branches in the trees happens as
follows. Considering a maximal branch [A,B] of U(u) with B its upper limit
node, B ∈ {Ω}∪CC([u > λ]). In the �rst case, we attach the branch to the root.
In the second case, we de�ne B′ = cc([u ≥ λ], B) ∈ U(u). B′ is the lower end of
a maximal branch of U(u). But satB is also a hole of some N ∈ L(u) at level
λ. [A,B] should be attached either to N or to B′. Actually satN and satB′

are either nested or both Ω. We must attach to the smaller of both sets. Two
questions should be answered to translate these results into an actual algorithm:

1. How to �nd the component N in the dual tree?

2. How to compare satN and satB′, whereas these saturated sets are not
yet computed?

To answer Question 1, we can record one point p in the external boundary of B.
We �nd the smallest component in L(u) containing p and go up this tree and
stop just before reaching level λ. To know if p is in the external boundary of B
as opposed to an internal boundary, this is solved by the answer to Question 2:
we follow each connected component of the boundary of B and compute the
enclosed region by Green's formula. A negative value indicates an internal
boundary (and is ignored), a positive value indicates the external boundary and
is the area of its saturation. Just looking at the areas, we can compare satN and
satB′. An analogous argument applied to reconnection of segmented maximal
branches of L(u). Figure 2.2 illustrates the process.

2.1.3 Grain �lters

The tree of shapes is very well suited for the study of connected operators
of mathematical morphology. A connected �lter is such that the connected
components of level sets of the resulting image are all connected components
of level sets at the same level (Salembier and Serra, 1995). A characteristic
property of these �lters is that the level lines are not smoothed: they are either
present or absent in the �ltered image, but never modi�ed. Typical connected
�lters are the area opening and closing of Vincent (Vincent, 1993). They are
de�ned with respect to a parameter ε ≥ 0 as:

M+
ε u = sup

B∈x+Bε
inf
y∈B

u(y) and (2.2)

M−ε u = inf
B∈x+B′

ε

sup
y∈B

u(y), (2.3)
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Figure 2.2: Fusion of component trees to produce the tree of shapes. Refer to
Figure 2.1. First, components that contain p∞ ∈ e are isolated to constitute
the root. Subtrees become orphans. Each free end is connected to the adequate
node. This creates a new tree. To obtain the tree of shapes, each node must be
saturated, which consists of augmenting the node with all its descendents.

with

Bε = {B Lebesgue-measurable and connected, 0 ∈ B, |B| ≥ ε} (2.4)

B′ε = {B Lebesgue-measurable and connected, 0 ∈ B, |B| > ε}, (2.5)

|B| being the Lebesgue measure of the set B. Area opening and closing are
increasing and idempotent (required conditions to be called ��lters� in math-
ematical morphology). Typically they remove small details in the image, and
are adequate for removing salt and peper noise. Actually, they should be used
in tandem for such a task, so that we could use: M+

ε M
−
ε or M−ε M

+
ε , which are

actually di�erent idempotent �lters. Because of this non commutativity, they
should be used as iterated sequential �lters, for example:

M+
εnM

−
εn · · ·M

+
ε1M

−
ε1 , (2.6)

with ε1 < · · · < εn (for digital images, we would use εi = i and n the expected
size of the connected components of salt-and-pepper noise). This is an e�cient
�lter but it is rather slow to compute. An alternative is what we call the
grain �lter (Caselles and Monasse, 2002). It is de�ned indirectly through the
associated set operator:

GεX =
⋃

C∈CC(X),| satC|≥ε

{satC \
⋃
i

C ′i}, (2.7)

where C ′i are internal holes of C of Lebesgue measure larger than ε. The grain
�lter is de�ned as the stack �lter:

Gεu(x) = sup{λ : x ∈ Gε[u ≥ λ]}. (2.8)

The key property of the grain �lter is that it is self-dual on continuous func-
tions: it commutes with the negative operator. This amounts to say that a
single application of Gεn is su�cient, the intermediate Gεi having no in�uence
on the �nal result. In practice, the grain �lter is almost identical to the iterated
sequential application of area openings and closings. All have the nice property
that the limit shapes of the �ltered image are limit shapes of the original im-
age, so that they act as simpli�cations of the tree of shapes. Another natural



20 CHAPTER 2. RESEARCH DETAILS

requirement that is satis�ed is that Gεu converges uniformly to the continuous
function u when ε goes to 0 (the de�nition domain must be a continuum). It
can be shown that the grain �lter is a paradigm for all increasing and self-dual
connected �lters such that the set operator acts additively on connected compo-
nents. The only degree of liberty is the increasing criterion saying if we should
preserve a saturated set. The simplest such criterion is the comparison of the
area with the threshold ε, leading to the grain �lter. However, the astute reader
should have noticed the last assumption: additive behavior of the set operator
on connected components. That means that connected components are treated
independently. This seems a natural assumption, but we could imagine some
interesting �lters that do not handle components independently, but for exam-
ple would rely on distance between components. For example, close components
with similar shape could be assumed a texture and preserved, while individually
each component could be construed as noise.

These operators decrease the total variation of the image by removing some
connected components of level sets. Another way to decrease the total variation
of the image is to change the levels of these components in order to reduce the
contrast with their parent and children. This is easily seen via the coarea formula
for the total variation. This is not anymore a contrast invariant operator, since
the levels change, but it shares the �good� properties of the grain �lters, though
it is naturally not idempotent. A good way to change the level is to change
the level of a component towards the level of its parent at a speed proportional
to the ratio of its perimeter by its measure until they disappear by reaching
the level of their parent (Dibos et al., 2003b). For example, a disk or radius r
changes level with a speed proportional to 2πr/πr2 = 2/r. Therefore small disks
disappear before large disks, which is reasonable assuming that they correpond
to small details and more likely to be due to noise. The only reasonable way to
compute this self-dual operator is with the tree of shapes.

2.1.4 Geometric description of images

Assuming the level lines cc([u = λ]) of the image were Jordan curves, the
tree structure of level lines would become very natural: each Jordan curve
separates the plane in two connected components, the bounded one being called
the interior of the curve. Level lines being disjoint, a level line L is considered
an ancestor in the tree of another level line L′ if the interior of L contains
L′, see Figure 2.3. However, the presence of saddle points prevents such an
interpretation, with typically some level lines in the shape of an 8. Moreover,
the topological description of the image level lines is di�cult to establish without
further hypotheses on u. In Morse theory, the function is assumed to be twice
di�erentiable and to have nondegenerate Hessian at critical points. The former
condition may be too strong for images, while the latter prevents the presence
of plateaux in particular. Such a description, valid for a continuous image
u with no di�erentiability requirement, seems desirable. Even though such
a continuous function can be approached by a sequence of Morse functions,
there is no canonical approximation and the topology of the approaching Morse
functions does not inform on the behavior of u. Actually, our analysis requires
another assumption that seems perfectly reasonable for digital images: it is
said to be weakly oscillating, meaning that it has a �nite number of regional
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Figure 2.3: Tree of some level lines of a Morse function, each of them being a
Jordan curve. Some �level lines� are not Jordan curve, speci�cally those going
through singular points, such as minimum m, maximum M and saddle point S.
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Figure 2.4: Topological changes of level sets at a singular level λ. When the
sequence µn converges from above to λ, topological changes occur at the limit.
These functions have three maximal monotone sections.

extrema 2. The extrema and saddle points of Morse theory translate in this
new framework into extremal regions and saddle regions. The singularities, or
topology changes, are described by purely geometric arguments.

A monotone section of u is de�ned as a connected component of a bilevel set
of u where no �bifurcation� happens: from an interval I ⊂ R, XI ∈ CC([u ∈ I])
such that ∀α ∈ I, XI ∩ [u = α] is connected. The union of a family of monotone
sections having a common point x is still a monotone section. This allows to
de�ne the maximal monotone sections of u 3, see Figure 2.4. The assumption of
weak oscillation is necessary for this result, though it can be relaxed. At a point
x, we can consider the maximal monotone section containing x, associated to
an interval I(x). The end points of this interval are noted η+(x) = sup I(x) and
η−(x) = inf I(x). Such values are called singular values of u. It can be shown
that a weakly oscillating function has a fundamentally �nite structure: there is
a �nite number of maximal monotone sections, and therefore a �nite number of
singular values (Caselles and Monasse, 2010). It may seem obvious since u has
a �nite number of regional extrema, but a maximal monotone section may not
contain any regional extremum at all. Moreover, a complete characterization of
the limit nodes of the tree of shapes can be achieved. As expected, these are

2. An application of the grain �lter Gε for any small ε > 0 ensures that property and is

the natural way to achieve that, since it corresponds just to a pruning of the tree of shapes.

3. Notice the analogy with connected sets and the de�nition of connected components,

though the proof of our result involves more sophisticated arguments
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the sets of form satC with

C ∈ CC([u ≥ λ]) ∪ CC([u > λ]) ∪ CC([u ≤ λ]) ∪ CC([u < λ]) (2.9)

where λ is a singular value.
Another way to characterize the topology change is to look at the separation

of regional extrema operated by thresholds at levels λ. At a level λ, CC([u ≥
λ])∪CC([u < λ]) is a partition of Ω. A regional extremum of u is contained in a
single element of this partition. So we can also consider that at level λ, we have
a partition of the regional extrema. Looking at the evolution of this partition
when λ changes, we de�ne the critical values of u as the values λ such that the
partition is not constant in any neighborhood of λ, see Figure 2.5 4. Actually,
the critical and singular values of u coincide. They coincide also with the notion
of singular value of tree of shapes of u: that is the level λ of a limit node of a
maximal monotone section of u.

If we come back to the correct de�nition of a level line of a continuous
function u, we would like to keep the natural properties of a Jordan curve, even
though it may not be one. We have several candidates:

1. ∂ cc([u ≥ λ]);

2. cc (∂ cc([u ≥ λ]));

3. ∂ sat cc([u ≥ λ]);

with cc selecting one arbitrary connected component. All de�nitions are actually
parts of the isolevel set [u = λ]. The problem of the �rst de�nition is that it may
not even be connected. This is the defect corrected by the second de�nition,
but such curve may still present self-crossing. The third de�nition de�nes the
strict boundary necessary to recover the �interior�: if L is such a set, we have
sat(L) as closed interior of L, and it is equal to sat cc([u ≥ λ]). This represents
a connected set, and its complement is also connected.

2.1.5 Bilinear level lines

The algorithm for extraction of the tree of shapes for a pixel-constant inter-
pretation of the digital pixel values, the fast level set transform (FLST) (Monasse
and Guichard, 2000), yields pixelized level lines. This pixelization may be detri-
mental to further processing. The problem is that the image is interpreted as

4. Figure 2.5 illustrates the 1D case. Notice that in 1D, there could be �critical� values

corresponding to in�ection points. However, in�ection points do not produce any topology

change and behave like regular points. The presence of an in�ection point implies a null

second derivative, which means the function is not a Morse function.
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...

Figure 2.6: Bilinear level line extraction. The algorithm starts from an initial
point between two adjacent pixels, at half-integer ordinate, and proceed by
following the level line from dual pixel to dual pixel. It proceeds into a new
dual pixel when it reaches a point where x or y is half-integer. The algorithm
stops when the curve closes the loop.
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Figure 2.7: Level lines and saddle points. The level line B goes through two
saddle points. According to de�nition of level line at the end of Section 2.1.4,
the true level line B is on the right, but our algorithm following the level lines
detects only the left curve because it turns right at a saddle point. This choice
is correct for the part around C, but not for Q.

piecewise constant and discontinuous. An option is to consider rather the bi-
linear interpolation of the pixel values, that is the interpolation with splines
of order 1. This yields a continuous image, whose extrema are at original lo-
cal extrema of the pixel values. Also, the level line can be locally explicitly
parameterized, permitting to sample it with no di�culty. However, there are
some di�culties with singular levels, but since these are discrete, they can be
avoided (Caselles and Monasse, 2010).

Since there are in�nitely many di�erent level lines in the continuous case
(on the contrary to the pixelized case), some prede�ned levels of extraction
should be chosen. Two algorithms are proposed. The �rst one is more natural,
following level lines (see Figure 2.6) but must avoid initial levels of the digital
image, since at such levels singularities can occur, in particular plateaux. It can
accept levels of saddle points and give consistent results, but there are some
ambiguities left in the inclusion relation, see Figure 2.7. The second algorithm
deals with arbitrary levels but is more complex, akin to the FLST.

Inside the square [0, 1]2, assuming prescribed values at the four vertices, we
have the interpolation equation:

u(x, y) = u00(1− x)(1− y) + u10x(1− y) + u01(1− x)y + u11xy. (2.10)

The behavior is determined by the quantity

a = u00 + u11 − u10 − u01. (2.11)

If a = 0, we get

u(x, y) = (u10 − u00)x+ (u01 − u00)y + u00. (2.12)
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Figure 2.8: Following a level line inside four adjacent prescribed points and
sampling the hyperbola branch. (a) When the level line at level λ gets inside the
square from the top side (at red point) and the saddle point (xs, ys) is inside,
there is one possible exit point on each remaining side. To disambiguate, we
compare the position of entry point relative to xs. Since the level line does not
cross the asymptotes, the exit point is on the left hand side here. (b) We sample
the branch of hyperbola with the following point: the entry and exit points inside
the square and the maximum curvature point if inside the square (it is on the
angle bisector of the asymptotes). On each side, we sample uniformly in x or
in y, depending on whether |x′(y)| < 1 or |y′(x)| < 1.

If the factors in front of x and y both vanish, we have all four corners at same
value u00 and there is no level line through the square (since we avoid prescribed
values of u). Otherwise, we get a line equation for the level line. The other case
a 6= 0 is more interesting because we can rewrite

u(x, y) = a(x− xs)(y − ys) + λs, (2.13)

with xs = (u00 − u01)/a, ys = (u00 − u10)/a and λs = a00 − axsys. This formu-
lation shows that level lines are equilateral hyperbolae of center S = (xs, ys),
the saddle point of u, and horizontal and vertical asymptotes. The exception is
for the level line u(x, y) = λs, in which case we get the horizontal and vertical
lines through (xs, ys). For λ 6= λs, the level line u(x, y) = λ is the intersection
of a hyperbola with the square [0, 1]2. It can represent a single branch (S is
outside the square) or two branches (S is inside the square). The latter case is a
bit more di�cult to handle, because we must take care of not jumping from one
branch to the other while following the fragment of level line, see Figure 2.8.

This algorithm extracts level lines but not the tree structure. However,
a simple post-processing can recover the inclusion information. It consists in
�nding intersections of level lines with regularly spaced horizontal lines. These
are discrete points, their number is even. Ordering these points by x values
among each line, interior/exterior of a level line is determined by odd/even
number of intersections up to that abscissa.

The second algorithm is able to deal with arbitrary levels. It computes �rst
the �fundamental� tree of bilinear level lines, which consists of the level lines at
critical values. From this fundamental tree, the inclusion tree of any family of
level lines can be computed.

Higher order of interpolation would be even more desirable, for example
splines of order 3 or 5. Unfortunately, the equation of the level line in a square
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whose vertices are four prescribed points is implicit in the form u(x, y) = λ,
with u a higher order bivariate polynomial. An explicit expression of the form
x = f(y) or y = f(x) is di�cult to get, and following the level line by any other
means seems also di�cult: its behavior may be complex, and present cusps for
example.

2.1.6 Curvature map computation

The mean curvature at a regular point x of a smooth function u coincides
with the curvature of the level line through x (with a sign depending on the
orientation of the level line). Local extrema of curvature of a curve provide in
many cases a compact and faithful idea of the curve itself. More generally, a
curvature map of the image may be interesting. There are two general ways to
compute it. The direct way is to use the explicit formula of mean curvature:

curv(u)(x) =
uxxu

2
y − 2uxyuxuy + uyyu

2
x

(u2x + u2y)3/2
(x), (2.14)

and use a �nite di�erence scheme to approximate the partial derivatives. The
indirect way is much more complex: compute the second derivative of the arc-
length parameterized level line through x.

Actually, the Euclidean covariance of the curvature map is impossible to
achieve with a �nite di�erence scheme (Mondelli and Ciomaga, 2011). The only
solution left is the second method. As described, it is very sensitive to the
pixelization, even when using bilinear level lines. The solution is to smooth
the image before, or to smooth the level lines themselves. A good smoothing
preserving the Euclidean invariance while preserving the level line structure is
to apply the PDE:

∂u

∂t
= |Du| curv(x)α, (2.15)

with α = 1 (mean curvature motion) or α = 1/3 (a�ne smoothing). This is
applied up to a time evolution t at which the pixelization e�ect disappears, typi-
cally the scale at which a disk of 1 pixel diameter disappears through application
of the equation. Again, multiple numerical schemes exist to simulate those, the
best ones using a stack �lter. However, they all create unwanted di�usion. Geo-
metric schemes applied to the level lines directly are preferable (Ciomaga et al.,
2011).

For mean curvature motion, a solution is to parameterize the curve by arc-
length (x(s), y(s)). Applying a Gaussian convolution to each of these coordinate
signals indepedently, (Gσ ∗ x(s), Gσ ∗ y(s)), we get a new curve. If Gaussian
standard deviation σ is small enough, it should not self-intersect. We then
have to reparameterize by arc-length before iterating the process (Mokhtarian
and Mackworth, 1992). Requiring small Gaussian smoothing σ implies many
iterations to simulate the result of mean curvature motion at time t.

A geometrical scheme for the a�ne curvature motion (Alvarez et al., 1993)
was proposed by Moisan (Moisan, 1998). It consists of these steps (Ciomaga
et al., 2010):

1. Segment the curve by cutting it at in�ection points, which remain �xed.

2. Change each part of the curve by taking the middle points of σ-chords.
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Figure 2.9: Geometric scheme for a�ne curvature motion. From left to right:
original image, its bilinear level lines, evolution of the level lines, reconstructed
image.

Image

Figure 2.10: Curvature map. Left: original image. Top row: crop of im-
age, bilinear level lines and curvature map. Bottom row: the same after a�ne
curvature smoothing.

3. Reconnect the curve at the former in�ection points.

4. Iterate.

The erosion parameter σ represents an area. σ-chords are chords of the curve
that delimit a surface of area σ with the convex curve. Applying this scheme to
the level lines of an image, we get results of Figure 2.9.

An advantage of such a scheme is that the curvature computations are not
pixelized, that is, they are measured at �oating point coordinates. Therefore,
we can zoom in the original image and still see the curvature map at any scale,
hence the name of curvature microscope. To visualize the curvatures as color-
coded pixels, we take all level lines going through the pixels and compute an
average of their curvature, which is translated to a chromatic value.

Examples of curvature map computations on photographs of monument (Fig-
ure 2.10), of bacteria (Figure 2.11) and of �ngerprint (Figure 2.12) show that
the smoothing is necessary to have a readable map removing the pixelization
e�ect (Ciomaga et al., 2013).
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Image

Figure 2.11: Curvature map. Left: original image. Top row: crop of im-
age, bilinear level lines and curvature map. Bottom row: the same after a�ne
curvature smoothing.

Image

Figure 2.12: Curvature map. Left: original image. Top row: crop of im-
age, bilinear level lines and curvature map. Bottom row: the same after a�ne
curvature smoothing.
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2.2 Calibration for 3D stereo reconstruction

Having worked on image registration during my PhD, and using as feature
points the centroids of monotone sections of the tree of shapes, my interest
turned to 3D reconstruction, whether from stereo pairs or multiple images. The
ultimate goal is to use the camera as a real photogrammetric device, allowing
precise quantitative measurements. While considered a solved problem since
the geometry aspects are well understood, it is rather striking that so few quan-
titative assessments of common methods are found in the literature. This can
also be observed by the poor quantity of publicly available photogaphs of a 3D
scene with ground truth geometry.

Whereas some visually impressive results of 3D reconstruction are frequently
advertised, including with large scale data, the early parts of such pipelines
are of paramount importance, and especially the calibration step is essential.
There are two sides to calibration, internal calibration, obtaining the intrinsic
parameters of cameras, and external calibration, recovering the relative ori-
entations and postions of the cameras in the di�erent views. Some methods
propose to solve both at once with no calibration rig, but it seems logical to
validate independently each step with measurable precision. Most of my work
on these topics was supported by ANR project Callisto (ANR-09-CORD-003) 5

that I coordinated, involving IMAGINE, the LTCI (Telecom ParisTech), the
MAP5 (Université Paris-Descartes) and the CMLA (Ecole Normale Supérieure
de Cachan).

The �rst notice of the geometric constraint between two pinhole views is due
to Longuet-Higgins (Longuet-Higgins, 1981). This is expressed by the essential
matrix, a 3×3 matrix that restrains corresponding points to lay on correspond-
ing lines, the epipolar lines. There are several reasons why the essential matrix
is di�cult to use: the constraint is expressed in terms of points in real-world
coordinates, which can only be computed from images after internal calibra-
tion, the process of estimating the projection parameters of the camera; the
computation of the essential matrix is complex due to polynomial but nonlin-
ear constraints between the nine coe�cients of the matrix (Nistér, 2004). The
real three-dimensional computer vision development can be traced back to the
independent discovery of the fundamental matrix in the middle of the 1990's
by Bill Triggs (Triggs, 1995) and by Olivier Faugeras and his collaborators at
INRIA (Luong and Faugeras, 1996). This represented a signi�cant progress in
the sense that the only constraint of the matrix is having rank two. Ignoring
this constraint during the estimation, enforced a posteriori by projection, the
problem can be formulated as least squares and easily solved, even though nu-
merical di�culties must be handled (Hartley, 1997a). The equations are derived
from the correspondence of a few points (more rarely lines), which must take
into account the presence of some outliers. This requires a robust estimation
method, the most popular in this context being RANSAC (random sample con-
sensus) (Fischler and Bolles, 1981) or one of its multiple variants. Of course,
the process can only lead to projective 3D reconstruction but minimal external
Euclidean data, such as known distances or orthogonality, can be su�cient to
lift the reconstruction to Euclidean. The usual next step is to rectify the stereo
pair to simulate a common projection plane and a displacement of the focal

5. http://imagine.enpc.fr/~monasse/Callisto/

http://imagine.enpc.fr/~monasse/Callisto/
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points along the horizontal axis, which consists in applying adequate homogra-
phies to the images (Hartley, 1999). Then, the dense correspondence problem
can be addressed. The apparent motion of each pixel is horizontal, its amplitude
is called disparity. Among the numerous propositions to solve this problem (at
least 150 in the popular Middlebury benchmark), two classes of methods can be
distinguished:

� Global methods: a global energy combining a term of data �delity (typ-
ically conservation of color during apparent motion) and a term of reg-
ularity of the motion �eld make these methods similar to optical �ow
estimation (Barron et al., 1994) with the additional constraint that the
motion �eld is purely horizontal. The main drawback of these methods is
the di�culty of minimizing the energy, almost always non-convex, and the
important computational cost. A notable method in this category based
on graph cuts (Kolmogorov and Zabih, 2001) guarantees a sub-optimal en-
ergy mimimum is reached. However, even the global optimum may su�er
from the modelization bias.

� Local methods: small to moderate size patches of one image are consid-
ered and searched in the other image, using a distance or dissimarility
function. Though these methods can be fast (the few real-time techniques
are based on local methods), they usually su�er from the fact that the
patch shapes are not adapted to the underlying geometry of the scene,
which is unknown. This leads to the infamous fattening e�ect, yielding a
dilation of foreground object shapes in the disparity map (Scharstein and
Szeliski, 2002).

All methods rely on numerous parameters, usually without any automatic pro-
cedure to �x them. The inverse of the depth of points is an a�ne function of
their disparity, whose two parameters depend on camera parameters and the
recti�cation transforms.

Using the camera as a precise photogrammetric device, as a low cost al-
ternative to costly time of �ight or di�erence of phase laser systems, requires
an accurate calibration. Most notably the lens geometric distortion must be
corrected, otherwise the whole theory collapses because of the violation of the
fundamental pinhole camera model. The very delicate auto-calibration process
(Hartley, 1994), based on the observation of several images of a scene with un-
known geometry and trying to solve the Kruppa equations, assumes a simpli�ed
camera model and has not yet reached an adequate level of precision. E�cient
and simple calibration methods require the use of a planar rig (Zhang, 2000).
A distortion model with few parameters is assumed. It is typically radial with
unknown center or radial with �xed center but supplemented by a tangential
distortion. The most widely used software is a Matlab toolbox written by Jean-
Yves Bouguet 6. A method from Lavest et al. (Lavest et al., 1998) is notable
for its care of accuracy. The method estimates simultaneously the distortion
parameters, the intrinsics (principal point, focal length, skew) and the rig ge-
ometry if not perfectly planar. It is based on a global bundle adjustment, which
minimizes a non convex least square energy in a high dimensional space.

In the multiple view stereo case, the generalization of the fundamental matrix
is the multi-view tensor (Hartley and Zisserman, 2000). While the trifocal ten-
sor (Hartley, 1997b) gathers more constraints that the addition of its two-view

6. http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/
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constraints, the multiple view constraints stop at three views: all constraints
involving more than three views are combinations of trifocal constraints (Ma
et al., 2004). The most widely used software for external calibration of the
views is Bundler (Snavely et al., 2010), an incremental method relying on fre-
quent bundle adjustments to reduce drift. A more capable but less easy to
use it the open source APERO software (Pierrot-Deseilligny and Cléry, 2011)
Global methods are more recent and were pioneered by Martinec and Pajdla
(Martinec and Pajdla, 2007). Another category of methods for global calibra-
tion relies on the factorization of the structure and motion matrix into a low
rank product (Sturm and Triggs, 1996). The large dimension matrix contains
many unknown coe�cients since point correspondences cannot be observed in
all views, connecting the problem to the very active �eld of low-rank matrix
completion.

Once the external calibration is estimated, two categories of methods exist:

� Plane sweep methods: dense multi-view correspondences are recovered
by assuming planar patches in 3D space and testing the reprojection in
the di�erent images (Collins, 1996). This is the mutli-view equivalent of
the disparity map estimation. It then provides a point cloud, which then
must be meshed and optimized. A state of the art pipeline according to
a popular benchmark (Strecha et al., 2008) was demonstrated by Vu and
al. (Vu et al., 2009).

� Visual hull methods: a mesh is directly constructed from the silhouette of
the observed object in the di�erent images (Lazebnik et al., 2001). This
category of methods is limited to cases where a central object is seen from
multiple angles and the background can be easily removed.

Although remarkable feats of engineering resulting in very large scale urban
reconstructions were demonstrated in recent years (Agarwal et al., 2009; Frahm
et al., 2010), the large scale and accurate 3D reconstruction from multiple views
is still a fairly open problem.

An area of research with potential high impact for the movie and enter-
tainment industry is the multiple movie stereo reconstruction, also known as
3D+time markerless stereo. We can cite a tentative approach (Courchay et al.,
2009).

Finally, let us mention a less researched area of research, probably because it
requires a special aparatus for data acquisition: epipolar plane imagery (Bolles
et al., 1987). The camera motion is controlled by a linear stage and uniform.
After recti�cation, an x − t cut along each horizontal epipolar line yields an
epipolar plane image, exhibiting straight segments of line whose slope is linked
to depth by a simple function. Detection of these segments gives an evaluation
of the depth. The advantage of the technique is that it combines the precision
of large baseline stereo (considering images of the sequence far apart) without
compromising the feasible correspondence problem (intermediate frames build
a segment in the epipolar plane image). A sophisticated method of Criminisi
et al. (Criminisi et al., 2005) is often cited. An approach relying on extension
of epipolar plane segments into lines, intersection of these lines resulting in a
tesselation of the epipolar plane image and interpolation of the disparity in
each segment is demonstrated by Monasse et al. (Monasse et al., 2007; Rudin
et al., 2011). Very good-looking results with a di�erent method were recently
demonstrated (Kim et al., 2013).
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Figure 2.13: Distortion estimation using a calibration pattern. On the right is
illustrated the loop validation for discarding pattern to image correspondences,
using a third image to create a loop.

2.2.1 Internal calibration

Distortion correction

Some tests with structure-from-motion software in controlled environment,
using a �at calibration pattern, suggest that estimating the camera parameters
while simultaneously recovering structure is an unstable process: some displace-
ments of feature points at �ne scale in the images can be attributed to camera
motion, to optical defects or to 3D geometry itself. Even with a carefully laid
out calibration object and �xing its 3D geometry, variations of camera position
and distortion estimations are still important, even though the residual repro-
jected pixel error is a fraction of one pixel. The most signi�cant problem lies
with the geometric distortion of the lens. This deviation to a pinhole camera
model can be very detrimental to accuracy. The PhD work of Zhongwei Tang
was for a big part focused on this problem (Tang, 2011).

The use of a highly textured �at pattern was investigated (Grompone von
Gioi et al., 2010). This can be a real pattern from a photograph or a syn-
thetic one obtained by generating a white noise image, smoothing it slightly by
a Gaussian �lter and printing the image on a paper sheet, see Figure 2.13. The
advantage is that it creates a multitude of feature points (several thousands
SIFT points) which can be matched between the ground truth pattern and a
photograph of it. It is important to remove outlier correspondences between
the image of the pattern and the ground-truth pattern itself. The best way to
validate the correspondences is to use a second photograph of the pattern and
check the loop consistency. Indeed, following matching points to come back
to pattern image, the distortion does not play any role, and there is just a
homography between points of the pattern image and their resulting position
after loop closing, see Figure 2.13. This homography can be estimated with a
RANSAC algorithm and outliers discarded. Moreover, the standard model of
distortion comprising a radial distortion supplemented by a tangential compo-
nent and involving just a few parameters was found insu�cient to model the
complex distortions that can occur. A model of vector �eld with two bivariate
polynomials of higher order improves notably the results. However, checking
the results on photographs of stretched �ne threads shows that the recti�cation
of these curve lines by the distortion correction is not quite straight, with an
average error of 0.08 pixel. This is attributed to the fact that the pattern object
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Figure 2.14: The calibration harp, two types of thread (sewing and �shing,
notice the �shing thread is straighter) and photographs of the harp (notice
some curved lines due to distortion). On the right is the residual error of one
thread after correction (two sides).

was not perfectly �at, even though care has been taken to �x it to quite planar
surfaces, like a mirror or an aluminium plate.

Extending this idea of using a plumb-line method, we designed a calibration
harp, consisting of a rigid frame with opaque �exible threads stretched across
the frame. This provides a series of ground truth straight lines, which can be
used to measure the distortion and its correction (Tang et al., 2012). This device
is used to evaluate the residual distortion of the lens: multiple photographs of
the harp under di�erent orientations are taken. The line segments are extracted
and re�ned to yield largely subpixel precision, following a method proposed by
F. Devernay (Devernay, 1995). Some average and maximum measures of error
of each line with respect to its straight regression line give quantitative assess-
ments of the distortion. Best results were obtained with our texture image and
non-parametric distortion model, compared with classical bundle adjustment
and commercial software. The average distance was measured as 0.04 pixel on
average with a maximum of 0.16. These are half the best errors obtained by the
competition.

When the distortion is corrected by a plumb-line method, the only insur-
ance is that straight lines in space are projected on straight lines in the im-
age (Grompone von Gioi et al., 2011). But any homography applied subse-
quently to the corrected image has the same property. Therefore, when apply-
ing the correction, there is no guaranty that some arti�cial homography H was
not introduced in the correction. In that case, the point-to-camera projection
equation becomes

x = HK
(
R T

)
X (2.16)

instead of x = K
(
R T

)
X. But the RQ factorization of HK can be written

HK = K ′R′. This has two consequences:

1. The corrected images correspond to projections through a virtual pinhole
camera of matrix of instrinsics K ′ 6= K.

2. The translation and rotation (R, T ) between a world-coordinate frame and
the camera become (R′R,R′T ) with the virtual camera. As a consequence,
the 3D position of the virtual camera −R−1T remains the same, but the
rotation becomes R′R. Notice that the relative rotation between two views
becomes: R′R2R

−1
1 R′−1 6= R2R

−1
1 .
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Figure 2.15: Simulated lateral chromatic aberration on part of a black disk
with di�erent shifts. The color fringes are hardly noticeable below 0.05 pixel
shift.

Chromatic abberration correction

The techniques used in distortion correction, in particular the correction
model, can be used for lateral chromatic aberration correction (Rudakova and
Monasse, 2014). This is due to the fact that the lens has a di�erent refraction
depending on wavelength and is visible as a shift between the three color planes
of the image. For example, color fringes at the boundary of gray level spots
may be visible. Even a shift of some fraction of pixel may be noticeable. This
requires a very �ne non-rigid registration of the color planes. The algorithm
developed with Victoria Rudakova uses a calibration pattern made of multiple
black disks on white background. This is printed on a white sheet of paper
and photographed. Notice that it is not necessary to have a perfectly �at pat-
tern and the non-planarity should not a�ect much the precision. The circular
regions are �rst detected by a simple thresholding of in each channel image.
Their shape is then precisely localized using a model of linear transition of the
intensity at the boundary, and constant levels inside the disk and outside. A
Levenberg-Marquardt minimization of the model �tting involving position and
attitude of the circular shape and its intensity is performed. Only the center
of each circle is then used as interest point. The green channel is then used
as reference, and the interest points of blue and red channels are matchted to
their nearest interest point in the green channel. A dense registration map is
obtained by �tting polynomial models of high order to the green-red and green-
blue correspondences.

Experiments show that the detection of disk centers is quite precise. Syn-
thetic tests show a good resistance to noise, with less than 0.02 pixel error for
additive Gaussian noise of standard deviation 1 in an 8-bit image. This is valid
even for small disks (radius 10 pixels). This allows to pack many disks on the
pattern and thus having numerous interest points. At least as important, a
good robustness with respect to aliasing is measured, with less than 0.05 pixel
localization error for highly aliased images. This is noteworthy, since the red
and blue channels of the Bayer pattern produce half-size images that are no-
tably aliased. The green channel is kept at the original resolution; the half of
all image pixels with only red or blue information are interpolated by average
of known neighbor green pixels.

A good registration of maximum shift of 3 pixels down to 0.1 pixel is observed
for di�erent cameras and focal lengths. This is the limit at which the aberration
becomes hardly visible, see Figure 2.15. Comparison with commercial software
shows that our correction outperforms all others by a comfortable margin, see
Figure 2.16. This is due to

1. precise detection of interest points;

2. high order model of registration.
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Figure 2.16: Performance comparison of lateral chromatic aberration correction
(mean and maximum residual error after disk center registration between green
and red/blue channels) for di�erent commercial software programmesand our
method. Camera: Canon EOS 40D with zoom lens, experiments at di�erent
focal lengths. The left graph shows uncorrected aberration (notice the di�erent
scale).

Points in RGB space Image crop Image crop

Figure 2.17: Lateral chromatic correction on real data with Canon EOS40D.
We show original (left) and corrected (right) data.

Results of the estimated correction on real data are shown in Figure 2.17.
Distribution of pixel colors in RGB space of a photograph of the black and white
pattern is much more concentrated after correction. Notice also the disparition
of color fringes on di�erent parts of images.

2.2.2 External calibration

The external calibration is a solved problem for a pair of cameras. Assuming
the internal calibration matrices are known and the essential matrix computed,
a simple decomposition via SVD of the essential matrix provides the relative
rotation and translation (up to a 4-fold indeterminacy, which is easily solved by
the cheirality constraint, namely imposing interest points to be in front of each
camera). The problem arises with loops: estimated relative transforms between
coordinate frames in a loop must compose to identity. Considering that each
estimate has a certain amount of error, balancing equally the error is di�cult.
Incremental methods rely on bundle adjustment to �close� the loops. Global
calibration methods try to deal earlier with the loops, at higher computational
cost.
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Epipolar recti�cation

Once the fundamental matrix between two pinhole camera views has been
computed from point correspondences, based most of the time on point corre-
spondences and outlier elimination through some form of RANSAC algorithm,
putting the images into epipolar recti�ed geometry is generally a necessary step
before disparity estimation. The rigidity constraint being written with the fun-
damental matrix F

x′TFx = 0 (2.17)

with x and x′ corresponding points in their respective image in homogeneous
coordinates, the recti�cation is achieved by applying homographies of matrix H
and H ′ to the images such that

H ′T [i]×H = λF (2.18)

with i =
(
1 0 0

)T
. Indeed, in that case the rigidity constraint becomes

(H ′x′)T [i]×(Hx) = 0 (2.19)

which amounts to (Hx)2 = (H ′x′)2, meaning that points Hx and H ′x′ are on
the same horizontal line in both images. Multiple solution pairs (H,H ′) satisfy
(2.18) and there is some leeway in the choice of solutions. Additional constraints
may be imposed, mostly to distort as little as possible the original images (with
di�erent measures of distortion among the methods). The method of Fusiello
and Irsara (Fusiello and Irsara, 2008; Monasse, 2011) tries to simulate physical
zoom and rotations of the camera, hence its name �quasi-Euclidean�. For that,
it has to assume a calibration matrix

K =

f 0 w/2
0 f h/2
0 0 1

 . (2.20)

f is the unknown focal length but the principal point is �xed at (w/2, h/2),
the center of image. The rotations of the two cameras are paremeterized by 5
angles, 3 for each camera but an arbitrary common rotation around optical axis
leaves the pair recti�ed. Supplemented with f , a vector v of 6 unknowns is then
searched minimizing the error measure

N∑
i=1

ε(x′i, H
′(v)[i]×H(v), xi)

2 (2.21)

with ε the error function, preferably having geometric meaning rather than
purely algebraic. Fusiello and Irsara choose the Sampson error. This mini-
mization is based on Levenberg-Marquardt, so may fail to converge to the local
minimum.

With Jean-Michel Morel and Zhongwei Tang, an improvement was pro-
posed (Monasse et al., 2010), relying on the single unknown f . Having only one
parameter instead of 6, the minimization is much simpler and even a global min-
imization could be sought, even though we still relied on Levenberg-Marquardt
iterative minimization. The method is based on the observation that assum-
ing f known, we can decompose the recti�cation in three elementary steps, see
Figure 2.18:
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Figure 2.18: Three-step epipolar recti�cation.

Fusiello and Irsara's method Three-step method

Figure 2.19: Epipolar recti�cation of a pair of aerial images, with superimposed
green line to help visual comparison. Notice the residual vertical motion in
Fusiello-Irsara's method.

� Apply minimal rotations such that epipoles a = (ex, ey, 1) and a = (e′x, e
′
y, 1)

are mapped to in�nity b = (ex, ey, 0) and b′ = (e′x, e
′
y, 0). Writing H =

KRK−1, we can write RK−1a = K−1b and �nd R as the closest rotation
to identity aligning the 3D vectors K−1a and K−1b.

� Rotate each image to map b and b′ to i with similar method.
� The new fundamental matrix may be written F ′ = K−T [i]×RK

−1 and R,
rotation of one camera around optical axis, can be recovered fromKTF ′K.

The three steps depend on K, which is parameterized by the unknown f , but
are computable with closed form formulae. Instead of the Sampson error, the
symmetric transfer error is used:

ε(x′i, H
′(f)[i]×H(f), xi)

2 = d(x′i, Fxi)
2 + d(xi, F

Tx′i)
2 (2.22)

with d the point-to-line geometric distance based on points and lines equations
in homogeneous coordinates.

It turns out that due to the lower dimensionality of the search space, this
algorithm is less susceptible to get stuck in a local minimum. This is particularly
the case when the initial apparent motion of corresponding points is mostly
vertical, as in Figure 2.19.

Tree-Based Morse Regions

Feature points and their correspondences are at the basis of many crucial
steps in 3D computer vision. The most popular interest points are based on
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Figure 2.20: Tree Based Morse Regions. Left: de�nition. Middle: comparison
with other methods in terms of repeatability and number of correct matches
in Bark image (notice comparable repeatibility but a much higher number of
matches for TBMR). Right: comparison of the number of tracks in datasets of
multi-view stereo with di�erent interest point dectectors.

local extrema of the derivative of Gaussian scale-space (DoG), with each point
associated by a �xed-length descriptor computed by the SIFT method (Lowe,
2004). Fast implementations exist and DoG based interest points have the
avantage of being numerous, especially if one starts from octave -1 (doubled
image size). However, it is to be noted that the method depends on multiple
parameters, even though default values are appropriate in general. Also, the
method is not contrast invariant: Gaussian convolution does not commute with
general contrast change, and even though the descriptor construction is contrast
invariant, relying on direction of gradient, it is computed on a convolved image.

In a celebrated benchmark (Mikolajczyk et al., 2005), MSER (Matas et al.,
2004) was shown to outperform DoG and variants in the most important cases:
more robustness with respect to geometric transformation and with contrast
changes. The cases where MSER perform poorly are when the images have
undergone blur, strong JPEG compression, or an important change of scale.
The �rst two are just related to image quality and should be easy to avoid.
The real limitation is the sensitivity to scale changes. Nevertheless, MSER
su�ers from two defects: MSERs are usually much less numerous than DoG
interest points, and they depend on a few parameters, though much fewer than
SIFT. Moreover, their precise de�nition is not quite clear. Given a connected
component Cλ of [u ≥ λ], the stability function is de�ned as:

|Cλ−δ| − |Cλ+δ|
|Cλ|

, (2.23)

with δ > 0, where Cλ−δ = cc([u ≥ λ − δ], Cλ). The ambiguity arises in the
term Cλ+δ: when there is a bifurcation between levels λ and λ + δ, should
it be the greatest connected component of [u ≥ λ] inside Cλ, or the union
of all such connected components? The original paper does not precise this
point leading to slightly di�erent interpretations of MSER. Local minima in
the component trees of this stability function are the MSERs. The associate
descriptor is usually SIFT, even though MSER being a true region of the image,
more speci�c descriptors should be possible. The parameter δ implies that
MSER are not quite contrast invariant.

A simpler, contrast invariant variant of MSER was called TBMR for tree
based Morse regions (Xu et al., 2013). They are the connected components
of level sets just before a bifurcation, see Figure 2.20. Actually, there is still
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Figure 2.21: Repartition of interest points in an image. Notice that TBMR are
more numerous and more uniformly distributed than others. MSER has very
few detections on the object of interest (the sculpture) due to low contrast.

Using DoG Using TBMR

Figure 2.22: Three dimensional reconstruction from multiple view stereo im-
ages, using DoG or TBMR as interest points. Notice that the back facade of
the castle is lost using DoG because of lack of correct correspondences, while
TBMR recovers a more complete 3D.

a parameter, the min area of the grain �lter to apply. This not only removes
small regions, but also modi�es the tree structure: some bifurcations become
regular components as all children but one had an area smaller than the grain
�lter parameter.

TBMR have good repeatibility score on standard benchmarks, but with
much higher number of correspondences, see Figure 2.20. Also, their repartition
is more uniform, see Figure 2.21. This has important consequences for image
registration and 3D reconstruction from stereo, see Figure 2.22. These results
are obtained by incremental calibration using di�erent interest points, followed
by PMVS algorithm (Furukawa and Ponce, 2010).

Incremental calibration

Incremental calibration is the paradigm employed by the popular open-
source software Bundler (Snavely et al., 2010). Pairs of corresponding points
between images are computed and �ltered to remove outliers (via a RANSAC
algorithm computing the fundamental matrix). Ensuring transitivity of cor-
respondences, tracks of points are constructed, a track corresponding to a 3D
point (Moulon et al., 2012). Then an initial pair of images with enough point
correspondences is chosen. Knowing the fundamental matrix F , the essential
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matrix E can be deduced by

E = K ′TFK, (2.24)

withK andK ′ the intrinsics matrices. From the formula E = [T ]×R with R and
T the relative rotation matrix and translation vector between cameras, R and
T can be recovered. Once done, the triangulation of matching points recovers
3D points in the �xed coordinate frame linked to the reference camera of the
image pair. A third view having maximum tracks in common is appended. This
gives a set of 3D-2D correspondences. From this, pose estimation recovers the
relative position and orientation of this camera. Adding incrementally views is
susceptible to drift: errors accumulate and views added late in the process are
badly positioned with respect to the �rst views. To compensate that, a bundle
adjustment happens after adding each new view:

arg min
{Ri},{Ti},{Xj}

∑
i,j

d(xij ,Ki

(
Ri Ti

)
Xj)

2, (2.25)

where i is the view index, j the 3D point index, Xj a 3D point and d the
Euclidean distance in the image plane. Image point xij is the observed 3D
projection of track of index j in view i. This optimization is typically slow
because it is in a space of large dimension, non-convex and likely to get trapped
in a local minimum.

The whole procedure depends on several kinds of model estimations:
� Homography estimation;
� Fundamental or essential matrix estimation;
� Pose estimation.

Of course, each of these steps can be contaminated by outliers. The robust
algorithm of choice for model estimation is RANSAC (Random Sample Con-
sensus) (Fischler and Bolles, 1981). It depends on a parameter of precision σ
that should be �xed in accordance with the noise level. It discriminates be-
tween noisy inlier points and outliers. The right value of σ being unknown, a
�xed threshold is usually used. With Pierre Moulon and Renaud Marlet, it was
checked that using a �xed uniform threshold for all images is not optimal. A
better solution is to estimate σ at the same time as the model.

This is achieved using the a contrario framework, according to which ob-
served unlikely events are signi�cant. Given a model M and supposing k in-
liers, the expectation of the event �having k inliers or more�, or number of false
alarms, is given by (Moisan et al., 2012):

NFA(M,k) = Nout(n−Nsample)

(
n
k

)(
k

Nsample

)
(ek(M)dα0)k−Nsample (2.26)

where Nout is the number of models estimated by a minimum size of Nsample

correspondences among n (usually Nout = 1, but 3 for fundamental matrix
estimation based on 7 correspondences), ek(M) is the k-th lowest error to M ,
α0 is the probability of a random correspondence having error at most 1 pixel
and d the error dimension: 1 for distance point-line, 2 for point-point. This
relies on the background model according to which a random correspondence is
a pair of uniformly distributed points in their respective image. The number of
inliers k > Nsample is not known so a minimization happens:

NFA(M) = min
k
NFA(M,k). (2.27)
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Figure 2.23: Reconstruction and estimated pose estimation threshold σ de-
pending on image number, as estimated by a contrario RANSAC algorithm.
Notice the signi�cant variation of the threshold.

Figure 2.24: External calibration accuracy in position and angle with classical
Bundler (and its standard parameters) and with a contrario structure from
motion (which uses adaptive thresholds).

The optimal k0 gives the error threshold σ = ek0(M). Figure 2.23 shows some
3D reconstruction from multiple-view stereo with estimated σ in pose estimation
of each image. Notice the variation of this threshold depending on the image.

Experiments on data with available ground truth show that replacing all
model estimations by their a contrario equivalent yields better results than any
uniform thresholds could achieve (Moulon et al., 2013a). This is especially true
of the rotation accuracy, while the position accuracy is better but by a smaller
margin. This can be observed in Figure 2.24.

The background model (null hypothesis) for a contrario estimation assumes
that point matches are uniformly distributed in their respective image. A devia-
tion from this model can be deemed as signi�cant simply because feature points
are not uniformly distributed. Improved results in a contrario fundamental ma-
trix estimation relying on a more adpative background model have since been
demonstrated (Espuny et al., 2014).

Scalable global calibration

As mentioned, the incremental calibration can be slow, since multiple bundle
adjustments must be performed to avoid drift. Also the result depends on the
initial pair chosen and on the order in which views are appended, on frequency
of bundle adjustment, etc. The most prominent problem is that the bundle
adjustments happening in high dimension spaces, a lot of local minima can be
expected and a good initialization is necessary. A few methods have been pro-
posed to deal globally with all views and estimate rotations and translations.
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Loops in camera trajectory are handled. The two problems are usually sepa-
rated: rotations are estimated, then translations. Di�erent techniques are used
to handle both problems.

All pairs of images (i, j) from which an essential matrix could be computed
yield an estimated relative motion (Rij , tij), except that only the direction of
tij is known, not its amplitude. A set of global rotations Ri with respect to a
�xed coordinate frame is sought:

∀i, j Rj = RijRi. (2.28)

The di�culty is that the parameterization of rotation matrices cannot be achie-
ved linearly. The solution proposed by Govindu (Govindu, 2001) and indepen-
dently by Martinec (Martinec and Pajdla, 2007) parameterizes each rotation by
a quaternion. This yields a set of linear equations that is easily solved. How-
ever, the unit length of each quaternion is not guaranteed by this minimization,
and, since we are unable to impose the constraints in the minimization, each is
normalized a posteriori. Though some variants exist, no public method is yet
able to deal exactly with global rotations.

However, the �rst task is to make sure that all Rij are plausible. Indeed,
in arti�cial environments it is not rare to have su�cient structural coherence
between two images that are actually observing di�erent objects. For example
two di�erent facades can match because of coherent shape and organization of
features, such as windows. Zach et al. (Zach et al., 2010) proposed to �nd loops
in the visibility graph (whose vertices represent views and an edge between views
i and j is present whenever Eij could be computed), cycle errors to identity are
computed and errors above a threshold provoke the rejection of the edges. Only
cycle lengths up to 6 are considered, because of lower complexity and because
longer cycles should allow more leeway in their error. We supplement the algo-
rithm with the normalization factor

√
l for the error, where l is the cycle length.

As observed by Enqvist et al. (Enqvist et al., 2011), an error proportional to
√
l

is the expected behavior of a normal cycle. To avoid limitation of the check to
small cycles, we iterate the algorithm until no more edge is removed. Finally,
we check all triplets forming loops in the graph and reject the ones with an error
greater than 2◦.

To estimate translations, we proceed in two steps: trifocal tensors are com-
puted on length 3 loops to estimate more precise relative translations using
a contrario RANSAC, then translation registration is performed. The trifocal
tensor is estimated with known rotations, so four point correspondences in the
three images are enough to have a solution. The minimal solver is based on
solving the feasibility of a linear programme involving the l∞ reprojection er-
ror, see Figure 2.25. This is shown to be more accurate and quite faster than
a straight l∞ minimization using slack variables to handle outliers, as proposed
by Sim and Hartley (Sim and Hartley, 2006). The method is also shown to yield
much more precise translation direction than the one based on pairs, especially
with small baselines. The translation registration minimizes the maximum er-
ror between the vectors λijtij (scaled relative translation vector) and Tj−RijTi
(relative translation computed from absolute translations). The unknowns are
the Ti and λij . This is solved by a linear program, faster than the SOCP formu-
lation of Sim and Hartley, which is based on angular errors instead of Euclidean
distances.
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Figure 2.25: Translation registration in global external calibration. (a) Ac-
curacy of translation direction estimation in bifocal (red) and trifocal (green)
tensor estimation, as a function of scene viewing direction. Test performed on
synthetic images with Gaussian noise perturbing 2D point projections. (b) The
error measure γ we use in estimation of translation registration. (c) 3 local
tensors and merged translations.

Finally, our pipeline (Moulon et al., 2013b) operates quite faster (by a fac-
tor of about �ve) than the concurrent global pipeline of Olsson and Enqvist
(Olsson and Enqvist, 2011), with comparable precision as the best incremental
and global methods on Strecha's dataset. With larger scale datasets, the time
e�ciency of the pipeline is even more notable, with success where Bundler was
unable to calibrate precisely and with late bundle adjustments taking very long
to compute (because of higher number of variables).

We show a 3D reconstruction based on a dataset of 61 images of the Sceaux
Orangerie in Figure 2.26. A larger dataset of 161 images of Opera Garnier yields
the reconstruction of Figure 2.27.
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(a) Bundler calibration

(b) Global calibration
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Figure 2.26: Reconstruction based on global registration. Notice the missing
views in upper-left part of (a) with incremental calibration of Bundler. The vis-
ibility graph has some wrong edges in (c), which are removed by cycle analysis.
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Figure 2.27: Reconstruction based on global registration.
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Chapter 3

Perspectives

3.1 Disparity map computation

When a pair of images are recti�ed, the computation of the disparity map
is a challenge, with over 150 methods tested in the Middlebury benchmark 1.
Whereas the benchmark o�ers a glimpse of the state of the art, many of the
methods have no publicly available implementation and therefore their results on
di�erent datasets are unknown. In the Middlebury benchmark, the underlying
geometry of the scene is mainly a collection of planes, the ground truth data
is questionable with its limited precision, most scenes are fronto-parallel. This
does not give a good indication of the performance of the methods in satellite
imagery for example. One strength of the IPOL journal (Image Processing On
Line) is that each article provides an open source reference implementation of
the algorithm, the article itself serving as documentation. It is unnecessary
and probably impossible to reimplement all methods tested in the Middlebury
benchmark: many published papers do not provide all necessary information
to reproduce the results. But online demonstrations of a few representative
methods would permit a real comparison. This would open the way to a true
understanding of the strengths and weaknesses of the methods. This work has
already begun with several landmark algorithms already submitted to IPOL or
in preparation.

There are typically two categories of methods: local and global methods.
Local methods rely on limited size patches around each pixel and try to lo-
cate them in the search image using some distance measure. Many times, some
post-processing is done: �lters to eliminate wrong correspondences and recom-
putation based on reliable points. Global methods de�ne an energy, similarly
to optical �ow methods, exhibiting a data �delity term and a smoothness term.
These present other kinds of problem, with the di�culty of minimizing the
energy, the optimization can have a high computation cost, and the parame-
ters are often numerous and hard to tune. Local methods typically su�er from
the adherence (or fattening) e�ect. This is an artifact created by the patches
that are not adapted to the local geometry. Some recent methods take large
square patches but overlay a weight map that tries to follow the image geom-
etry, with the assumption that discontinuity of depth is usually accompanied

1. http://vision.middlebury.edu/stereo/
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by a discontinuity of color. Several representatives of these evolved local meth-
ods are in preparation for publication in IPOL, like weighted patches (Yoon
and Kweon, 2006) and cost aggregation based on guided �lter (Rhemann et al.,
2011). Concerning global methods, the celebrated algorithm of Kolmogorov and
Zabih (Kolmogorov and Zabih, 2001) based on graph cuts has been submitted
for publication (Kolmogorov et al., 2013).

Another research track concerns the precision of the disparity computation.
It has been recently shown that the recovered height precision can be estimated
by the formula

δh(x) =
1

(b/h)nt3/2

√
v(x)

(v)2x
, (3.1)

with n the patch size, t the exposure time, and v the image. This is valid under
the assumption of a Poisson noise, which is reasonable. The role of b/h (ratio
baseline-depth) and n is well-known. What has been overlooked is the role of
the exposure time t of the camera. Increasing t reduces the noise and therefore
the error with a very favorable exponent, 3/2. In other terms, with almost noise
free images, it should be possible to consider a low b/h, which is favorable since
it allows to have more similar images and facilitates the matching, and a low
n, which reduces the adherence. Investigating the e�ect of noise on disparity
precision and trying to reach the theoretical bounds given by the above formula
are the goals of the new ANR project STEREO (programme ASTRID 2012),
involving CMLA and IMAGINE. This involves the creation of perfect images,
that is, images with no aliasing and no noise created by subpixel registration,
super-resolution, accumulation and resampling of a burst of images. This is
better than long exposure time since there is less risk of saturation. The quality
of distortion correction with the calibration harp must be veri�ed (experiments
suggest an average recti�cation error of 1/30th pixel could be reached). Subpixel
block matching with small blocks could then be performed (the target is of the
order of 1/100th pixel precision). Methods based on optical �ow should also be
tested. Their advantage is that the subpixel character is automatic and does
not require any interpolation of the image.

3.2 Multiple view stereo

In multiple view stereo, numerous problems remain, especially concerning
global calibration. Probably the most di�cult part concerns the global rotation
registration. The fact that the rotation constraints on matrices are nonlinear
makes any optimization procedure di�cult. So far, few methods have been
proposed, and none is really satisfactory. In comparison, the translation reg-
istration seems a much easier problem, with several existing methods. Other
problems in the pipeline still exist, such as how to distribute the error evenly
in loops, how to remove outliers in the visibility graph, identifying degenerate
situations for the fundamental matrix, which are frequent in arti�cial environ-
ments because of mostly planar surfaces... The multiple view stereo calibration
is still an active area of research, especially with respect to global methods and
when handling large datasets.

Other problems in multiple view stereo include the fusion of disparity maps.
For example, given three images, three pairs can be formed and each one gives
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rise to disparity maps. These disparity maps may not be dense, due to occlusions
and false negative disparities. The question is how to merge these maps to obtain
denser and more precise maps. Actually, a disparity map is speci�c to a pair
of recti�ed images, so the problem may be better reformulated as the fusion of
point clouds. Getting the point cloud from a disparity map requires the use of
calibration parameters. Initial experiments performed in the framework of the
MISS project show that the internal and external calibrations given as metadata
with some Pleiades satellite imagery are not precise enough to signi�cantly
merge such point clouds.

Another area of interest is linked to poorly textured scenes, with some ap-
plications having a high industrial impact. For example, the reconstruction of
indoor 3D geometry faces multiple problems: non-uniform lighting, re�ections,
poor textures, close range photography... For such scenes, the number of inter-
est points may be too low. Other features may be used, most notably segments,
and a priori hypotheses about the 3D scene must be assumed, such as planar
surfaces. Convenience of the data capture may require the use of wide angle
cameras, meaning that disortion correction is necessary and that non-uniform
resolution of the corrected images must be taken into account.
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