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Résumé

Les dernières décennies ont vu l'émergence de formes architecturales non standard. Les concepteurs
se retrouvent généralement démunis face à la complexité géométrique de ces objets, dont la fabrication
rime souvent avec complication. De plus, les outils utilisés dissocient forme et fonctionnement structurel,
ce qui complexi�e le processus de décision pour ingénieurs et architectes. Ce mémoire prend un point
de vue fondé sur la notion d'invariance par transformation géométrique et étudie plusieurs stratégies
de génération de formes satisfaisant des contraintes constructives usuelles pour remédier à ces manques.
Trois contraintes constructives ont été identi�ées et correspondent à trois contributions indépendantes de
cette thèse.

La répétition des n÷uds d'assemblage est étudiée via les transformations par maillages parallèles.
Ces dernières sont utilisées pour créer une généralisation des surfaces de révolution. On retrouve par là
un paramétrage particulier des surfaces moulures de Monge avec une grande répétition d'éléments, et
notamment de n÷uds d'assemblage.

Les réseaux de cyclides sont ensuite utilisés pour dessiner des formes parametrées par leurs lignes
de courbures. Cela permet la couverture par panneaux plans ainsi que l'o�set des éléments structurels
sans excentricité. L'apport de cette thèse est l'implémentation de plusieurs améliorations, notamment
l'introduction de plis à double courbure, un algorithme permettant de généraliser les réseaux de cyclides
à des topologies quelconques, et la génération de surfaces généralisant les surfaces canal à partir de deux
courbes rail et une courbe pro�l.

Finalement, une méthode innovante inspirée de la géométrie descriptive permettant la génération
de formes courbes couvertes par des quadrangles plans est proposée. La méthode, baptisée méthode
marionnette, réduit ce problème à un système linéaire, ce qui permet une manipulation de ces formes
constructibles en temps réel. Une étude comparative montre que cette technique peut être utilisée pour
paramétrer des problèmes d'optimisation de forme de coques sans perte de performance par rapport aux
paramétrages utilisés de façon classique. L'intégration des contraintes de fabrication dans le processus
d'optimisation structurelle ouvre de nouvelles possibilités d'applications, comme des coques réticulées et
des coques discrètes. La pertinence de ces nouvelles solutions est démontrée par de multiples études de
cas.

Mots clés : morphologie structurale, outil de génération, processus de conception, géométrie descrip-
tive, optimisation structurelle, gridshell, maillage marionnette, coque mince.
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Abstract

The last decades have seen the emergence of non-standard architectural shapes. Designers �nd often
themselves helpless with the geometrical complexity of these objects. Furthermore, the available tools
dissociate shape and structural behaviour, which adds another complication. This dissertation takes the
point of view based on invariance under geometrical transformations, and studies several strategies for
fabrication-aware shape modelling. Three technological constraints have been identi�ed and correspond
to three independent contributions of this thesis.

The repetition of nodes is studied via transformations by parallelism. They are used to generalise
surfaces of revolution. A special parametrisation of moulding surfaces is found with this method. The
resulting structure has a high node congruence.

Cyclidic nets are then used to model shapes parametrised by their lines of curvature. This guarantees
meshing by planar panels and torsion-free beam layout. The contribution of this dissertation is the
implementation of several improvements, like doubly-curved creases, a hole-�lling strategy that allows
the extension of cyclidic nets to complex topologies, and the generation of a generalisation of canal
surfaces from two rail curves and one pro�le curves.

Finally, an innovative method inspired by descriptive geometry is proposed to generate doubly-curved
shapes covered with planar facets. The method, called marionette technique, reduces the problem to a
linear problem, which can be solved in real-time. A comparative study shows that this technique can
be used to parametrise shape optimisation of shell structures without loss of performance compared to
usual modelling technique. The handling of fabrication constraints in shape optimisation opens new
possibilities for its practical application, like gridshells or plated shell structures. The relevance of those
solutions is demonstrated through multiple case-studies.

Keywords : structural morphology, generative tool, design process, descriptive geometry, structural
optimisation, gridshell, marionette mesh, thin shell.

5



6



Acknowledgment

Il faut une ouverture d'esprit certaine pour lancer des ponts entre di�érentes disciplines. J'ai eu la
chance d'avoir des encadrants ayant cette qualité. Ce travail doit autant à leur rigueur scienti�que qu'à
cette ouverture.

Merci à Olivier, mon directeur de thèse, pour son enthousiasme, pour la con�ance qu'il a placée en moi
dès le début de ce travail et pour le plaisir d'enseigner qu'il m'a communiqué. Merci pour ses conseils et
tout ce qu'il a pu m'apprendre, sur les structures complexes, mais bien plus en encore.

Merci à Cyril, conseiller scienti�que, d'avoir su trouver les mots pour me faire revenir de ce côté de
l'Atlantique, et sans qui je n'aurai surement jamais fait de thèse. Ce travail s'est nourri de nos discussions
qui ont donné naissance à de multiples idées, dont certaines se sont concretisées dans ce document. Merci
aussi pour avoir relu ce long mémoire ainsi que les quelques articles qui en sont issus, et d'avoir notoirement
amélioré la clarté du propos. Merci en�n de m'avoir invité à prendre part à l'enseignement de Construire
le Courbe et d'avoir pu me permettre de confronter la géométrie à la matière.

Je remercie Bruno Léger pour ses conseils et pour l'orientation de ce travail vers les structures. Merci
à Bouygues Construction d'avoir �nancé ce projet de thèse, qui portait une ambition forte. Merci à Marc
Blondeau et son équipe d'avoir pris le temps d'échanger sur des problématiques de la vraie vie d'une
entreprise de construction.

Je tiens à remercier Bernard Maurin et Chris Williams, rapporteurs de ce mémoire, pour leurs conseils
précis et avisés. Je remercie également tous les membres de mon jury pour leur écoute attentive. Merci à
Maurizio Brocato, son président, pour ses remarques judicieuses lors de ma soutenance. Merci à Christoph
Gengnagel, Nicolas Pauli et Laurent Hauswirth pour leur relecture du manuscrit et leurs commentaires
pertinents qui continueront à nourrir ce travail.

Mes remerciements vont aussi à Karam Sab, directeur du laboratoire Navier, et à Jean-François Caron,
qui a suivi mon travail et qui a porté le projet du Build'In Lab avec Françoise Préteux. Je suis heureux
que nous puissions écrire les pages de cette nouvelle aventure ensemble.

Un mémoire ne constitue qu'une partie d'une vie de thésard. Je tiens à remercier toutes les personnes
que j'ai eu le plaisir de cotoyer au quotidien et qui en rendu les bons moments meilleurs et m'ont soutenu
durant les moments plus di�ciles. A mes co-bureaux: Achille, Bachar, Grégoire, Michele, Philippe,
Rawad, Stefania. A toute l'équipe de Thinkshell, une histoire encore en construction: Arthur, Frederic,
Lionel. Aux copains avec qui j'ai partagé les pauses café: Lorenzo, Marie, Pierre, Nicolas, Robin, Romain
B. et Romain D., Vianney. Aux étudiants de l'Ecole à qui j'ai eu le plaisir d'enseigner, et plus partic-
ulièrement ceux que j'ai encadrés plus longuement: Christiane, Hugo et Yann. Un grand merci en�n à
Marie Françoise pour son aide et sa gentillesse.

Il y a la joie de terminer cette étape, mais je n'oublie pas les moments di�ciles passés au cours de
ces trois années. A mes amis et ma famille qui m'ont soutenu pendant ces périodes: mes parents, ma
grand-mère, Pascale et Francis qui m'ont accueilli dans leur famille, ma s÷ur Amélie et son mari Raphaël,

7





Contents

List of �gures 22

List of tables 23

I Problem statement 25

1 Opportunities of free-form structures 27
1.1 On curvature in architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1.1 What is free-form architecture? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.1.2 Potential of complex shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.1.3 Challenges for the construction industry . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Limits of current design approaches and need for integrated design tools . . . . . . . . . . 30
1.2.1 Limitations of geometrically-constrained methods . . . . . . . . . . . . . . . . . . . 30
1.2.2 Limitations of post-rationalisation techniques . . . . . . . . . . . . . . . . . . . . . 30
1.2.3 Work�ow in free-form architectural projects . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Existing tools for the rationalisation of fabrication . . . . . . . . . . . . . . . . . . . . . . 31
1.3.1 Conceptual structural design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.2 Classi�cation of design tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.3 How form is parametrised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Opportunities for structural design and problem statement . . . . . . . . . . . . . . . . . 33
1.4.1 Need for guidance in conceptual design . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.2 Design constraints as opportunity . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.3 Fabrication-aware structural optimisation . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.4 Organisation of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Challenges of structural morphology 37
2.1 Structural morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Representation in structural morphology . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.2 Formex algebra and con�guration processing . . . . . . . . . . . . . . . . . . . . . 38
2.1.3 Structural morphology and Motro's diagram . . . . . . . . . . . . . . . . . . . . . 38
2.1.4 Comment on structural morphology approaches . . . . . . . . . . . . . . . . . . . . 40

2.2 Analytical geometry and the rise of non-standard architecture . . . . . . . . . . . . . . . . 40
2.2.1 Surfaces of revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Constant slope surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 Ruled surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 Scale-trans surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.5 PQ-meshes from De Casteljau's algorithm . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.6 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.7 Comments on geometrically-constrained design approach . . . . . . . . . . . . . . . 45

2.3 Architectural geometry and post-rationalisation . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1 Geometry and stereotomy: the pioneering work of Gaspard Monge . . . . . . . . . 45
2.3.2 A new science for complex shapes: discrete di�erential geometry . . . . . . . . . . 46

9



10 CONTENTS

2.3.3 Polyhedral surfaces: covering free-form architecture with planar facets . . . . . . . 47
2.3.4 Discrete o�sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.5 Comments on the contribution of architectural geometry . . . . . . . . . . . . . . . 57

2.4 Mechanically-constrained design approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.1 Mechanical form-�nding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.2 Design space exploration by structural optimisation . . . . . . . . . . . . . . . . . 61
2.4.3 Multi-criteria optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.4 Fabrication-aware mechanical form-�nding . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.5 Comments on mechanically-constrained design approaches . . . . . . . . . . . . . . 64

2.5 Challenges for structural design of free-form architecture . . . . . . . . . . . . . . . . . . . 64
2.5.1 State of the art on structural morphology . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.2 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

II Design space generation 67

3 Element congruence in free-form structures 69
3.1 State of the art and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 On repetition of elements in free-form structures . . . . . . . . . . . . . . . . . . . 69
3.1.2 Connections in gridshells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.3 Combescure transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.4 Organisation of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Isogonal moulding surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.1 Mesh parallelism and surfaces of revolution . . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 Edge O�set Mesh and moulding surfaces . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 A second point of view on isogonal moulding surfaces . . . . . . . . . . . . . . . . . . . . . 75
3.3.1 Monge's surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.2 Discrete Monge's surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.3 Isogonal moulding surfaces as discrete Monge's surfaces . . . . . . . . . . . . . . . 78

3.4 Application and computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.1 Isogonal subdivision of a convex planar curve . . . . . . . . . . . . . . . . . . . . . 79
3.4.2 Isogonal subdivision of a planar curve . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.3 Computation of edge o�set meshes from moulding surface . . . . . . . . . . . . . . 80
3.4.4 Gridshells with planar facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Extension to other shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5.1 Fitting of Monge's surfaces by surfaces of revolution . . . . . . . . . . . . . . . . . 85
3.5.2 Another symmetrical pattern: loxodromic surfaces . . . . . . . . . . . . . . . . . . 88

3.6 Summary of intellectual contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Möbius geometry and generalised cyclidic nets 91
4.1 Cyclidic Nets and Möbius geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1 Geometry of circular meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Geometry of cyclidic nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.3 Limitations of current approaches and speci�c research objectives . . . . . . . . . . 95

4.2 Constructing new families of shapes with cyclidic nets: super-canal surfaces . . . . . . . . 97
4.2.1 Canal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.2 A general framework for shape generation . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.3 Mechanical properties of super-canal surfaces . . . . . . . . . . . . . . . . . . . . . 99
4.2.4 Properties of the structural layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.5 Input for design with super-canal surfaces . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Implementation of super-canal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1 E�cient computation of Combescure transformations . . . . . . . . . . . . . . . . 100
4.3.2 Generation of canal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.3 Generation of M-revolution surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.4 C-canal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



CONTENTS 11

4.3.5 Meshing of super-canal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4 Generalised cyclidic nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.1 Doubly curved creases with generalised cyclidic nets . . . . . . . . . . . . . . . . . 108
4.4.2 Closed nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.3 Hole �lling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.4 Implementation and numerical issues . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Practical use for architectural design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5.1 Shape generation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5.2 Shape composition with super-canal surfaces and complex topologies . . . . . . . . 119
4.5.3 Towards double layer free-form structures . . . . . . . . . . . . . . . . . . . . . . . 121
4.5.4 Practical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5.5 Application of curved creased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.6 Non-continuous cyclidic nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.6 Summary of intellectual contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Marionette meshes: from descriptive geometry to fabrication-aware design 125
5.1 Marionette Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 Research statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1.2 Descriptive geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1.3 Marionette Quad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1.4 Regular Marionette Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1.5 Link with smooth geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.6 Marionette Meshes with singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.1.7 Closed Marionette Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Some results on closed strips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.1 Propagation equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.2 Geometrical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.3 General solutions for a closed strip . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.4 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.5 Particular cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Architectural design with Marionette Meshes . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.1 Computational set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.2 Geometrical optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.3 Shape exploration with Marionette Meshes . . . . . . . . . . . . . . . . . . . . . . 137
5.3.4 Controlling mesh distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Generalisation of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.1 General projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.2 Extension to other patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.4.3 Evaluation of the dimension of the space of solutions . . . . . . . . . . . . . . . . . 141
5.4.4 Equivalence between kagome and quad meshes . . . . . . . . . . . . . . . . . . . . 142

5.5 Summary of intellectual contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

III Design space exploration and conclusion 145

6 Fabrication-aware structural optimisation of shell structures 147
6.1 Shape optimisation of shell structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.1 Design-space parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.1.2 Handling fabrication constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Methodology: fabrication-aware structural optimisation . . . . . . . . . . . . . . . . . . . 149
6.2.1 Design-space exploration by structural optimisation . . . . . . . . . . . . . . . . . 149
6.2.2 Marionette method as a CAD tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.3 Choice of geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.4 Structural analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



12 CONTENTS

6.2.5 Derivative-free optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.6 Multi-criteria optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.7 Comparison of the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Shape optimisation of a dome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.1 Geometric and mechanical constraints . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.2 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.3 Single-criteria optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.4 Multi-criteria optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.4 Shape optimisation of a shell with free-edges . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.4.1 Geometric and mechanical constraints . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.4.2 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4.3 Single-criteria optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.4 Multi-criteria optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5 Discussion and guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.5.1 Sensitivity to initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.5.2 Relevance of the marionette technique in structural optimisation . . . . . . . . . . 173
6.5.3 Proper parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.5.4 A possible improvement: the optimisation of gridshells . . . . . . . . . . . . . . . . 174

6.6 Summary of intellectual contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7 Application to innovative structural systems 179
7.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.1.1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.1 Parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.2 Shape modelling with the marionette method . . . . . . . . . . . . . . . . . . . . . 181
7.2.3 Structural analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Stability of Kagome gridshells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.1 Previous work on the mechanics of single-layered gridshells . . . . . . . . . . . . . 184
7.3.2 Speci�c research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.3.3 Basic properties of Kagome lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.3.4 Number of connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.5 Numerical experiment and choice of the parameters . . . . . . . . . . . . . . . . . 187
7.3.6 Material, loads and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 190
7.3.7 Buckling of barrel vaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3.8 Barrel vaults under non-symmetrical loads . . . . . . . . . . . . . . . . . . . . . . . 194
7.3.9 Buckling of domes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.4 Structural explorations with folded plate structures . . . . . . . . . . . . . . . . . . . . . . 200
7.4.1 Structural morphogenesis of folded plate structures . . . . . . . . . . . . . . . . . . 200
7.4.2 Speci�c research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.4.3 Corrugation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.4.4 De�nition of the geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.4.5 Loads, materials, boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.4.6 Non-dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.4.7 Dome buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.4.8 Dome with free-edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.5 On the potential of geometrically-constrained approach . . . . . . . . . . . . . . . . . . . 213
7.5.1 Gridshells with semi-regular patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.5.2 Folded plate structures with non-standard patterns . . . . . . . . . . . . . . . . . . 213
7.5.3 Towards double-layer shells: free-form sandwich panels . . . . . . . . . . . . . . . . 213

7.6 Summary of intellectual contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214





14 CONTENTS



List of Figures

1.1 Shape as a way to withstand loads: two iconic structures. . . . . . . . . . . . . . . . . . . 28
1.2 Complex geometries optimised for non-structural purpose. . . . . . . . . . . . . . . . . . . 28
1.3 A complex shape can hide an ine�cient structure (picture: Romain Mesnil ) . . . . . . . 29
1.4 The �ve platonic polyhedra: tetrahedron, octahedron, cube, dodecahedron and icosahedron 29
1.5 The gridshell covering the courtyard of the Palacio de Comunicaciones(picture distributed

under Creative Commons licence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6 Roof spanning over the Visconti court in Le Louvre museum (architect: RudyRiciotti

and Mario Bellini ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.7 Evolution of design freedom and design knowledge over the course of a project and corre-

sponding tools. After [176]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 The form-force diagram [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 The pantheon in Rome, a concrete shell as a surface of revolution(picture: Romain Mesnil) 41
2.3 St. Benedetg Chapel: an example of constant slope surface (arch. Peter Zumthor) . . . . 42
2.4 Sand creates naturally constant slope surface, the sand is added at speci�c points and the

crest lines create a Voronoi diagram [114](picture:sandworks). . . . . . . . . . . . . . . . . 42
2.5 Generation principle for a ruled surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 The palm greenhouse in les Jardins des Serres d'Auteuil(picture retrieved on Wikipedia

and distributed under Creative Commons license). . . . . . . . . . . . . . . . . . . . . . . 43
2.7 Generation principle for surfaces of translation: directrix (light orange) and generatrix (blue) 44
2.8 Examples of composition in architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Lines of curvatures of an ellipsoid with descriptive geometry [142]. . . . . . . . . . . . . . 46
2.10 A tensile structure: 'les Vergers de la Plaine' (arch.:SCAU) . . . . . . . . . . . . . . . . . 48
2.11 The 'lens' of Saint-Lazare station(picture: Jacques Mossot) . . . . . . . . . . . . . . . . . 48
2.12 The Louis Vuitton Fondation: the panels have a cylindrical shape, yielding non-smooth

re�ections light orange curve highlighted by us (picture: Romain Mesnil) . . . . . . . . . . 49
2.13 Comparison of triangular, quadrilateral and hexagonal mesh. . . . . . . . . . . . . . . . . 49
2.14 Fortspavilion: a plated shell structure covered with planar hexagons(picture: ITKE

Stuttgart) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.15 Local deformation of PQ meshes can yield poor smoothness while preserving planarity. . . 51
2.16 The doubly-curved beams of the Centre Pompidou Metz(picture: Romain Mesnil) . . . . 53
2.17 The triangulated gridshell 'MyZeil' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.18 Gridshell of the Kogod courtyard, the support structure is a torsion-free beam layout. . . 54
2.19 Three distances between two parallel meshes: faces (left), vertex (center) and edge (right). 56
2.20 A network at equilibrium (form-diagram) and the corresponding force-diagram (right). . . 59

3.1 A Lobel mesh, constituted only of equilateral triangles. . . . . . . . . . . . . . . . . . . . . 70
3.2 The parameters describing the geometry of a node. . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Illustration of mesh parallelism for a single planar polygon: all the �gures are parallel to

each other because their respective edges are parallel. . . . . . . . . . . . . . . . . . . . . 72
3.4 A set of parallel isogonal curves: the circle generates a surface of revolution, the other two

curves generate isogonal moulding surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Free-form generated as an isogonal moulding surface. . . . . . . . . . . . . . . . . . . . . . 74

15



16 LIST OF FIGURES

3.6 Peaks and valleys on the generatrix used on Figure 3.5 . . . . . . . . . . . . . . . . . . . . 74
3.7 A vertical doubly-curved facade as an isogonal moulding surface, all the generatrices are

equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8 Canonical Koebe Meshes, the edges are tangent to a sphere and the incircles of the faces

form a circle packing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.9 Perspective view of the parameters of the circle packing problem: for two given meridians

(continuous) and one parallel (dotted), a unique solution exists. . . . . . . . . . . . . . . . 76
3.10 Kinematic shape generation of Monge's surface: generatrix (red) and parallel (blue). . . . 76
3.11 Generation of a discrete Monge surface by edge o�set: perspective (left) and top view (right). 77
3.12 Free-form as a Monge's surface, the surface is covered with planar panels and torsion-free

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.13 The angle of subdivision of the rail curve� i and the slope of the generatrix with respect to

the discrete rotation minimizing frame � j are the only parameters in�uencing the vertex
angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.14 Sage Gateshead Music Centre (architect: Norman Foster): an example of moulding surface
covered with planar facets, (picture: Graham Robson, distributed under Creative Commons
licence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.15 A graphical method for the isogonal subdivision of a planar curve. . . . . . . . . . . . . . 79
3.16 Benchmark curves (continuous) with end points and in�ection points, and the result of our

algorithm (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.17 Propagation technique for a sphere, the dashed line is the projection of a meridian within

the plane of the central meridian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.18 Edge o�set mesh on a torus, a particular case of isogonal moulding surface where the

algorithm proposed in this article does not provide a mesh with quads only due to intrinsic
limitations of the shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.19 Dome as a moulding surface: top view and isometric view. . . . . . . . . . . . . . . . . . . 83
3.20 Perspective view of the three domes as edge o�set meshes. . . . . . . . . . . . . . . . . . . 83
3.21 Corrugated barrel vault as an isogonal moulding surface. . . . . . . . . . . . . . . . . . . . 84
3.22 Curvature graph of the rail curve in Figure 3.21, the dots represent the tangency points

found with the algorithm presented in this paper. . . . . . . . . . . . . . . . . . . . . . . . 85
3.23 A bi-arc and the associated notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.24 Curve �tting and metrics: �tting with euclidean distance can yield non-smooth results

(left), a �tting based on the orientation of the normals and the L 2;1 metric gives more
natural results (middle and right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.25 The reference curve and the associated Monge's surface (right), and its approximation with
8,12,16 arcs (from left to right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.26 Loxodromic parametrisations of a sphere: with� = 20 � , 30� , 45� and 60� from left to right 88
3.27 Symmetries of a loxodromic parametrisation (in light orange) on a surface of revolution. . 89
3.28 The Maritime Museum of Osaka (architect: Paul Andreu) is meshed with rhumb lines

(orange curve) making an angle of45� with the meridians and parallels (blue) (picture
retrieved on Wikipedia and distributed under a Creative Commons license) . . . . . . . . 89

4.1 A surface covered with planar hexagons, the panels layout follows lines of curvature. . . . 92
4.2 Dupin's cyclide parameterised by its lines of curvature: top (left), front (center) and per-

spective (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Cyclidic patch: the four corners are on the same circle, the surface is naturally parame-

terised by its lines of curvature. The frames de�ne tangent vectors for the edges of the
patch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Cyclidic patch meshed along its lines of curvature (left) and the associated circumcircles
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 A coarse circular mesh (left), the frames propagated by re�ection (middle), and the result-
ing cyclidic net (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 A closed circular mesh which yields invalid cyclidic nets . . . . . . . . . . . . . . . . . . . 96
4.7 The CNIT: a creased shell designed by Nicolas Esquillan . . . . . . . . . . . . . . . . . . . 96



LIST OF FIGURES 17

4.8 A canal surface created from a coarse circular strip . . . . . . . . . . . . . . . . . . . . . . 98
4.9 Shapes created with our method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.10 Parameters creating a circular strip that can support a canal surface . . . . . . . . . . . . 100
4.11 Two quads related by a Combescure transformation. . . . . . . . . . . . . . . . . . . . . . 101
4.12 Propagation method for the computation of a Combescure transformation with quadrangles.101
4.13 Input data for the curve-�tting problem. Line of curvature (orange), line to �t (red), and

surface containing the centers of the spheres (white). . . . . . . . . . . . . . . . . . . . . . 102
4.14 Line of curvature: one developable surface containing the centres of the spheres (white).

The developable surface perpendicular to it (blue) is tangent to the resulting canal surface. 102
4.15 The curve �tting problem: the locus of the sphere centres (in dark blue) belongs to the

developable surface chosen by the user, and eachC k belongs to a straight line of this
surface. The locus of centres is equidistant to both input curves. . . . . . . . . . . . . . . 103

4.16 A family of spheres (white) �tting two curves (red and orange), and their successive inter-
section (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.17 Two circlesCk and Ck+1 : by choosing one pointV k on Ck , one de�nes a circle and a one
parameter family of cyclidic patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.18 Problem for the practical design with inversion of surfaces of revolutions. . . . . . . . . . 105
4.19 Surfaces generated by inversion of a surface of revolution constructed from one curve and

two points on a circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.20 Generation of a C-canal surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.21 Remeshing procedure for a super-canal surface. . . . . . . . . . . . . . . . . . . . . . . . . 108
4.22 Re�ection rule for cyclidic patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.23 A closed curve and its external angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.24 Problem of a closing strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.25 A visualisation of a façade as a canal surface, covered with a circular mesh. . . . . . . . . 111
4.26 The result of the hole �lling strategy, with smooth T-joints between patches. . . . . . . . 111
4.27 The steps of the hole �lling strategy, the choice ofP L

n � 2 is constrained in order to have a
closed circular strip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.28 Notations of the hole �lling problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.29 Trajectory of all the possibleP n after inversion. . . . . . . . . . . . . . . . . . . . . . . . 114
4.30 Notations for angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.31 Hole-�lling strategy applied iteratively three times on a non-regular hole. . . . . . . . . . 115
4.32 Two cyclidic nets supported on the same base circular mesh, before and after optimisation

of the bending energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.33 Several solutions obtained with hole-�lling problem for an irregular hole . . . . . . . . . . 116
4.34 Optimisation of the smoothness of a canal surface. . . . . . . . . . . . . . . . . . . . . . . 117
4.35 Framework for shape generation with generalised cyclidic nets . . . . . . . . . . . . . . . . 118
4.36 A surface of revolution and an inversion to a 'peanut-shape' geometry . . . . . . . . . . . 119
4.37 The 'peanut' gridshell of the Solidays forum: built project and interpretation with the

inversion of a surface of revolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.38 A family of shapes produced by inversions of the same geometry. . . . . . . . . . . . . . . 120
4.39 A geometry with a complex topology modeled with cyclidic nets. . . . . . . . . . . . . . . 120
4.40 Only a few circles can describe a complex shape: top view of the Figure 4.39. . . . . . . . 121
4.41 Construction of an octahedral truss from a circular mesh. . . . . . . . . . . . . . . . . . . 122
4.42 A pavilion built with torsion free-nodes on a super-canal surface. . . . . . . . . . . . . . . 122
4.43 A model of a canal surface with planar quadrangles used for bracing. . . . . . . . . . . . . 122
4.44 Three di�erent generalised cyclidic nets supported on the same circular mesh. . . . . . . . 123
4.45 An envelope with varying materials illustrating surface discontinuity (picture: Samyn and

Partners, architects and engineers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 Creation of aMarionette Quad with a plane view and two elevations. . . . . . . . . . . . 126
5.2 Two elevations and a planar view de�ne a unique Marionette Mesh. . . . . . . . . . . . . 127
5.3 A Marionette Meshes with a singularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



18 LIST OF FIGURES

5.4 Decomposition of a mesh into2 families of strip-domains. Marionette Meshes can be
generated by choosing one guide curve across each strip-domain. . . . . . . . . . . . . . . 129

5.5 Closed Marionette Strip with incompatible closing condition induced by the prescription
of the plane view of the whole strip (yellow) and the altitudes of the inner curve (blue). . 129

5.6 Architectural design with a closed Marionette Mesh, the altitude of the inner curve is
prescribed, the designer does not have control on the outer curve. . . . . . . . . . . . . . . 130

5.7 Some shapes with planar faces and a closed mesh generated with the method proposed in
this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.8 Planar view of a quadrilateral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.9 A curve with an axis of symmetry and the inversion of the blue and orange triangles. . . . 134
5.10 A closed curve and the angles used in equation (5.21) . . . . . . . . . . . . . . . . . . . . . 135
5.11 A non-smooth mesh with planar facets generated with the Marionette method. . . . . . . 136
5.12 A planar view that yields construction with planar arches. . . . . . . . . . . . . . . . . . . 136
5.13 Optimisation problem: approximation of a reference surface with a given planar projection

(dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.14 A target surface (left), and the optimal approximation by a surface of translation (right). 137
5.15 A plane view (thin lines) with a prescribed boundary (thick lines). . . . . . . . . . . . . . 138
5.16 A regular planar view can yield length distortion in elevation (left). The elevation can

inform the plane view regularity to yield meshes without length distortion (right). . . . . 139
5.17 A Marionette Quad with non-parallel guide lines. . . . . . . . . . . . . . . . . . . . . . . . 139
5.18 Design of stadia obtained from a projection on a moulding surface: the prescribed curves

are the inner ring and a section curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.19 Marionette method applied to several patterns, white dots correspond to prescribed altitudes.140
5.20 Free-form design covered by planar Kagome lattice. . . . . . . . . . . . . . . . . . . . . . . 142
5.21 A Kagome grid pattern covered with planar facets generated with the method described

in this section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.22 Conversion of a quadrilateral mesh to a Kagome mesh . . . . . . . . . . . . . . . . . . . . 143
5.23 Details of the conversion to a Planar Kagome mesh. . . . . . . . . . . . . . . . . . . . . . 144

6.1 Result of optimisation of a plate with a hole with a node-based parametrisation [46] . . . 148
6.2 Framework for the shape optimisation of shells . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3 The Marionette method as an alternative to NURBS. . . . . . . . . . . . . . . . . . . . . 151
6.4 Areas of application of non-symmetrical loads, top view . . . . . . . . . . . . . . . . . . . 153
6.5 Pareto front (white dots) and the associated hypervolume. . . . . . . . . . . . . . . . . . . 156
6.6 Parametrisation of the elliptic dome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.7 Initial geometries for the domes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.8 Optimal values found for the minimisation of the maximal displacement under self-weight. 159
6.9 Optimal values found for the minimisation of the maximal displacement under non-symmetrical

load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.10 Optimal values found for the maximisation of linear buckling load under self-weight. . . . 160
6.11 Optimal values found for the minimisation of the maximal tensile stress under self-weight. 160
6.12 Optimal values found for the minimisation of the maximal tensile stress under self-weight. 161
6.13 Geometry of the best optima for each objective for the dome. . . . . . . . . . . . . . . . . 162
6.14 Multi-criteria optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.15 Comparison of the Pareto fronts(E; � ) of the two design spaces. . . . . . . . . . . . . . . . 163
6.16 Pareto front for the objectives 'maximal displacement' and 'linear buckling load' for the

marionette design space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.17 Pareto front for the objectives 'maximal displacement' and 'linear buckling load' for the

NURBS design space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.18 Comparison of the Pareto fronts(pcr ; � 0) of the two design spaces. . . . . . . . . . . . . . 164
6.19 Parametrisation of the CNIT problem with the marionette technique . . . . . . . . . . . . 165
6.20 Parametrisation of elevations for the marionette method. . . . . . . . . . . . . . . . . . . . 166
6.21 Initial geometries for the shells on three supports. . . . . . . . . . . . . . . . . . . . . . . . 167
6.22 Optimal values found for the minimisation of displacement under self-weight( t

L = 1
1000 ). . 167



LIST OF FIGURES 19

6.23 Optimal values found for the minimisation of displacement under non-symmetrical load
( t

L = 1
1000 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.24 Optimal values found for the maximisation of linear buckling load under self-weight( t
L =

1
1000 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.25 Optimal values found for the minimisation of displacement under self-weight( t
L = 1

250 ). . 169
6.26 Optimal values found for the minimisation of displacement under non-symmetrical load

( t
L = 1

250 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.27 Optimal values found for the maximisation of linear buckling load under self-weight( t

L =
1

250 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.28 Geometry of the best optima for each objective

�
t
L = 1

250

�
. . . . . . . . . . . . . . . . . . 171

6.29 Pareto front for three objectives for the marionette design space for the shell witht=L =
1=1000. Three clusters, in three di�erent colours can be identi�ed. . . . . . . . . . . . . . 172

6.30 Pareto front for three objectives for the NURBS design space for the shell witht=L = 1=1000.173
6.31 The shape parameter speci�c to the NURBS model. . . . . . . . . . . . . . . . . . . . . . 174
6.32 Mesh of the interior of an ellipse: white dots denote singularities. . . . . . . . . . . . . . . 175
6.33 An overview of several mesh topologies obtained by combination of simplicial meshes: 15

di�erent design are proposed, creating as many design spaces. . . . . . . . . . . . . . . . . 176

7.1 Two structural systems studied in the Chapter: Kagome gridshell (left) and folded plate
structure right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2 An example of parametric study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.3 Framework for performance assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4 Methodology for the generation of non-standard structural con�gurations. . . . . . . . . . 182
7.5 Model of structural attachment: initial geometry (left), shrunk plates with subdivision

(middle) and links between the duplicated nodes (right). . . . . . . . . . . . . . . . . . . . 183
7.6 Numerical studies on the convergence of the Finite Element model . . . . . . . . . . . . . 183
7.7 A basic cell of a Kagome lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.8 Geometrical parameters describing the dome. . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.9 Geometrical parameters describing the barrel vault. . . . . . . . . . . . . . . . . . . . . . . 188
7.10 Areas of positive and negative pressure for the non-symmetrical load case, top view of

Figure 7.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.11 In�uence of imperfection scale on the linear buckling load. . . . . . . . . . . . . . . . . . . 191
7.12 Load/displacement diagram for domes with di�erent grid topologies and di�erent ampli-

tudes of imperfection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.13 Non-dimensionalSLS load for Kagome and Quad gridshells . . . . . . . . . . . . . . . . . 192
7.14 Optimal barrel vault: � 1 = 0 :15, � 2 = 0 :3, � 3 = 1

24 . . . . . . . . . . . . . . . . . . . . . . 193
7.15 Comparison of the buckling capacity of Kagome and quadrangular grids for the barrel

vault geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.16 Comparison of the best designs for di�erent values of� 1. . . . . . . . . . . . . . . . . . . 194
7.17 Load-displacement for a non-symmetrical load

�
� 1 = 0 :075; � 2 = 0 :3; � 3 = 1

24

�
. . . . . . 194

7.18 Comparison of the buckling capacity of Kagome and quadrangular gridshells for the dome
geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.19 Comparison of the structural performance of domes. . . . . . . . . . . . . . . . . . . . . . 195
7.20 Comparison of the �rst buckling modes for quadrilateral meshes and Kagome meshes. . . 196
7.21 Comparison of buckling modes on the most performant barrel vaults in our study. . . . . 196
7.22 Structural e�ciency for di�erent grid re�nements ( � 1 = 1 :33). . . . . . . . . . . . . . . . . 197
7.23 In�uence of grid re�nements on the structural e�ciency with a homogenised model . . . . 199
7.24 An example of folded plate structures: Sulfur Extraction Facility (arch.: Renzo Piano,

retrieved from compositesandarchitecture.com) . . . . . . . . . . . . . . . . . . . . . . . . 200
7.25 Several designs generated with the method presented in this chapter, all facets are planar

quadrilaterals. Two corrugation strategies are introduced in this chapter: the alternate
translation (used in the left and middle) and the row translation strategy (used in the right).200

7.26 RT strategy for the generation of 'Miura Ori' (herringbone) pattern. . . . . . . . . . . . . 202
7.27 AT Strategy for the generation of 'trapezoid' pattern. . . . . . . . . . . . . . . . . . . . . 203



20 LIST OF FIGURES

7.28 The two con�guration studied: a closed dome and a dome with a free edge . . . . . . . . 204
7.29 The two corrugation strategies applied to the planar view: AT (left) and RT (right), black

dots indicate the two singularities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.30 Load distribution: the vertical load is applied to the blue area only. . . . . . . . . . . . . . 204
7.31 Domes generated with AT strategy, with di�erent corrugation ratios (from left to right

and top to bottom: � 2 = 0 ; 0:1; 0:2; 0:3; 0:4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.32 Buckling load vs. corrugation factor (t=L = 1%, AT strategy) . . . . . . . . . . . . . . . . 206
7.33 Ratio of the linearised buckling loads for the rigid and hinged plates con�gurations (AT

strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.34 Non-dimensional displacement vs. corrugation factor (t=L = 1%, AT strategy) . . . . . . 207
7.35 Ratio of the maximal displacements for hinged and rigid plates (AT strategy) . . . . . . . 207
7.36 Buckling load vs. corrugation factor (t=L = 1%, RT strategy) . . . . . . . . . . . . . . . . 208
7.37 Non-dimensional displacement vs. corrugation factor (t=L = 1%, RT strategy) . . . . . . . 208
7.38 Ratio of the maximal displacements for hinged and rigid plates (RT strategy) . . . . . . . 209
7.39 Buckling load vs. corrugation factor (t=L = 1%, AT strategy) . . . . . . . . . . . . . . . . 209
7.40 Ratio of the linearised buckling loads for the rigid and hinged plates con�gurations . . . . 210
7.41 Non-dimensional displacements vs. corrugation ratio (h=L = 0 :15), AT strategy . . . . . . 210
7.42 Buckling load vs. corrugation factor (t=L = 1%, RT strategy) . . . . . . . . . . . . . . . . 210
7.43 Ratio of the linearised buckling loads for the rigid and hinged plates con�gurations . . . . 211
7.44 Non-dimensional displacements vs. corrugation ratio (h=L = 0 :15), RT strategy . . . . . . 211
7.45 Pareto frontier for the open dome,t=L = 1%, AT strategy . . . . . . . . . . . . . . . . . . 212
7.46 Sandwich panel based on the Miura Ori pattern [207] . . . . . . . . . . . . . . . . . . . . . 214
7.47 From left to right: connectivity of a sandwich panel, core, upper layer, lower layer. . . . . 214



List of Tables

2.1 Comparison of the cost of typical panels (from [76]). . . . . . . . . . . . . . . . . . . . . . 49

3.1 Computation time for the isogonal subdivision algorithm, the computation was performed
on a computer with 2.4 GHz and 2 GB memory. . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Computation time for the Edge O�set Mesh algorithm for a sphere. . . . . . . . . . . . . 82
3.3 Relation between aspect ratio of the panelsL=l and the ratio of the curvatures R1=R2. . . 84
3.4 Repetition of elements in Monge's surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Properties of the shapes developed with our framework. . . . . . . . . . . . . . . . . . . . 99
4.2 Comparison of the NURBS and Generalised Cyclidic Net frameworks . . . . . . . . . . . . 118

6.1 Optimisation algorithms implemented in NLOpt used in this comparative study. . . . . . 154
6.2 Degrees of freedom for the marionette and NURBS model in the dome problem. . . . . . 158
6.3 Relative performances of optimisation algorithms: count of near optimal designs. . . . . . 161
6.4 Degrees of freedom for the marionette and NURBS model in the CNIT problem. . . . . . 165
6.5 Relative performances of optimisation algorithms: count of near optimal designs. . . . . . 170

7.1 Variations of the parameters in the present study. . . . . . . . . . . . . . . . . . . . . . . . 190

21



22 LIST OF TABLES



Part I

Problem statement

'La faculté qui nous apprend à voir, c'est l'intuition. Sans
elle, le géomètre serait comme un écrivain qui serait ferré sur la grammaire, mais qui n'aurait pas d'idée. '

Henri Poincaré
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Chapter 1

Opportunities of free-form structures

Geometry lies at the core of structural design, it is a science used both by architects and engineers to
generate harmonious and e�cient structural con�gurations. The construction of curvilinear structures
remains however a challenge for designers and builders. This dissertation presents new computational
strategies for the fabrication-aware design of doubly-curved structures and envelopes. This �rst chapter
proposes a quick and critical overview of the existing literature on the rationalisation of complexly-shaped
buildings.

1.1 On curvature in architecture

1.1.1 What is free-form architecture?

The last three decades have seen the emergence of complexly shaped buildings, modelled with con-
temporary computer-aided design tools. Moving away from modernism, architects explore new formal
possibilities o�ered by the computer. Some spectacular realisations focused the attention of the media
and have often associated so-calledfree-form architecture with the idea of limitless creativity, but also
of high budget and delay. There is no consensus on a precise de�nition for the term'free-form archi-
tecture'. In the following of this dissertation, the expressions'free-form architecture' and 'non-standard
architecture' will be employed to describe all doubly-curved architectural shapes.

The use of doubly-curved shapes in architecture is actually not new. Among the �rst buildings built
by men, surfaces of revolutions are well represented, as it is easy to draw a circle from a simple rope
and a �xed point. Curved shapes were therefore seen as a way to solve construction and representation
problems. Some curved shapes are also known to be structurally e�cient, and are found in nature, which
has been a source of inspiration for a long time.

1.1.2 Potential of complex shapes

For Democritus, the existence of natural objects is the fruit of 'chance and necessity'. It is commonly
admitted that natural shape can be attributed to functional imperatives, like structural reliability or
maximisation of energy input. The shapes arising in nature are curvilinear, far from the variations on
cubes built in the western countries. This is the meaning of the famous quote by catalan architect Antoni
Gaudi 'The straight line belongs to men, the curve one to God'.

Structural engineers know that doubly-curved shells can be much more e�cient than planar slabs,
because of their geometrical sti�ness. The potential of shapes to create e�cient structures is well illus-
trated by realisation of structural artists in the twentieth century. Figure 1.1 shows two high performance
structures that withstand loads due to their shapes. The Mannheim Multihalle, shown in Figure 1.1a,
is a double layer gridshell designed by FreiOtto with the engineers of OveArup and partners. It
has a maximum span of 60 meters for a structural depth of 15 centimetres, and a self-weight of only 20
kilograms per square meter. The Sicli Pavilion, shown in Figure 1.1b, is one of the 1850 shells designed
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by the Swiss engineer HeinzIsler . This reinforced concrete shell is remarkably thin, its slenderness is
higher than the one of an eggshell.

(a) Manneim Multihalle (archive Frei Otto) (b) Sicli Pavilion (distributed under Creative Commons Li-
cense)

Figure 1.1 � Shape as a way to withstand loads: two iconic structures.

Structure is only one aspect of building engineering. The potential of form for other performance
criteria, like energy consumption, remains largely unexplored. Shape optimisation of buildings for solar
energy collection was performed with promising results in [134]. Figure 1.2a illustrates one typical result
of such optimisation: di�erent colours represent di�erent cladding materials. The mastering of geometry
can also allow the architect to control the shadows cast by a structural layout, like shown in Figure 1.2b
[259]. These examples illustrates that comfort in buildings could bene�t from geometrical optimisation.

(a) Shape for solar energy collection (picture: [134]) (b) Optimisation of shadows (picture:
[259])

Figure 1.2 � Complex geometries optimised for non-structural purpose.

1.1.3 Challenges for the construction industry

The promise of structural e�ciency is not always satis�ed by free-form architecture. The performance
of contemporary construction materials, of structural analysis tools and of computer-assisted fabrication
allowed the construction of numerous structures that are rather ine�cient, see Figure 1.3. Some structures
become paradoxically praised as feats of engineering because of the e�orts employed to make the ine�cient
work.

The complexity of the structural design of doubly-curved shapes should not however be understated.
Ekkehard Ramm, one of the pioneers of computational mechanics, called thin shells thePrima Donna
of structures: they can be in a'good mood' and have the e�ciency of the structures presented in Figure
1.1, and they can be in'bad mood' and be subject to catastrophic failures. Shells are indeed sensitive to
imperfections, so that imprecisions during construction or design based on simple mechanical models can
lead to collapse. We can refer to many roof collapses during the twentieth century, even for structures
designed by prominent structural engineers. For example, the shell roof of the Cuernavaca Chapel
(designed by FelixCandela ) collapsed during decentering. Several gridshells designed in the early 1990's
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Figure 1.3 � A complex shape can hide an ine�cient structure (picture: Romain Mesnil )

collapsed because of the connections used [226]. Such events lead to the assessment of the in�uence of the
nodal sti�ness in the stability of gridshells, which have demonstrated that doubly-curved structures are
highly sensitive to small imperfection that can arise from manufacturing imprecisions. The interrelation
between shape and structure is not considered by most of the computer-aided design tools, so that without
guidance during early stages of design, such disorder can potentially be detected much later in the project
timeline, with implication on the total cost.

In addition to these properties of shell structures, the new paradigm of'free-form' architecture chal-
lenges fabricators and builders by the complexity of their forms. In the building industry, the fabrication
of elements relies on mass production and standardisation. When building free-form structures, the repe-
tition of elements is no longer guaranteed as the number of polyhedra with extreme repetition of elements
is limited and often restricted to spherical shapes. The �ve platonic polyhedra represented in Figure 1.4
are indeed the only polyhedra to have a unique vertex, face and edge. Beyond these shapes, the designer
has to make compromise between repetition of elements and formal freedom.

Figure 1.4 � The �ve platonic polyhedra: tetrahedron, octahedron, cube, dodecahedron and icosahedron

Repetition is not the only factor a�ecting the economy of free-form structures. The manufacturing of
the di�erent elements constituting the structure or the envelope is indeed often challenging. The most
studied example is the planarity of quadrangular panels. Flat or singly-curved elements can easily be
fabricated from extruded glass or metal sheets. Doubly-curved panels however require the fabrication of
a mould, which is extremely expensive. Therefore, designs with planar facets are generally considerably
less expensive than doubly-curved facets. This topic is reviewed in detail in Section 2.3.3.

The combination of these two factors - loss of repetition and di�culty of manufacturing - makes
the design of free-form architecture tedious and fundamentally di�erent from the design of conventional
structures. In standard projects, fabrication is often thought independently from structural design and
is only considered in preliminary or detailed design, whereas in non-standard architecture, fabrication
should be considered from the conceptual design stage, as technological constraints might a�ect the �nal
shape. Several strategies have been developed in order to cope with these di�culties. The next section
presents a short overview of the di�erent design methodologies employed in practice.
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1.2. LIMITS OF CURRENT DESIGN APPROACHES AND NEED FOR INTEGRATED DESIGN

TOOLS

1.2 Limits of current design approaches and need for integrated
design tools

Two opposing design approaches are commonly used in free-form architectural design. The �rst
approach is a geometrically-constrained design strategy. It considers restricted families of shapes that are
known to be constructible. The second approach propose to generate shapes with arbitrary methods and
to consider fabrication constraints later on. We propose to illustrate the limitations of both approaches
with two examples of built projects.

1.2.1 Limitations of geometrically-constrained methods

The engineering �rm Schlaich Bergermann und Partner was the �rst to use geometrically-constrained
strategies to generate free-form gridshells covered with planar facets. One of the most popular techniques
developed in the o�ce are the so-calledscale-trans surfaces. They tried to apply this method for the shape
generation of the roof of the Palacio de Comunicaciones in Madrid. Despite their e�orts to rationalise
the geometry, the engineers did not manage to �t the complex boundary shown in Figure 1.5 and �nally
used then a pneumatic surface covered with a triangular mesh [225]. Geometrically-constrained design
methods lack of tools for shape modelling. The growing demand on complex shapes and the success of
NURBS-based modelling in architecture has forced the engineers to use post-rationalisation techniques.

Figure 1.5 � The gridshell covering the courtyard of the Palacio de Comunicaciones(picture distributed
under Creative Commons licence)

1.2.2 Limitations of post-rationalisation techniques

One of the �rst project using the most recent post-rationalisation techniques is the structure covering
the department of islamic art in Le Louvre, shown in Figure 1.6. In the conceptual design stage, the
shape was not covered with planar panels and a large room for the rationalisation was left to geometry
experts Evolute. The reference geometry was parametrised by its lines of curvatures, because such
parametrisation yields both planar panels and optimal o�set properties, as we will see in Chapter 2.
According to Wallner and Pottmann : unfortunately this surface geometry does not leave us su�cient
degrees of freedom to achieve a satisfactory quad mesh[258]. The result of post rationalisation was indeed
not satisfactory, both from æsthetical and structural perspectives. Another solution was to be found,
and Evolute proposed an alternation of triangles and planar quadrilaterals, which is less costly than a
triangular grid and was �nally built [258].

This example shows that a post-rationalisation during late stages of the design is potentially very dif-
�cult. The most sophisticated algorithms can fail to �nd elegant discretisations satisfying manufacturing
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(a) Overview (picture distributed un-
der Creative Commons licence)

(b) Lines of curvature (image inspired by [258])

Figure 1.6 � Roof spanning over the Visconti court in Le Louvre museum (architect: Rudy Riciotti and
Mario Bellini ).

constraints on some surfaces because of inherent surface properties. In other terms, the shape imposes the
topology of the parametrisation, and the objectives of post-rationalisation might be changed in order to
accommodate an otherwise infeasible design. An undeniable ingenuity for solving construction problems
during post-rationalisation has to be recognised, but it does not mean that this is the best way forward.

1.2.3 Work�ow in free-form architectural projects

The two design strategies currently used by engineers and architects su�er from di�erent limitations.
Geometrically-constrained approaches su�er from a lack of diversity, and are often not suited for highly-
constrained projects. Besides, no new shapes for fabrication-aware design have been introduced since the
1990's. The limitations of post-rationalisation techniques do not lay within the mathematical methods,
but rather on the work�ow that they induce in free-form projects. Bagneris [15] denotes that post-
rationalisation techniques singularise the shape in the design process, as its generation principle becomes
irrelevant once set as an input in an optimisation procedure. Still, the form remains in interoperability
with many factors, that would have to be solved during construction . Perhaps the most insidious �aw
of post-rationalisation strategies is that the average user is unaware of the intrinsic limitations of the
modelling technique he or she is using in the �rst place.

1.3 Existing tools for the rationalisation of fabrication

To better understand the speci�city of free-form design, let us go back to organisation of the structural
design process.

1.3.1 Conceptual structural design

The design of a building is generally divided in four stages: conceptual design, preliminary design,
detailed design and production planning. In the conceptual design stage, the architects have an open
range of possibilities, but little knowledge of their design. Engineers are typically involved in latter stage
of design, when the structural form has already been de�ned, as illustrated in Figure 1.7 [176]. With time,
the design knowledge increases whereas the design freedom decreases. In standard projects, fabrication
is often considered in the latest design stages, as it requires a high level of knowledge on the design. This
gap between the knowledge on the constructibility and the form-�nding process has an impact on the
overall cost of a complexly shaped envelope.

1.3.2 Classi�cation of design tools

A parallel can be made between the project timeline and the tools used by architects and engineers.
Three families of tools can be identi�ed in structural morphogenesis: form-�nding tools, analysis tools
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Figure 1.7 � Evolution of design freedom and design knowledge over the course of a project and corre-
sponding tools. After [176].

and post-rationalisation tools.

Form-�nding tools are used in early design stages and aim at generating a form. Although struc-
tural engineers usually identify the term form-�nding to mechanical form-�nding, we use it in a more
general sense. The medium of the form-�nding process can either be physical (like FreiOtto 's soap �lm
experiments) or Frank Gehry 's models [230] or numerical.

Analysis tools are used from schematic design and aim at evaluating the performance of the generated
shape or structural system. They are typically used by engineers, although some architecture o�ces make
use of analysis tools in particular contexts. FrankGehry 's models are 3D-scanned and transformed as
valid CAD information, which makes the analysis tools at the core of his design process. An ubiquitous
example of analysis tools in the construction industry is the �nite element analysis.

Post-rationalisation tools aim at improving some properties of the design: they are used in design
development stage, once the shape and structural systems have been determined. They are often based
on analysis tool and use optimisation techniques. We can cite various examples, like panel nesting (based
on combinatorial optimisation), cross-section optimisation, mesh relaxation, etc.

1.3.3 How form is parametrised

Independently of the kind of design tool used, the shape parametrisation is a central issue in free-form
architecture. Di�erent tools are o�ered to the designers for that purpose. Two concurrent philosophies
exist:the surface-based modelling strategy, and the mesh-based modelling strategy.

Surface-based modelling considers smooth surfaces that are later discretised. The most popular
tools used are Non-Uniform Rational Basic Splines (NURBS) which were developed independently by
two French engineers: PierreBézier and Paul de Casteljau [63, 24]. NURBS represent a surface by
the means of control points and bases functions, namely Bernstein polynomials. NURBS have interesting
mathematical properties, but do not provide the end-user with information on their constructibility or
mechanical behaviour. They also encounter some limitations for the modelling of complex topologies.
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NURBS patches have indeed a genus1 of 0 or 1, so that parametrisation of shapes with complex topologies
is di�cult and requires many control points. Shepherd proposed surfaces of subdivisions for the modelling
of complex shapes in architecture [231] because of the �exibility they o�er in the generation of complex
topologies and patterns (hexagonal, quadrilateral, etc.). A similar approach was proposed by Gebreiter
[93].

Meshed-based modelling considers the generation of shapes as discrete surfaces. They can thus
incorporate information about their potential fabrication, and also structural behaviour (for example
through �nite element analysis). It is a rich �eld of study, whose applications to architecture have
emerged in the last decade. The drawback of those methods is the high memory usage and di�culty to
reconstruct equivalents of smooth notions, like curvature for example. This speci�c topic is studied in a
�eld of mathematics called discrete di�erential geometry.

1.4 Opportunities for structural design and problem statement

1.4.1 Need for guidance in conceptual design

Discrete di�erential geometry is constructed from the notion of invariance under certain transforma-
tions, and comes directly from the idea developed by FelixKlein [40]. These notions require a high level
of mathematical abstraction, which lacks to most architects and engineers. Geometry is perhaps the most
intuitive �eld of mathematics, as di�cult problems can simply be drawn with rudimentary tools. The
importance of intuitive reasoning in mathematics and geometry is brilliantly exposed by DavidHilbert
in his book Geometry and the Imagination.

As to geometry, in particular, the abstract tendency has here led to
the magni�cent systematic theories of Algebraic Geometry, of Riemannian Geometry, and of Topology;
these theories make extensive use of abstract reasoning and symbolic calculation in the sense of algebra.
Notwithstanding this, it is still as true today as it ever was that intuitive2 understanding plays a major
role in geometry. And such concrete intuition is of great value not only for the research worker, but also
for anyone who wishes to study and appreciate the results of research in geometry.

David Hilbert [108]

One of the great challenges of architectural geometry is to provide the end-user with intuition on
deep notions of geometry. The tools of architectural geometry should provide insight to the people who
build. The most recent geometrical modelling tools are however used as black-boxes by the end-users
and disconnect them from the comprehensions of the possibilities and limitations of the model they
are creating. The question of intuitive steering of form is rarely assessed in existing literature, and
some paradigms of computer graphics (like control points based deformation of meshes) are transposed
to 'architectural geometry'. Modelling an architectural shape directly from a NURBS patch and the
manipulation of its control points is rarely used in practice. Even in general free-form design, it is
much more common to use some geometrical primitives, like lofting of curves or sweeping surfaces.
Providing architects with intuitive ways of understanding complex geometrical notions is thus key for
the development of new structural and architectural concepts. Combining intuitive shape generation and
respect of fabrication constraints is one of the challenges o�ered to researchers and practitioners.

1.4.2 Design constraints as opportunity

The term constraint refers to a limitation and can thus be perceived with a bad connotation when
associated to design. Some artists, architects or engineers used nonetheless constraints as a way to create

1The genus is a topological invariant which corresponds to the number of handles of a shape. Two shapes with the same
genus can be mapped by a homotopy. A sphere (genus 0) and a torus (genus 1) are two di�erent topological objects.

2highlighted by Hilbert
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new pieces of art. Classical theater was based on rules of classical unities de�ned by Aristotle. In poetry,
l'ouvroir de littérature potentielle (OULIPO) was founded to discuss the role of constraint in artistic
creation. Constraint is viewed by the members of l'OULIPO as a potential for new literary material.
Other related artistic movements appeared in the second half of the twentieth century.

Parce que la forme est contrainte, l'idée jaillit plus intense!

Charles Baudelaire

Architectural projects are obviously subject to cultural constraints linked to the site, so that archi-
tectural shape often emerges from the surrounding context. Technological constraints are however not
considered with the same attention. In the present dissertation, we propose to follow this principle of
constraint as design opportunity. Rather than rationalising a given shape, this dissertation explores the
possibilities of generating shapes with a pre-de�ned set of fabrication constraints. Starting from con-
struction constraints, we will show that it is possible to generate new design spaces that can be explored
independently.

1.4.3 Fabrication-aware structural optimisation

The proposed methodology provides several method to generate economically-viable solutions in terms
of fabrication. The richness of the available design space must then be evaluated in order to provide design
guidelines for engineers and architects. The nature of the design space can be determined mathematically
(e.g.: the space of feasible solutions is a vector space of dimension N), but also with more practical
considerations (e.g.: it is possible to model easily a dome or a peanut-shaped structure).

Our approach follows guiding principles based on geometry. The mechanical reliability of the proposed
structural con�gurations must therefore be assessed in order to provide the end-user with a complete
overview of its design. To do so, this work proposes to explore space of feasible solutions by the mean of
structural and multi-disciplinary optimization. The methods for shape generation developed in the present
work create parametrised design spaces and can be compared to usual shape modelling frameworks, like
NURBS.

1.4.4 Organisation of the dissertation

This dissertation is hence organised in three parts. The �rst part introduces the appropriate literature
review on architectural geometry. The second part presents three di�erent methods for fabrication-aware
shape generation. The methods consider di�erent constraints and yield di�erent design spaces. The
third part proposes an exploration of the design spaces generated in the second part from the point of
view of a structural engineer. A particular emphasis on structural performance and on potential for the
developments of innovative structural systems is made.

Hence, more precisely this chapter presented a brief and critical overview of the context of the design
of complexly shaped structures and envelopes. The need for bottom-up design strategy for free-form
architecture has been identi�ed.

Chapter 2 reviews the main bibliographical references related to the design of doubly-curved shapes.
A brief summary on existing literature is made and speci�c research questions addressed in the following
of this dissertation are raised.

Chapter 3 introduces a new methodology for the generation of shapes with high node congruence.
Mesh transformation by edge parallelism are used in an innovative way to yield repetition of elements.
A new class of meshes derived from this methodology is then presented and its formal possibilities are
explored. A link with smooth geometry is proposed, and it is demonstrated that the integral of gaussian
curvature is the key parameter governing the repetition of elements in free-form structures.
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Chapter 4 presents the application of the geometry of circles in space to the modelling of structures
covered with planar facets. The potential o�ered by the parametrisation of complex shapes by portions
of Dupin cyclides is discussed. A new family of shapes generated from three curves and calledsuper-canal
surfaces is derived from the proposed framework.

In Chapter 5, an innovative design strategy for the design of shapes with planar facets is developed.
The method is a reinterpretation of descriptive geometry, which was invented in the eighteenth century.
The reference to this ancient representation technique makes the method highly intuitive.

Chapter 6 explores the potential o�ered by the marionette method for the design and optimisation of
shell structures. The relative performances of di�erent optimisation algorithms are proposed for problems
described with the marionette technique or with the ubiquitous NURBS modelling framework.

In Chapter 7, applications of the marionette method for the structural design of gridshells are discussed.
The structural performance of non-regular grid pattern is assessed and compared to more conventional
patterns.

The last chapter recalls the main results of this work, and concludes on their potential for practical
application in free-form architectural design. Possible applications and improvements of the proposed
methods will also brie�y be exposed.
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Chapter 2

Challenges of structural morphology

This chapter presents a critical literature review on di�erent disciplines that deal with the rationali-
sation of free-form architecture. The review includes both structural and geometrical considerations and
identi�es potential areas of development that are studied in the next chapters of this dissertation.

2.1 Structural morphology

The term structural morphology is employed to describe the process that leads to the design of a
structure, and deals more speci�cally with the interaction between form, structure and technology [263].
A working group (WG15) of the International Association for Shells and Spatial Structures was created
in 1991 to face the challenge created by the use of new computer-aided design tools. This working group
deals with the design process itself, and not just geometry. Keeping the same philosophy, the present
section discusses the design process itself, whereas the next sections review speci�c technical aspects of
free-form structures.

2.1.1 Representation in structural morphology

The question of representation is essential to the practice of architecture: HanifKara de�nes archi-
tecture as avisual discipline1. The visual representation of complex shapes but also of the design process
is thus of high importance.

Descriptive geometry

Nowadays, representing a building with sections, plane view and elevation seems natural.Sakarovitch
shows however that such representation is the result of a long evolution and that several competing tech-
niques were discarded along the centuries [214]. Descriptive geometry was introduced by GaspardMonge
as a synthesis of di�erent techniques used to describe complexly shaped blocks. This discipline is based
on the representation of three dimensional objects in two dimensions, and the fundamental mathematical
tools used are planar projections. This point of view is fundamentally the one of a�ne geometry. The
representation of free-form structures with plans or cross section is however not su�cient anymore, and
full 3D models are required to represent consistently and accurately curved shapes.

Descriptive geometry can be considered as a simple example ofdimensionality reduction: it represents
a three dimensional shape in two dimensions. It is interesting to notice that the topic of dimensionality
reduction raises the interest of engineers and architects: the visualisation of a parameter space requires
often to perform projections or classi�cation, like proposed in [104]. The representation of shapes in two
dimensions is an important aspect of the construction of an understanding of complex structures, because
the brain reconstructs naturally three-dimensional objects from projections on the retina [175].

1Lecture In Search of Design Through Engineers at Harvard University, 2013.

35
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Surfaces from two curves

The next section presents some families of shapes commonly used in architectural modelling. Those
shapes are usually generated from two curves and a simple rule of transformation, like translation, scaling,
rotation, etc. This point of view has several advantages. First, the properties of the discretisation can
easily be controlled (facet planarity, repetition of elements, etc.). Second, it simpli�es the representation
and comprehension of the shape for the designer. The process is abstract (the designer has to manipulate
transformations), but not computational (the designer cannot be substituted by a computer, which
remains merely a way to speed up the shape generation). Third, it simpli�es the exchange of information
across di�erent actors of a project, since one can share not only a geometry, but also the process that led
to this geometry. In that manner, modi�cations to a design can be adapted in a coherent framework.

NURBS modelling

One of the most popular modelling software used by architects for free-form architecture isRhinoceros
which describes surfaces as NURBS2. A comment has been made on NURBS modelling in the �rst chap-
ter of this dissertation. By doing an analogy with computer programming language, we could say that
shapes constructed from two or three curves are high level language, whereas NURBS modelling are lower
level language, closer to computation and further away from intuition. Despite undeniable advantages
for shape representation (e�cient memory consumption, compact support), we can doubt that architects
and engineers have an intuitive understanding of Bernstein polynomials. NURBS modelling is therefore a
tool of representation, but unlike surfaces from two curves or descriptive geometry, it cannot be classi�ed
as a tool for comprehension [16].

2.1.2 Formex algebra and con�guration processing

In this dissertation, the word complexity describes the behaviour of a system or model whose com-
ponents interact in multiple ways. As an example: the panels of a free-form envelope can be considered
to be in interaction with each other, as the modi�cation of one panel a�ects automatically its neigh-
bours. The discipline called nowadaysarchitectural geometry deals with these interactions, as buildings
are constituted of thousands of di�erent components (panel, beam, node, etc.).

This de�nition of complexity was adopted by professor HoshyarNooshin , who describes the question
of structural morphology as con�guration processing [183]. Nooshin proposed an algebraic formalism to
deal with con�gurations, called formex algebra[181]. Starting from elementary rules of tranformations,
formex algebra generates a vast variety of structural con�gurations, like gridshells, space trusses or
nexorades. An example of geometrical transformation used in formex algebra is the concept ofpellevation
which considers a �xed planar projection and di�erent lifting strategies [182]. Formex algebra deals with
the relations between components, and as such, is suited for parametric problem representation. Rather
than solving one problem, formex algebra aims at solving a family of problems. A programming language,
called Formian was developed for that purpose [184].

The work on formex algebra is a pioneering work that triggered re�ections on parametric design in
structural engineering and architecture. Many followed this path, as the use of parametric design gained
popularity in the late 2000's with the use of Grasshopper —, a visual scripting tool thought as a plug-in
for the NURBS modelling software Rhinoceros —.

2.1.3 Structural morphology and Motro's diagram

The spectrum of all possible interactions between architectural components goes beyond geometrical
considerations. Buildings have indeed to withstand loads, either induced by their own weight or by
external actions, like wind or snow. Motro identi�ed �ve aspects that can be treated by structural
engineers [1] (see Figure 2.1):

ˆ Form: this term can refer to the form of the whole structure, or to the form on individual compo-
nents;

2Other examples of software implementing NURBS are Catia , SolidWorks , etc.
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ˆ Force: which encapsulates the external forces, pre-stress, and structural response (displacement,
stress);

ˆ Structure: which describes the arrangement of components (grid pattern, hierarchy, etc.), this
notion is related to con�guration processing;

ˆ Material: the term deals here with the mechanical properties of material: sti�ness, brittleness, etc.;

ˆ Technology is the term that focuses on fabrication and construction processes.

Figure 2.1 � The form-force diagram [15].

Bagneris et al. identi�ed three main design strategies for free-form structures based on the intepre-
tation of the form-force diagram [16, 15]. We use this approach to present the literature review in the
following of this chapter.

Geometrically-constrained design approach

The �rst design approach considered byBagneris et al. considers shapes which have well-known
properties. The composition and intersection of such shapes provides a design-space where the tech-
nological aspects are understood and taken into account throughout the whole process, from design to
fabrication. The most commonly used analytical shapes are reviewed in Section 2.2.

Mechanically-constrained design approach

The second design approach considers shapes that solve a mechanical problem. The most common
example is when the shape is the result of a form-�nding process, either from physical or numerical mod-
elling. Generally, the mechanical problem to solve is related to the properties of the structural material.
Mechanically constrained approach often consider technology implicitly. For example, masonry structures
cannot withstand tensile stress and need to follow funicular shapes. Tensile structures (polymer-coated
membranes) cannot withstand compression and need to be pre-stressed.

Flexible design approach

In the last design approach identi�ed by Bagneris et al., the shape is determined by considerations
that are not directly related to the last four items listed previously: the parameter 'form' stands out and
is treated separately from constructional or mechanical aspects. This makes the communication with
engineers and contractors more di�cult than with the two previous design approaches. For the engineer,
the challenge becomes to'make it work' rather than questioning the structural rationality [17]. The
choice of material and structural system is then a matter value engineering and is donea posteriori. Steel
structures are prominently used in �exible design approaches, because steel can withstand equally tension
or compression.
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2.1.4 Comment on structural morphology approaches

The design of complex geometries in architecture requires a thorough knowledge of di�erent disciplines.
Con�guration processing studies the relations between di�erent components of an envelope or structure.
Its development gave birth to a parametric modelling approach that is now ubiquitous. A more general
reading grid for design strategies was proposed by contributors of the structural morphology working
group of the International Association for Shells and Spatial Structures. Three design approaches can be
identi�ed, whether they start from fabrication constraints, construction constraints, or other constraints.
Some buildings appear to merge fabrication and structural performance altogether, making a classi�cation
in one category di�cult. This is often the case for masterpieces of structural artists: like Felix Candela 's
shells, which are based on geometrical principles, but are remarkably thin. NicolasEsquillan or Eugène
Freyssinet shells are also based on construction principles and yet have a high structural e�ciency.
The design process of such projects could equally be quali�ed as a structurally-informed 'geometrically-
constrained design approach' or fabrication-aware 'mechanically-constrained design approach'. A more
recent example is the Dutch Maritime Museum, which is based on a form-found shape derived from an
Airy stress function covered with with planar facets [6].

In the followings of this literature review, we adopt the reading grid proposed byBagneris et al..
We should however recall that, like all classi�cations, the form-force diagram has some limitations. Since
Motro 's �rst work, the notions of comfort and use of the building have become an important com-
ponent of building engineering, and are not unquanti�ed concepts anymore. Among the many �elds of
building physics, we can list acoustics, light, energy consumption, etc. We should point out the fact that
structural masterpieces can also have poor architectural quality because of bad thermal performance or
noise insulation. The form-force diagram could be improved by taking into account the notion of usage,
but this issue goes beyond the scope of this dissertation. This remark illustrates the complexity of the
design process in architecture, even if restricted to engineering considerations. Facing this complexity,
the designer needs to build an intuition of the geometry he or she is drawing, and of the consequences on
the technological application. Most of the representation tools used in the history of architecture were
aiming in that direction. Computer oriented applications should provide guidance to the designers, much
remains to be done on this issue.

2.2 Analytical geometry and the rise of non-standard architec-
ture

This section presents the main geometrically-constrained design approaches. Some families of shapes
with interesting properties have been well-identi�ed by builders and used in di�erent technological con-
texts. Individually, each family of shape is restricted, but the mastery of ancient builders was based upon
the composition of such shapes. In the following of works on stereotomy, designers developed analytical
methods to generate shapes satisfying fabrication constraints. As new materials and structural systems
emerged, the technical requirements of building envelopes evolved. Di�erent families of shapes have been
used in accordance to speci�c construction methods, from stone assemblies to thin reinforced concrete
shells of the twentieth century or contemporary glazed steel gridshells.

2.2.1 Surfaces of revolution

One of the most common and ancient shape used in architecture is the surface of revolution,which is
generated as the envelope of the rotations of a planar curve, called meridian, along an axis. The curves
perpendicular to the meridians are called parallels. The �rst examples of circular housing can be found
during the Neolithic. Domes are considered to have been invented by Assyrians, however they truly
developed under the Roman Empire. A famous design from roman antiquity is the Pantheon in Rome,
built around 125 AC, it is a spherical cupola spanning 43.3 meters. It was the largest span for a concrete
shell structure up to the turn of the twentieth century: its design and structural behaviour is commented
in [156, 155]. Figure 2.2 shows the cupola covering the Pantheon, the co�ering follows the meridians and
parallels of the surface of revolution, which are also lines of curvature.
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Figure 2.2 � The pantheon in Rome, a concrete shell as a surface of revolution(picture: Romain Mesnil)

In a remarkable treaty3, Choisy explored the geometry and statics of Byzantine vaults, which are
compositions of surfaces of revolution [54, 113]. He attributed this choice to the ease of fabrication,
because a simple rope and one �xed point are su�cient to generate those surfaces:'Furthermore, it
would be illusory to attribute a rigorously de�ned geometrical drawing to Bizantine vaults. In more than
one case, the irregularity of form of the vault panels shows that the Byzantines contended themselves with
a compass to draw the pro�le.'4 [54].

More recently, surfaces of revolution have played a crucial role in the birth of reinforced concrete shells.
The use of surfaces of revolution is indeed ubiquitous in early reinforced concrete shells realisations.
It should be linked with the developments of shell theory, that was �rst formulated for shells with a
symmetry of revolution [25]. For example, the German engineer FranzDischinger masterfully designed
thin concrete shells while deriving analytical formulæ on the buckling of shells of revolution [68].

Surfaces of revolution are still commonly used in many architectural applications for di�erent struc-
tural systems. Their inherent properties make them economical: their lines of curvature (the meridians
and parallels) are known by construction, and the symmetry of revolution yields high repetition of ele-
ments.

2.2.2 Constant slope surfaces

The development of timber frames and the separation between the structural behaviour of walls and
roofs led to a new de�nition of shapes. Consider a roof spanning over a closed planar contour, like shown
in Figure 2.3: a simple way to cover this is to generate a surface with constant slope. Such surface are
generated by sweeping a line along a rail curve. The construction of such surfaces is thus eased by the fact
that only straight elements are used, and the orientation of the beams is controlled by one unique angle.
Constant slope surfaces are used in vernacular architecture in western Europe, and still used today, as
illustrated by the San Benedegt Chapel designed by architect PeterZumthor .

For closed contours, the constant slope surface intersect itself and a crease appears at the apex of
the shape, as seen inZumthor 's design. This can be illustrated simply by considering a mechanical
interpretation of constant slope surfaces. Considering a pile of sand, the stability is given by Coulomb's
law. The critical shear stress� is given as a function of the normal stress� , cohesionc and friction angle
� .

� = c + � tan � (2.1)

In sand, there is no cohesion, and the stability of piles imposes thus the slope to be equal to� (a common
value for � is 35� ). One can think of experiments by Frei Otto and his team with sand piles published
in IL25 and based on following remark: 'Any granular material falling from a �xed point forms a cone on
the surface below and a funnel within the granulate mass with the same angle of inclination, the natural

3The book can freely be consulted on the INHA website.
4Translated by us from the citation: 'Au surplus, il serait illusoire d'attribuer à toutes les voûtes byzantines un tracé

géométrique rigoureusement dé�ni, et dans plus d'un cas l'irrégularité de forme que présentent les panneaux des voûtes
montre que les Byzantins se sont contentés d'un cimbelot pour tracer l'arêtier, se �ant pour régler la courbure des surfaces.'
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(a) (Picture: Leo Thomas Naegele) (b) (Picture: Felipe Camus)

Figure 2.3 � St. Benedetg Chapel: an example of constant slope surface (arch. Peter Zumthor)

angle of repose, 35 degree.'[92]. Therefore, sand piles or dunes are constant slope surfaces: the normal
discontinuity at the apex of dunes is an illustration of the shapes taken by constant slope surfaces.

The example of a rectangular planar view gives four planes, and constitute a classical roof shape in
western housing. For planar contours, the sharp features of constant slopes surfaces can be computed
using the medial axis of the contour curve. A point is on the medial axis of a curve if it is the center of
a circle which is tangential to the contour curve in two distinct points at least. Di�erent computational
method for the determination of the medial axis of a shape have been proposed, a survey of which is
proposed in [13]. Recently, constant slope surfaces were revisited with robotic fabrication in order to
create complex compositions with sand piles [114] in Figure 2.4.

Figure 2.4 � Sand creates naturally constant slope surface, the sand is added at speci�c points and the
crest lines create a Voronoi diagram [114](picture:sandworks).

2.2.3 Ruled surfaces

As reinforced concrete shell gained in popularity, new shapes imposed by fabrication constraints arose.
The formwork has a high impact on the cost of construction, and represent approximately 30% of the
cost of the structure. An economical solution was to build the formwork with straight timber laths.
Surfaces containing a family of straight lines are calledruled surfaces. An example of ruled surface and
its application to a formwork for a concrete shell is shown in Figure 2.5.

Hyperbolic paraboloids are of particular interest because they are doubly ruled surfaces: two families
of straight lines can be found on those surfaces. They have been used for the �rst time by the French
engineer FernandAimond , followed by Bernard Lafaille [78]. Mexican structural engineer FelixCan-
dela designed iconic shells using those shapes [51]. LikeDischinger before him, Candela developed
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(a) Generation principle for a ruled surface (b) Formwork of the Chapel Lomas de Cuernavaca
(eng. Felix Candela)

Figure 2.5 � Generation principle for a ruled surface

analytical models for the shapes he implemented in his projects: he published results on the shell theory
applied to hyperbolic paraboloids [52]. The design space used byCandela considers thus mechanical
and constructional aspects and re�ects his holistic approach.

Ruled surfaces have a negative gaussian curvature, so the formal freedom o�ered by hyperbolic
paraboloids might seem restricted. The richness of Candela's work demonstrates how inventive designers
can generate diversity from simple rules. This richness can also be found in the ornaments of another
master designer: Antoni Gaudi . Although known for his experiments on funicular networks, Gaudi
based his shapes on ruled surfaces. The strive for e�ciency was notGaudi 's only inspiration, as he
praised the æsthetic value of ruled surfaces. According to himParaboloids, hyperboloids and helicoids,
constantly varying the incidence of the light, are rich in matrices themselves, which make ornamentation
and even modelling unnecessary. A new look on hyperbolic paraboloids was proposed by HansSchober
recently and complete this short overview on ruled surfaces [226].

2.2.4 Scale-trans surfaces

Iron and steel appeared in the construction industry in the end of the nineteenth century. Those
materials withstanding both tension and compression o�ered new possibilities for the design of transparent
enclosures. The popularity of botanical gardens in the England of the nineteenth century was concomitant
with the appearance of daring greenhouses. There are many examples that still stand today in England,
but also in other countries, see for example the greenhouse of Auteuil, shown in Figure 2.6. Notice that no
triangulation is visible in the picture: the glass panels are used as bracing elements, yielding a maximal
transparency.

Figure 2.6 � The palm greenhouse in les Jardins des Serres d'Auteuil(picture retrieved on Wikipedia and
distributed under Creative Commons license)
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The �rst greenhouses were surfaces of revolution or cylinders, in the fashion of ancient vaults and
domes. The emergence of a new formal vocabulary speci�c to doubly-curved glazed structures, later called
gridshells, was only possible with the maturity of Computer-Aided Design tools for architecture. The
German structural engineer JörgSchlaich and his collaborators developed innovative structural concepts
in the second half of the twentieth century and contributed to a revival of transparent gridshell structures.
Jörg Schlaich and Hans Schober designed glazed gridshells from the 1989 and the completion of a
dome spanning over a swimming pool in Neckarsulm [110, 226]. This �rst realisation was not covered
with planar facets, which lead to high cost for the manufacturing of the glass panels.Schlaich and
Schober proposed then the use of surfaces of translation for gridshells [224]. Surfaces of translations
are de�ned by the translation of a curve (called generatrix) along another curve (called directrix), the
principle of generation is given in Figure 2.7. Since opposite edges of quadrilateral facets generated by
this principle are parallel, the facets are planar parallelograms. Surfaces of translation were �rst used by
Schlaich and Schober for the House for Hippopotamus in Berlin [224, 223]. The gridshell, spans 29
meters and achieves high transparency thanks to a cable bracing system developed speci�cally for the
needs of the project.

(a) Generation principle of surface of translation (b) Gridshell covering the court of the Deutsches
Historisches Museum picture: SBP

Figure 2.7 � Generation principle for surfaces of translation: directrix (light orange) and generatrix (blue)

Surfaces of translation were later generalised after a collaboration between Schlaich Bergermann und
Partner, and Frank Gehry. The generalisation, calledscale-trans surfaces, is based upon a simple remark:
the property of parallelism is preserved by scaling. Therefore, a combination of a translation and scaling
also yields opposite parallel facets, and therefore planar facets. The generation of scale-trans surfaces
gives more freedom to the designer and provides more �exibility than regular surfaces of translation [98].

2.2.5 PQ-meshes from De Casteljau's algorithm

Bagneris proposed the generation of PQ-meshes by using De Casteljau's algorithm [15]. Starting from
two curves, the method is based on the generation of developable strips as NURBS patches, each strip
being controlled by two scalar parameters� and � . Developable strips can be viewed as a collection of
small planar quadrilaterals, the method guarantees that the ruling lines of the developable surface are
following the isoparametric lines. The technique o�ers additional shape control compared to surfaces
of translation through the introduction of the supplementary parameters. This allowed explorations on
boundary �tting problems.

2.2.6 Composition

If architecture is compared to a language, forms could be identi�ed to vocabulary. Just like meaning
is constructed from the combination of grammatical rules and vocabulary, composition of shapes is
an essential tool used by architects. Such compositions can be based either on empirical rules or on
computational approaches using shape grammars [240]. Composition of shapes is used in many styles,
from gothic vaults to Frank Gehry's architecture, which is a composition of developable surfaces. Even
if the considered surfaces are simple taken individually, their intersections create complex geometries.
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(a) Cross-ribbed vaults of
the Saint-Séverin church
in Paris ( picture: Roman
Bonnefoy )

(b) Walt Disney Concert Hall ( picture: Romain Mesnil )

Figure 2.8 � Examples of composition in architecture.

2.2.7 Comments on geometrically-constrained design approach

Geometrically-constrained design approach has been used extensively by designers throughout cen-
turies. Simple generation rules can create wide design spaces, in particular when composition rules
are applied. The di�erent generation principles often use two or three curves and an euclidean motion
(translation, rotation). It can be noticed that constrained geometrical approaches have often been used
in accordance to mechanical theories, like demonstrated byDischinger and Candela .

This approach has however been challenged in the recent years, with projects which cannot be de-
scribed with usual shapes. Other geometrical frameworks allow more �exible shape generation and
have gained popularity in the architecture community. As an example, NURBS modelling software use
some intuitive shape modelling tools, like the two rails sweep, that do not have any counterparts in
geometrically-constrained design approaches. Likewise, boundary �tting remains a complex task when
one is using analytical shapes. These limitations led to the development of post-rationalisation tech-
niques in the twentieth century. However, we will see in Section 2.3.1 that the idea of �nding a unifying
geometrical description of feasible architectural designs dates back from the eighteenth century.

2.3 Architectural geometry and post-rationalisation

This section reviews the literature on architectural geometry. This discipline lays at the intersection of
analytical and computational geometry. Recent advances in those �elds made the post-rationalisation of
complexly shaped buildings possible, but also provided a sound theoretical foundation on some previously
unsolved issues. A brief historical overview is �rst presented, then the two main technical problems
addressed by architectural geometry are reviewed.

2.3.1 Geometry and stereotomy: the pioneering work of Gaspard Monge

Gaspard Monge was a French mathematician who had a great in�uence on architectural geometry.
He developed descriptive geometry, which was a sound method to represent complex objects into two
dimensions. Monge was driven by application to stereotomy: his lectures on geometry are often applied
to architecture. An interesting example is the way Monge introduced his students to lines of curvature.
Rather than taking an analytical approach, Monge de�ned lines of curvature as the only curves on a
surface where the ruled surface generated by the normal vectors of the surface is developable.Monge
saw opportunity to build vaults where blocks follow lines of curvature, because developable surfaces can
be built as envelopes of planes and could simply be fabricated with tools used by builders. Figure 2.9 is
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typical drawing of descriptive geometry: it describes an ellipsoid with a plane view, displayed with some
elevations. The curve network corresponds to the horizontal projection of lines of curvature [142, 215].

Figure 2.9 � Lines of curvatures of an ellipsoid with descriptive geometry [142].

Sakarovitch makes the hypothesis that Monge 's vision of lines of curvature was driven by a
constructive perspective, becauseMonge always presented lines of curvatures and stereotomy together
in his lectures [215]. No evidence can con�rm this statement for certain, as Monge did not leave any
note on the genesis of lines of curvature. His approach blends however mathematics and architecture in
a unique way.

Gaspard Monge aimed at generalising his approach to new shapes tailored to architectural con-
straints. He deplored indeed that 'artists almost always excluded from the composition of vaults the
curved surfaces for which they did not know the lines of curvature, even when circumstances demanded
them imperatively; and it is mainly to this that we must attribute the poor e�ect that parts of mortarless
vaults often produce in architecture because in order to make a tracing doable, one does not always choose
the most appropriate vault surface'5[171].

Mortarless architecture did not develop asMonge intended, and the generalisation of his method to
arbitrary shapes remained beyond the computational capabilities of engineers at this time. Nevertheless,
Monge proposed the �rst systematic approach for surface parametrisation in architecture, a method that
would reveal to be fruitful with Computer-Aided Geometric Designtools. GaspardMonge thus opened
the possibility of performing post-rationalisation of architectural shapes, although he clearly stated that
the problem to solve was to �nd appropriate surfaces for stereotomy and was thus more inclined to
geometrically-constrained design methods. His intuition on the rationalization is still valid more than
two hundred years after he wrote his �rst essay on geometry. As an example, the parametrisation of
architectural shapes by lines of curvatures is reconsidered more than two hundred years afterMonge 's
�rst publications [148].

2.3.2 A new science for complex shapes: discrete di�erential geometry

Buildings are complex objects by essence: di�erent parts, like beams, or cladding have to be physically
assembled. The introduction of doubly curved shapes makes each element unique and each interaction

5The text has been translated by [215]
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peculiar. The emergence of this new complexity occurred in parallel of the developments of computer-
aided design. The modelling of discrete surfaces or meshes for animation or rendering appeared in the
1970's, but with little knowledge transfer to the architectural community until the years 2000.

Remarkable advances have been made in the �eld of discrete di�erential geometry in the last decade,
and especially at the TU Berlin, TU Graz and TU Wien. The �rst book dealing exclusively with this topic,
titled Discrete Di�erential Geometry was published in 2007 byBobenko and Suris [40]. The interaction
between computer scientists, mathematicians, and architects has been in�uenced by the collaboration
between the TU Vienna, the geometry consulting start-up Evolute and structural and façade engineering
o�ce RFR through the european project Architectural Freeform Structures from Single Curved Panels
(ARC) [2]6.Two research axes can be identi�ed in the followings of this project: one dealing with the
properties of the cladding, the other dealing with the geometrical properties of the structural layout.
Those two topics are closely related to the speciality of RFR, namely steel structures covered with glass
panels.

The next paragraphs expose a state of the art on these two problems, with concrete examples demon-
strating the technological challenges faced by designers and builders, as well as a exposure of the under-
lying mathematical theories. We will consider representation of free-form structures by meshes: the faces
corresponding to cladding elements and the edges to support structure (beam elements).

2.3.3 Polyhedral surfaces: covering free-form architecture with planar facets

The most active �eld of research in architectural geometry is the question of shape discretisation with
planar panels. The problem of covering an arbitrary shape with planar quadrilaterals was identi�ed by
Schlaich and Schober [224, 223]. It is of high importance for glazed roofs and façades, but is irrelevant
in some cases. This section presents thus the appropriate literature on this topic, but also recalls the
technological possibilities o�ered to a designer of free-form projects.

Technological alternatives

Four families of technological solutions for covering doubly curved surfaces can be identi�ed. They
are identi�ed either by their mechanical properties (�exible or rigid), and by their gaussian curvature.

Flexible envelopes The advances in free-form architecture made by FreiOtto and his team in the
1960's are indissociable of membrane structures. New materials, like glass-�ber reinforced textiles or
ETFE made possible the covering of large enclosures with extremely lightweight roofs [130]. Figure
2.10 displays an ETFE membrane structure: the thinness of the material can be observed during the
installation of the membrane, proper pre-stress and boundary conditions assure then that the shape
corresponds to a pre-determined state. Membrane structures constitute an economically viable alternative
to glass panels and o�er a great formal freedom. Their lightness is an advantage in terms of embodied
carbon, but a�ects the acoustic, optic and solar performance of the envelope. In projects with high
requirements, �exible envelopes might be less suited than glass.

Application of �exible moulds to free-form architecture have also been considered recently. [75] An
overview of fabric used as formwork is proposed in [255]. The potential of such technologies remains
to be explored, as it could provide the economical advantages of �exible envelopes with higher comfort.
Notice that the design fabric formwork is guided by mechanical constraints linked to the pre-stress of the
membrane and its interaction with the concrete during pouring. This is a topic on its own which should
be treated separately from conventional solutions used for façade. Planarity of facets is important for
many commonly employed materials, but it is irrelevant for fabric formwork, as rigidity of membranes
stems from their curvature.

6Grant number: 230520
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(a) Membrane structure during installa-
tion (picture: LEICHT GmbH)

(b) Membrane structure
after completion (picture:
Romain Mesnil)

Figure 2.10 � A tensile structure: 'les Vergers de la Plaine' (arch.:SCAU)

Doubly-curved panel The lens of the Saint Lazare station in Paris is a �ne application of doubly-
curved glass in architecture. The dome, designed by the architect Jean-Marie Charpentier in collaboration
with engineering �rm RFR, is a concatenation of a torus and of a sphere [18]. Doubly-curved glass panels
were chosen in order to �t the geometry as smoothly as possible, like seen in Figure 2.11. Thanks to
a double symmetry, the number of di�erent panels was reduced from 108 to 54. The glass panels were
heated and pressed onto custom-made moulds, the technological process is explained in [102]. The cost
of the moulds and the work involved in the making of the glass panels makes this technological solution
inadequate for large scale projects.

Figure 2.11 � The 'lens' of Saint-Lazare station (picture: Jacques Mossot)

Because of its high transforming temperature (600� C) and of the implications on the mould properties,
glass is less suited than other materials, like FRP or concrete for application to doubly curved panels.
So, built projects featuring doubly curved concrete or plastic panels are more common. Late work by
architect Zaha Hadid, like the Heydar Aliyev Cultural Centre, feature doubly curved glass �ber reinforced
concrete [268].

Singly-curved panels The development of singly-curved glass panels was made possible by advances
in the domain of cold bent glass. One of the early examples of application of cold bent glass is the new
façade of Strasbourg train station [27]. The reference geometry is a portion of torus, meshed along its
meridians. The glass is bent along the lines of maximal curvature (the meridians). The envelope is not
smooth in the direction of the parallels, but the resulting envelope achieves nonetheless an impression of
visual smoothness and continuity. A more recent example of singly curved panels is the Fondation Louis
Vuitton in Paris. Designed by architect Frank Gehry and engineering o�ce RFR, the veils cover 13,500
m2. In order to rationalise the fabrication process, each individual panel was approximated by a cylinder.
The discontinuity of re�ections due to the �tting process is highlighted in Figure 2.12.
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Figure 2.12 � The Louis Vuitton Fondation: the panels have a cylindrical shape, yielding non-smooth
re�ections light orange curve highlighted by us (picture: Romain Mesnil)

Planar panels The most economical alternative is to fabricate planar panels. This solution is suited
for extruded material, like glass, steel, aluminium. Eigensatz et al. list typical relative costs of panels,
which are recalled in Table 2.1: planar panels are several times less expensive than singly or doubly-curved
panels. Some doubly-curved panels might be easier to construct due to congruence of curves. Hyperbolic
and elliptic paraboloids can be seen as surfaces of translation and have two families of congruent curves.
Surfaces of revolution, like tori have one family of congruent curves.

plane cylinder paraboloid torus cubic custom

Glass
panel 1 2 5 5 5 35
mould - 2 18 24 30 -

Metal
panel 1 3 6 6 6 12
mould - 3 6 6 6 -

Table 2.1 � Comparison of the cost of typical panels (from [76]).

Triangular panels are always planar, while quadrangular or hexagonal panels are not. The trade-o� is
that triangular meshes have higher node valence than quadrilateral or hexagonal meshes, and thus higher
node complexity, like illustrated in Figure 2.13, where the letter v represents the average node valence.
Triangular gridshells can also appear to be less transparent than quadrilateral gridshells (although they
are structurally more e�cient), and other patterns are often preferred for architectural reasons. Finally,
we point out that the high degree of hyperstaticity of triangulated gridshells make their fabrication
tedious: the respect of tight tolerances is crucial to the construction of such systems.

Figure 2.13 � Comparison of triangular, quadrilateral and hexagonal mesh.
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PQ-meshes

Covering architectural envelopes with planar quadrilaterals was as important question for researchers
in the late 2000's. Schlaich and Schober demonstrated their practical interest, and Liu et al. made a
link between this question and surface parametrisation [148]. Quadrilateral meshes covered with planar
facets (also known as PQ-meshes) are indeed closely related to so-called networks of conjugate curves.
These curves are obtained by integration of vector �elds(@u ; @v ) satisfying a di�erential equation written
as follows [40]:

det (@u ; @v ; @uv ) = 0 (2.2)

Any smooth surface admits several conjugate curve networks. As an example, it is clear that lines of cur-
vature satisfy equation (2.2). The principal curvature parametrisation is an orthogonal parametrisation
de�ned by @uv = 0.

Equation (2.2) does not correspond to the exact planarity of quadrilateral following the conjugate
lines. It denotes planarity of in�nitesimal quads: writing " the side lengths, (2.2) implies that the volume
of the defect of planarity is at most of the order of "4. This statement is proven by doing a simple
Taylor approximation. A quadrilateral pattern following conjugate curve network is thus almost planar,
and planarisation is then needed. Planarisation is usually performed by minimisation of the sum of a
planarity defect Eplanar and of a fairing function E fairness (see for example [148]).

Eplanar (qABCD ) = det ( AB; AC; AD )2 (2.3)

The fairness function is usually computed on polylines. Writing (v i )
N
0 the vertices of a polyline P, a

common de�nition is to use a quadratic functional:

E fairness (P) =
NX

i =1

v i + 1 � 2v i + v i � 1 (2.4)

Another possibility is to use Laplacian smoothing, introduced in [179]. Writing E the edges, and(v i ) the
vertices of the mesh, and! ij some weighting factors, it is de�ned by:

E fairness (P) =

0

@
X

i;j 2 E

! ij v j

1

A � v i (2.5)

Those theoretical results led to a better understanding of panelisation with planar quadrilaterals.
Conjugate curves can be found by integration of conjugate vector �elds. This can be done either on
smooth surfaces, like NURBS [272], or on triangulated meshes [149]. Such top-down strategies are
guaranteed to solve the problem of facet planarity, but the topology of the conjugate curve network
remains imposed by the input shape. A slight change of form could yield di�erent network topologies, so
that top-down approaches are not suited for such explorations.

Planar hexagonal meshes

Like quadrilateral meshes, the properties of planar hexagonal meshes have been studied extensively. In
plated structures, the valence of three of hexagonal meshes guarantees structural stability. This property
has been used in some pavilions [105], one of the most notable one being the pavilion built for the
Bundesgartenschau by the ITKE shown in Figure 2.14 [143].

The �rst operational technique for architectural design was based ontangent plane intersection [61,
250]. The principle of this method is to generate a set of points on a surface, to generate the plane tangent
to the surface at each point, and �nally to perform the intersection between the di�erent planes: the
�nal mesh is de�ned as the envelope of the di�erent planes. The technique is easily understood, but the
manipulation of seed points can be cumbersome. Some improvements of the method, combining tangent
plane intersection and optimisation have been proposed in [273].

Planar Hexagonal meshes (PH meshes) have a close relation with lines of curvature, as it was shown
that the edges of planar hexagons converge towards the Dupin indicatrix of a surface [261, 260]. Hexagonal
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Figure 2.14 � Fortspavilion: a plated shell structure covered with planar hexagons (picture: ITKE
Stuttgart) .

meshes follow thus lines of curvature, with additional constraints: in negative curvature area, planar
hexagons have a bow-tie shape. This is undesirable in gridshells for structural reasons. Based on the
understanding of the properties of PH meshes, a method for the parametrisation of meshes with planar
hexagons was proposed in [144].

Constrained mesh generation

Several algorithms proposing modelling with PQ-meshes have been proposed in the recent years.
The di�culty of modelling with PQ-meshes lies within the fact that they admit local deformations.
Hoffmann studied local deformations of planar quadrilateral facets by performing o�sets of a single face
[109]. His method demonstrates that it is possible to make changes that are localised to a few panels
only: for an arrangement of nine panels, it is possible to modify the geometry of the central panel without
changing the mesh boundaries. This method is not directly oriented towards applications in architecture,
but could be used with more global modelling tools.

(a) A possible local deformation
of a PQ mesh

(b) In�uence on mesh regularity

Figure 2.15 � Local deformation of PQ meshes can yield poor smoothness while preserving planarity.

In practice, the planarisation of PQ-meshes can therefore yield local optima that are non-smooth
because of the malleability of PQ-meshes. Smoothness measurements must thus be added: it is often
based on the bending energy of polylines [148]. To this smoothness measurementE fairness , a term taking
into account the distance to the reference geometryEcloseness (if the problem is a surface �tting problem).
A typical planarisation algorithm minimises thus a functional E of the form:

E = Eplanarity + � � Esmoothness + � � Ecloseness (2.6)
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The scalars� and � are weighing the in�uence of the di�erent terms. They are global parameters for the
optimisation: di�erent values of � or � will yield di�erent optima, with a limited control on the properties
of the �nal result.

Several algorithms proposing to minimise the quantity written in equation (2.6) have been proposed.
Bouaziz et al. implemented an optimisation algorithm based on projection [44].Deng et al. studied the
exploration of appropriate subspaces for the modelling with planar facets, but also with other constraints
[65, 64]. The result is a framework for the manipulation of constrained meshes in real-time [123].

Tang et al. proposed a general framework for the form-�nding of meshes with planar facets using an
optimisation solver handling quadratic constraints [245]. The advantage of such method is that it is suited
for various optimisation problems, like the form-�nding of PQ-meshes or circular meshes, mechanical
constraints can be added as well. Moreover, the method is not limited to quadrilateral meshes and
di�erent patterns can be studied. Jiang et al. studied the planarisation of periodic patterns, beyond
quadrilateral meshes by looking at the invariance of such patterns under speci�c deformations [118]. They
observed that periodic pattern mapped along the lines of curvature are easier to planarise and result in
smoother appearance.

Several mesh modelling methods based on the solution of optimisation problems formulated on meshes
have been implemented. The space of solutions satisfying geometrical constraints can be viewed as a
manifold in a space of high dimension. The most common strategy found in the literature is to perform
a local approximation of this manifold. Yang et al. computed appropriate subspaces based on linear and
quadratic approximations of the manifold (the manifold is locally approached by a tangent hyperplane
and an osculant quadratic hypersurface). The method was applied to the form-�nding of PQ-meshes
and circular meshes [271]. Bouaziz et al. use another approach to handle constraints by using an
optimisation routine involving projections on constrained shapes (e.g. vertices of a quadrilateral facet are
projected onto the best-�tting plane) [44]. E�cient implementation of this method guarantees real-time
manipulation of meshes for various set of constraints [123].

Optimisation frameworks aim at versatility and are applied to various problems. There is another
research direction that considers a speci�c point of view, suited for a speci�c problem. Such tailor-made
methods explore the point of view discussed byBobenko on invariance in discrete di�erential geometry,
and generally have a rich interpretation. Vaxman proposed an original approach for PQ-mesh modelling,
starting from the idea that a�ne maps preserve facet planarity. By assigning a�ne maps to each facet
and ensuring compatibility of the transformations, his framework guarantees facet planarity throughout
modelling [252]. He proposed later to use composition of projective transformations applied to each
facet [253]. Following the same philosophy,Vaxman proposed an equivalent framework based on Möbius
transformation for manipulation of circular meshes [254]. Poranne et al. proposed a framework based
on planar projections and computes optimal lifting of meshes [192, 193].

Finally, note that developable surfaces can be de�ned as envelopes of planes and can be obtained from
methods generating PQ-meshes. This point of view was considered in [148], but is not new, since Leon-
hard Euler and GaspardMonge simultaneously proposed to de�ne developable surfaces as strips with
in�nitely small planar quadrangles. The two technological alternatives 'planar facets' and 'developable
strips' are therefore equivalent, if one is able to perform unidirectional mesh subdivision.

2.3.4 Discrete o�sets

The previous paragraphs considered a representation of free-form structures by meshes, the facets
corresponding to panels and the mesh edges representing beams for gridshell structures. Lines are indeed
the simplest way to represent beams. This representation has the bene�t of being extremely light and
su�ciently accurate in preliminary steps of the design process. For instance, in structural mechanics, a
beam is identi�ed to its neutral axis, and the equations of elasticity can be simpli�ed greatly with good
accuracy.

Structural or cladding elements have however a certain depth that makes the o�set of discrete geome-
tries a key issue for builders. The notion of o�set is well-de�ned for smooth objects, but is more complex
for discrete objects. Di�erent strategies for materializing o�sets, depending on the available technologies,
can be employeed. A review on so-calledcell-packing structures is proposed in [197].
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Technological possibilities: examples

In practice, three con�gurations of beam-o�sets can be observed. These three alternatives are pre-
sented with a reference to built projects in the followings.

Centre Pompidou Metz The Centre Pompidou in Metz was designed by architect Shigeru Ban and
by the engineering o�ce Arup. The roof is a free-form shape covered by a wooden grid composed of
triangles and hexagons, a pattern also known as Kagome lattice. The beams are following the orientation
of the surface and are all doubly-curved. The use of 6 axes CNC machines was mandatory, so that only
two contractors were able to answer to the bid. Due to the wood anisotropy, the twisting made it di�cult
to justify the structural integrity of wooden elements [217].

Figure 2.16 � The doubly-curved beams of the Centre Pompidou Metz(picture: Romain Mesnil)

This technological solution can be found predominantly with timber structures, because wood can
easily be milled. Applications to other materials like steel or concrete were not found in the literature
review, most likely because of prohibitive cost.

MyZeil The gridshell MyZeil is a triangulated free-form gridshell spanning over a shopping-mall in
Frankfurt. Despite the great quality of planning detailed in [131], some areas are subject to important
nodal torsion. In those areas, the defect of orientation of the beams is compensated by the construction
of bigger connections. Some examples of nodes with torsion are shown in Figure 2.17. These connection
details are more di�cult to fabricate and might also lead to additional forces in the structure.

Kogod Courtyard, Smithsonian Institution The gridshell covering the courtyard of the Smithso-
nian Institution in Washington was designed by architects Foster+Partners and by the structural engi-
neering o�ce Buro Happold. The extrusion of the structural layout allowed the planners to introduced
acoustic insulation within the structural depth 7. The torsion-free beam layout, shown in Figure 2.18,
creates also interesting visual e�ects. The gridshell, built in 2007, is the most ancient realisation featuring
a torsion-free beam layout referenced in a review on this topic [197].

7Source Foster+Partners
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(a) General overview (picture: Knippers-Helbig) (b) A node with torsion (picture: Romain Mesnil)

Figure 2.17 � The triangulated gridshell 'MyZeil'

(a) Support structure (picture dis-
tributed under Creative Commons
licence)

(b) Overview (picture distributed un-
der Creative Commons licence)

Figure 2.18 � Gridshell of the Kogod courtyard, the support structure is a torsion-free beam layout.
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General framework for o�sets

The most economical solution is to build with planar beams and with torsion-free nodes, like the ones
shown in Figure 2.18. Mathematically, this translates in the fact that the optimal o�set of the structural
layout is a geometrical con�guration where all beams are planar, and all the planes containing the beams
meet exactly along one axis, later called the nodal axis. The notion of o�set can be understood with
di�erent mathematical tools. The most simple one is to consider that, for each torsion-free layout, it is
possible to construct a mesh which has all its edges parallel to the initial edges. Likewise, if two meshes
have their respective edges parallel to each other, it is possible to trace planes between them and to
construct a torsion-free beam layout. These remarks introduce the notion ofmesh parallelism, which has
been used for architectural application in [198]. We can de�ne this notion as follows:

Two meshes are said to be parallel if they have the same combinatoric (same number of edges, vertices,
faces) and their respective edges are parallel.

The transformation that relates two parallel meshes is called a Combescure transformation [198].
Consider a meshM and two Combescure transformationsf and f 0. For each edge, we writevi the
starting vertex and vj the end vertex. The parallelism condition writes:

(vj � vi ) ^ (f (vj ) � f (vi )) = 0 (2.7)

This relation is linear in f and it is then easy to see that this equation is preserved for any linear
combination f + �f 0. The space of Combescure transformations related to a given mesh is therefore a
vector space. An estimation for the dimensionD of this vector space was proposed in [198]: based on
the number of edgesE and the number of facesF :

D = E � 2F + 3 (2.8)

The formula can be understood as follows: each edge can be scaled, but for each face withn edges, one
can prescribe exactlyn � 2 edge lengths, the other two being found as the intersection of two lines. The
number 3 corresponds to the degrees of freedom in translation, which preserves parallelism. With this
point of view, it is clear that triangular meshes are rigid with respect to Combescure transformation. Two
triangles with parallel edges are homothetic, compatibility between facets means that the only parallel
transformation for triangular meshes are homothetic transformations.

In torsion-free beam layouts, the lines passing through each node belonging to a same edge are
by de�nition coplanar. Such network of lines is known as a 'line congruence' in di�erential geometry
[195]. Their relation to surface curvature is well understood in the case of smooth di�erential geometry,
and many recent literature focuses on discrete o�sets. Discrete equivalents to the Gauss map can be
constructed for some meshes with planar facets, and these methods based on mesh parallelism led to
fruitful developments in the �eld of applied mathematics [41].

Three families of quadrilateral meshes play a special role in discrete o�set theory. They derive from
three di�erent ways to measure distance between meshes. Consider two parallel meshes, since the respec-
tive faces normals (and likewise respective edges) are parallel, it is indeed possible to consider distance
between them. We should add the distance between nodes which can be measured without ambiguity
even for non-parallel meshes. The three distances are depicted in Figure 2.19. The families of meshes
presented in the followings admit parallel meshes with constant face, vertex or edge distance.

Conical meshes

Let us consider meshes that admit constant face o�set: in other terms, there exist a parallel mesh
where the face distance is a constant. Equivalently,Pottmann et al. showed that constant face-o�set
meshes have a cone tangent to each face, giving the nameconical mesh [148]. Meshes of valence three
(like hexagonal meshes) always admit constant face o�set [260]. In meshes where all nodes have a valence
of four, conical meshes can easily be characterised with a simple equation on the internal angles around
an axis, demonstrated byWang and Liu [262]. Writing ! i the angles around a vertex, the equality reads:

! 1 + ! 3 = ! 2 + ! 4 (2.9)
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Figure 2.19 � Three distances between two parallel meshes: faces (left), vertex (center) and edge (right).

Equation (2.9) can thus be interpreted as follows: conical meshes are discrete version of a network of
perpendicular curves. The associated parametrisations are known asconformal parametrisations, they
are a rich area of research in the �eld of computer graphics, see for example an application to texture
mapping in [101]. Applications of conformal maps for architectural design with a special focus on surfaces
having the topology of cylinder have also been proposed in [212].

Consider now conical meshes with planar facets. It was shown in [200] that such meshes are parallel to
meshes with their faces tangent to a sphere. PQ-conical meshes are seen as discrete equivalent to networks
of lines of curvature, as lines of curvature are indeed only perpendicular conjugate curve network on a
surface.

Applications of conical meshes for architecture, with a strong focus on glazed gridshells were proposed
in [199]. However, we point out that, PQ-conical meshes are not more relevant than circular and Edge-
O�set Meshes for applications in glazed structures because in such structures, only nodes and beams
are constructed: the glass panels remain much thinner than the structural system. PQ-conical meshes
have a yet unexplored potential for structures constituted of solid plate elements of constant thickness.
One could think of Cross-Laminated Timber (CLT) panels, which have prede�ned thickness imposed by
manufacturers.

Circular meshes

The second family of meshes has both planar facets and constant vertex o�set. Circular meshes are
quadrilateral meshes where all the facets are inscribed within circles [159]. Such quadrangles are de�ned
by a simple equation, stating that the opposite inner angles are complementary.

(
� + 
 = �

� + � = �
(2.10)

Like PQ-conical meshes, circular meshes are viewed as discrete equivalent of parametrisation by lines of
curvature [35]. They are indeed left invariants of transformations preserving lines of curvature: Möbius
transformations. Furthermore, Pottmann et al. demonstrated that PQ-conical meshes and circular
meshes are related by a duality relationship: it is possible to transform a circular mesh (without singu-
larity) into a conical mesh and vice versa [200].

Bobenkoet al. studied circular meshes and their convergence to smooth parametrisation, for example
towards two-dimensional conformal maps. They also discuss discretisation of triply orthogonal systems
by hexahedral mesh with faces inscribed within circles (which can be viewed as three distinct intersecting
circular meshes): the notion of triply orthogonal systems relates to lines of curvature as found in a famous
theorem by Charles Dupin [37]. The relation between these two notions is well illustrated by so-called
cyclidic nets, which are C1 surfaces supported on circular meshes [159]. The properties of cyclidic nets
have been studied in [36]. They constitute an interesting alternative to other surface-modelling tools in
architecture. The most limiting factor of cyclidic nets is the modelling of complex topologies, although
some solutions have been proposed recently in [33].
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Circular meshes constitute the second important family of meshes, because they generally have
constant-vertex o�set. The condition is however not necessarily veri�ed. Constant vertex o�set meshes
admit indeed a image by mesh parallelism mapping each vertex on a sphere. When the mesh features
closed loops, this implies that each closed curve has to be quasi-spherical, which implies some restrictions
on circular meshes with closed loops. For a more complete discussion on this technical topic, see [147].

Edge-o�set meshes

So-callededge-o�set meshesconstitute the last family of meshes of particular interest: such meshes
admit a parallel mesh with constant edge distance. This is particularly convenient for the manufacturing
of steel gridshells, with beam of constant height being perfectly aligned at each node. Like conical and
circular meshes, edge-o�set meshes are related with speci�c meshes on the sphere by a Combescure
transformation. Namely, edge-o�set meshes admit a parallel mesh whose edges are tangent to a sphere.
When the facets are planar, facets with edges tangent to a sphere have an incircle, and the mesh facets
form thus a circle packing on the sphere and the spherical mesh is called a Koebe polyhedron [196].

This remark has important implications, because circle packing are closely related to conformal ge-
ometry and isothermic parametrisations of the plane and the sphere (the notion is invariant by Möbius
transformation). A good hint for the reader is to consider circle packing not as a collection of faces
and vertices, but rather by the circles themselves. By doing so, it becomes clear that circle packing are
invariant by Möbius transformations (which map circle to circles and preserves tangency between curves),
isothermic surfaces are also invariant by Möbius transformations.

Bobenkoet al. constructed discrete minimal surfaces by duality of Koebe meshes [39]: the surfaces are
called S-isothermic surfaces: they constitute a mesh where facets have incircles. An application of circle
and sphere packing for the generation of patterns on free-form structures is proposed with a discussion
on the links between circle packing and conformal geometry in [221].

2.3.5 Comments on the contribution of architectural geometry

The recent contributions of discrete di�erential geometry and of numerical methods led to a sig-
ni�cant improvement in the understanding of key concepts of free-form architecture. The appropriate
parametrisation of surfaces is of high importance, both for planarity of facets, and for beam o�sets. In
particular, the parametrisation by lines of curvature has many advantages, since it can yield planar quads
or hexagons as well as torsion-free beam layout with constant face or vertex o�set. This parametrisation
had been previously identi�ed in the end of the eighteenth century by Gaspard Monge, who advised to
apply it for stereotomy.

Geometrical rationalisation of free-form envelopes have been implemented successfully in the context
of research projects. However, their application is often envisioned as post-rationalisation tools, which
allows us to categorise them as �exible design approach, using the terminology of Bagneris. Numerous
examples of geometrical optimisation or rationalisation stemming from the computer graphics community
can be found in our review, but they remain very scarce in the engineering or architecture communities.
The gap between the two communities recalls the one observed for structural optimisation in academia or
in practice (and 'solution seeks problem' vs.'problem seeks solution' philosophies). Practical applications
of the most recent advances in architectural geometry need yet to emerge: proposing intuitive design
tools for architects and engineers would constitute an important step in that direction.

2.4 Mechanically-constrained design approach

This section presents literature review on the third design strategy identi�ed by Bagneris: mechanically-
constrained design approach. The design of daring and transparent enclosures cannot be achieved without
close relationship between architects and structural engineers. In his bookLeicht und Weit, the german
engineer Jörg Schlaich identi�es three arguments advocating for the use of lightweight structures [222].
The �rst one is ecological: lightweight structures use less primary resource by design, and are gener-
ally easy to disassemble and recycle. The second one is economical: lightweight structures require more
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detailed design studies, and quali�ed employment. Finally, lightness is culturally considered as more
valuable than heaviness.

2.4.1 Mechanical form-�nding

The most popular discipline linked to mechanically-constrained design approaches in architecture is
most likely the domain of form-�nding . Form-�nding aims at �nding shapes at equilibrium under a
speci�c load case. This load case is either a pre-stress if the structure is extremely lightweight, or self-
weight. Additional conditions can be added on the distribution of stress in the structure: up to recent
research, most form-�nding approaches aimed at �nding equilibrium without bending.

Physical form-�nding

Physical modelling plays an important role in architecture and is suited for research on equilibrium,
because equilibrium is preserved by scaling (note that the relative values of bending moments and axial
forces depend on the scale of the structure, making small scale models di�cult to use for structures subject
to bending). Robert Hooke discovered an experimental method for the modelling of compression-only
structures which he encrypted as an anagram, and can be translated by'As hangs the �exible line, so
but inverted will stand the rigid arch.' [111]. A physical model using �exible rods deforms naturally into
a state with pure tension (bending sti�ness can indeed be neglected). By reversing the geometry, one
can �nd a compression-only structure. This principle of hanging models was used by numerous engineers
and architects. For example Antoni Gaudi used cable nets and weights to �nd funicular shapes. More
recently, Heinz Isler used fabric that was later covered with plaster, or even ice. Fabric is an orthotropic
material, so that Isler could use the orientation of wrap and weft to change the shape of his hanging
models [116, 25].

One of the most important research e�ort on physical form-�nding was carried out by Frei Otto and
his research team of the Institut für leichte Flächentragwerke. Although some of Frei Otto's projects
are closely linked to advances in computational mechanics, like the force-density method [216], Otto's
work was fundamentally based on physical experiments. He believed indeed that'The computer can only
calculate what is already conceptually inside of it; you can only �nd what you look for in computers.
Nevertheless, you can �nd what you haven't searched for with free experimentation.'[235].

The concept of hanging cable nets was used for the design of the Multihalle in Mannheim, which was
design in collaboration with Edmund Happold, engineer at Ove Arup and partners [103]. For a more
detailed discussion on the role of physical modelling of gridshells by Frei Otto, see [145]. Frei Otto also
experimented with soap �lms and bubbles for applications to tensile architecture [189]. Soap �lms are
indeed membrane structures that minimise free energy and experience isotropic membrane stress: if no
external pressure is applied, soap �lm take the shape of minimal surfaces. By applying inner pressure,
one obtains constant mean curvature surface, which can be used in pneumatic architecture. Frei Otto
worked in collaboration with the Institut für Ingenieurgeodäsie in order to measure precisely the form-
found shapes, which allowed to construct daring structures before engineers were able to analyse them
with numerical methods.

Numerical form-�nding

Physical modelling had a great in�uence on the emergence of new structural shapes in the twentieth
century. Their handling was however cumbersome and time consuming8, and did not provide estimations
of the forces inside the structural elements. Numerical methods were thus needed to provide the designers
with estimates of the stresses in the structures. Numerical form-�nding has now the favour of a large
part of the engineering community: many methods have been developed, and are often much easier to
implement or use than optimisation techniques. Form-�nding techniques identify geometry with internal
stress state, which make them play a particular role in structural morphology.

8Form-�nding problem, like funicular shape design are often elliptic problems: changing the boundary condition requires
the computation of the whole problem. From a practical point of view, this means that when moving a mass attached to a
cable net, it is likely that some cables will not be in tension anymore: all the lengths have to be adjusted to solve this issue.
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Force-density method The �rst numerical method proposed to �nd the equilibrium of cable nets is
the force-density method [146, 216]. Consider a nodeP0 with n cables attached, its equilibrium is given
by a vectorial equation depending on the tension force in the cablesT i :

P n
i =1 T i = 0. Projecting on the

three components(x; y; z), one gets:
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>>>>>>>>>>:
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(2.11)

The problem is non-linear because the lengthsl i depend non-linearly onx i . The force density method
introduces the so-calledforce-density qi , de�ned as Ti =li . The equilibrium equation can then be written
and becomes a linear equation inq. The linearity is very convenient, as linear constraints (like node
position) can be handled simply, and quadratic problems can be solved with least-square methods. We
notice also that the method does not depend on the initial position of the nodes, which is a major
di�erence with other form-�nding techniques. The main limitation of the force-density method is that
it does not take bending into account, so that interaction between cable nets and supporting structure
cannot be assessed properly.

Surface stress-density method Maurin and Motro proposed the stress density method, that gener-
alises the approach of the force density to membrane element. The method was �rst proposed for tensile
structures [160] and generalised later for the form-�nding of concrete shells [161].

Thrust Network Analysis In structures where all the members exhibit pure axial forces, there is a
close relation between the geometry and the forces in the structure. The forces in members are indeed
aligned with their axis. The equilibrium of one node

P n
i =1 T i = 0 can be represented as a closing

condition for a polygon with edgesT i . Notice that the equation remains a vectorial equation, and that
changing the sign of the force (from compression to tension) changes the edge orientation. For a network
at equilibrium, one can thus construct a dual diagram based on this principle, like illustrated in Figure
2.20. The concept of reciprocal diagram was introduced in the nineteenth century and is often referred as
Maxwell dual diagram or Cremona's diagram by reference to JamesMaxwell [162] or Luigi Cremona
[59]. Notice that the duality proposed is invariant under what we called a Combescure transformation.

Figure 2.20 � A network at equilibrium (form-diagram) and the corresponding force-diagram (right).

The advantage of graphic statics is that it could be drawn directly for two dimensional problems. The
generalisation to three-dimensional structures was impractical with the technologies o�ered to engineers in
the nineteenth century. Block and Ochsendorf generalised the construction of reciprocal diagrams to
three-dimensional structures based on the remark that for structures submitted to vertical loads only, the
computation of vertical and horizontal equilibrium can be done separately [32]. First, they compute the
horizontal equilibrium, which corresponds to the creation of a two-dimensional reciprocal diagram. Then
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the vertical equilibrium can be computed without modifying the constructed reciprocal diagram. Graphic
statics gives control over both the geometry and the force pattern in the structure, its authors advocate
for a geometry-based understanding of structures[251]. Indeed, the method has nice interpretation in
projective geometry and highlights some tools used in shell theory, like the Airy stress functions.

Dynamic relaxation So far, the form-�nding algorithms considered that the internal stress could
only be axial force. Such approaches minimising bending are compatible with the idea of minimising the
quantity of material employed, because elements under axial forces are used much more e�ciently than
elements subject to bending. However, many physical phenomena requires to take bending into account.
For example, if cable nets or membranes are used as secondary structure, the bending sti�ness of the
primary structure needs to be considered in order to measure the interaction between the membrane
and the primary structure. Another example is the design of elastic gridshells, which are obtained by
the deformation of a square grid with no in-plane shear sti�ness. The Mannheim Multihalle shown in
Chapter 1 is the most notorious built example of elastic gridshell. In this case, bending is the governing
phenomenon and the methods described previously are not relevant tools.

Dynamic relaxation was introduced by Otter and Day [188]. It considers the simple fact that static
equilibrium can be obtained as the limit of the evolution of a damped dynamic system. Writing M ,
C and K the mass, damping and sti�ness matrices of a discrete system, andF the external loads, the
dynamic equilibrium is given by:

M •X + C _X + KX = F (2.12)

When damped, the system will naturally dissipate energy, and the speed_X and acceleration •X will go
down to zero, so that the system is a static equilibrium. There are two ways to introduce damping, the
�rst one is by using viscous damping, the other is to consider kinetic damping. With kinetic damping,
there is no viscous damping (the matrix C is equal to zero), so that mechanical energy is preserved.
Mechanical energy being the sum of kinetic and potential energy, it is clear that maxima of kinetic
energy correspond to minima of potential energy.

First considered for cable nets, the dynamic relaxation is compatible with the elements in pure axial
action, but also in bending due to contribution of Adriaenssens et al. [5, 4]. A review on the use of
the dynamic relaxation is made by Barnes in [21]. It was applied by Douthe and Baverel for the
form-�nding of reciprocal frames [70] and for elastic gridshells [71]. We notice here that the point of view
taken by the dynamic relaxation is numerical: it can be used in various contexts and not just for the
computation of equilibrium.

Update Reference Strategy The �nite element method is commonly used by structural engineers
to assess the behaviour of structures. Usual method for non-linear analysis, like the Newton-Raphson
method, are however not suited for form-�nding tasks, because the problem is di�cult to linearise near
equilibrium. Bletzinger and Ramm proposed the so-calledupdate reference strategy, which updates
and regularises the sti�ness matrix [29]. The update reference strategy di�ers from other form-�nding
methods in the sense that it considers not only equilibrium, but also material properties: it can indeed
be generalised to any type of element. This is particularly meaningful for fabric membranes, which are
orthotropic, and allows the engineers to take into account physical phenomena that are not considered
by other methods, like the force density method (like Poisson's e�ect).

Form-�nding algorithms and pattern generation The form-�nding algorithms presented in this
review are generally not restricted to mechanical problems. A uni�ed treatment of geometry and of the
theory of shell structures using tensor calculus was proposed byGreen and Zerna [74]. For example,
with some knowledge of geometry, it possible to use dynamic relaxation to �nd appealing smooth patterns
on a free-form shape. ChrisWilliams used the dynamic relaxation for smooth triangulation of surfaces:
the �rst application was the relaxation of the grid covering the court of the British Museum [265], and
the concept was extended to other patterns in [266]. Notice that the shape of the roof of British Museum
was de�ned as the sum of three analytical functions, so that the design approach used mixes analytical
shapes and optimisation. The engineering o�ce Knipper Helbig uses also the concept of 'relaxation' to
generate smoothly parametrised gridshells on surfaces, but the relaxation uses actually the force-density
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method together with a constraint keeping the mesh on a target surface [67]. We should mention the
popularity 9 of the plug-in Kangaroo for Grasshopper —, which, in the �rst version, implemented the
dynamic relaxation to solve various problems related to geometry or structure.

2.4.2 Design space exploration by structural optimisation

A complimentary approach to mechanical form-�nding is structural optimisation. While form-�nding
usually prescribe a state of stress under a given load in a structure, optimisation can deal with various
objectives. This approach is based on mathematical formulation. As we shall see, when form-�nding is
focused on form, optimisation can generate mechanically-constrained shapes, but also structural systems,
as the topology and members can be modi�ed by optimisation procedures. We present here a brief
background on structural optimisation and identify potential for future research.

What is optimisation?

Optimisation is a mathematical dealing with the minimisation of a quantity m with respect to certain
design variables(x i ), subject to a set of equality or inequality constraints. In practice, the designer aims
at minimising cost, but creating an objective function for cost is not straight forward and depends on the
context. In many industries, we notice that for a given material (and a given technology or fabrication
process), the cost is proportional to the mass of the structure [12]. In civil engineering, the quantity to
minimise is thus generally the massm, and the structure has to satisfy some constraints on maximal
displacements, stress or critical buckling load. By achieving proper optimisation of a mechanical problem,
the designer is getting closer to RobertLe Ricolais ' guiding inspiration of zero weight and in�nite span.

Mathematically, the optimisation problem usually solved in civil and structural engineering can be
written as follows:

min
x i ;� max <� d ;� max <� d

m (x i ) (2.13)

Classi�cation of optimisation problems

Three categories of structural optimisation problem can be identi�ed:

ˆ Sizing problems, which consider a �xed shape and topology, and proposes to vary only the sizing of
beams or the thickness of a shell. This problem is typically solved in the detailed design stage: it is
the most restricted type of optimisation problem and generally improves marginally the structural
behaviour. It is the algorithm most commonly used in practice, see an example of application in
[150].

ˆ Shape optimisation problems, which consider a structure with a �xed topology (number of holes).
The design variables describe the overall shape and eventually sizing. Shape optimisation problems
are solved in conceptual design stages, as it a�ects the appearance of the structure. They provide
more e�cient solutions than sizing problems, because the shape a�ects both the sti�ness distribution
and the internal loads in a structure. Consider for example a parabolic arch: changing the rise a�ect
directly the axial force in the structure. On contrary, changing the cross-section of the arch does
not change the forces in the members.

ˆ Topology optimisation problem consider shape, topology (number of holes) and sizing. It is the
most general formulation for optimisation problems. It is used in mechanical engineering, but rarely
in civil engineering, where some notable contributions were made by [60, 187, 23].

This dissertation focuses on the relation between geometry, structure and fabrication. The shape
optimisation problem links geometry and mechanical behaviour, and is therefore relevant in our study.
Topology of meshes for application in gridshell structures is studied in the present work. The possibility
to change the topology of a shell structure by adding holes can however be questioned in practical
applications in building design, as shell must provide shelter against elements. The literature review

9The 27t h of October, more than 158000 downloads of the plug-in have been made.
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presented in the followings of this section does therefore not consider topological optimisation of shell or
solid structures, and focuses on shape optimisation.

Shape optimisation

We have seen that form-�nding techniques generally aim at minimising bending to �nd shell struc-
tures under pure compression or tension. An alternative point of view would be to consider that the
contribution of bending to total strain energy is superior to the one of axial forces. Minimising the
strain energy of a shell therefore gives close-to-funicular shapes with limited bending moment10 if the
design space is wide enough [30]. Notice that the problem is not the one exposed in the previous section,
since it is not constrained. Bletzinger and Rahm proposed to perform form-�nding by the means of
structural optimisation and showed similarities between classical methods, like hanging chains and shape
optimisation [28, 30].

The proper parametrisation of the design space, i.e. the de�nition of the optimisation variables, is
key to the performance of optimisation algorithms. Two approaches are opposing in shape optimisation
problems: the �rst one considers description of surfaces by Computer-Aided Design (CAD) tools, like
NURBS modelling. The size of the design space remains limited (below 100 variables), which allows
for a complete exploration of the design space and also sensitivity analysis of the solution. CAD-based
design space description might however lead to suboptimal solutions if the number of degrees of freedom
is too low. The second approach proposes to overcome this limitation by parametrising the design
space by the node coordinates in(x; y; z). The �tness function has then many local optima, and the
computation is mesh sensitive. The found optimum can thus be undesired because of æsthetics, and
more importantly because highly distorted meshes yield unreliable structural analysis. To overcome
those di�culties, regularisation techniques have to be employed in order to �lter solutions with small
radii of curvature [84, 238].

Shape optimisation is not limited to linear elastic models. Firl optimised thin-wall structures with a
nonlinear path-following strategy: the optimal shapes di�er from the ones found with linear analysis [83].
More general optimisation problems with constraints on maximal displacement or buckling capacity are
not as broadly studied. Adding constraints can however be done simply by using augmented Lagrangian
methods or penalty methods [180].

Structural optimisation in practice

Structural optimisation is an active �eld of study, with a rich literature, see for example a review
of optimisation of truss in [242]. However, practical applications of structural optimisation in buildings
remains rare [19]. In his PhD, Clune identi�ed the di�culty for engineers, who are not experts in
optimisation, to choose among the many optimisation schemes available. Moreover, algorithms have
di�erent performances and yield di�erent results: the objective function is generally non-convex and has
several local minima [55]. Benchmarks of optimisation schemes are also often limited to few speci�c
problems, like the mass minimisation of a cantilever beam. This makes the generalisation of knowledge
on structural optimisation di�cult.

We might add that some peculiarities of the construction industry make the implementation of opti-
misation problems tedious. First, due to their large scale, the mass of buildings is not negligible compared
to live loads, like snow or wind, and this even for static analysis. The mass a�ects therefore the sti�ness,
but also the loads applied to the structure. For heavy structures, like masonry structures, a simple but
e�cient approach is to consider that the governing load is the self-weight. The design space to consider
for structural optimisation can thus be restricted to funicular form-found shapes, like proposed in [31].
In lightweight structures however, this choice is more di�cult to justify, as the live loads are comparable
to dead loads. Consider for example the Multihalle in Mannheim: the structure is a double-layer elastic
gridshell. The design load for snow is of40kg/m 2, whereas the estimated self-weight of the structure
and its cladding is of 20kg/m 2 [103]. In such cases, the restriction of the design space to funicular shape
cannot be justi�ed as convincingly, as the governing load case is a combination of dead and live load. The
designer is left without intuitive tools or approach to tackle the optimisation of lightweight structures in
architecture.

10 Notice that a thin shell solution with zero bending moment cannot exist if the boundary conditions are not set properly.
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The second limitation of structural optimisation is that optimisation problems are solved for a given
load case. Small variations of the applied loads might a�ect dramatically the performance of optimal
design: the optimal solution of the 'perfect' problem can then be outperformed by other solutions when
considering robustness. In civil engineering, loads cannot be determined precisely and such variations
are bound to happen. Likewise, a structure is built within some fabrication tolerances, and the built
shape is di�erent from the ideal shape that is computed. Sensitivity analysis both on geometry and
applied loads is therefore mandatory to guarantee the optimality of a solution in practical situations.
This fact is well-known in the analysis of the stability of shells [132] or gridshells [96]. Optimisation
of lightweight structures should ideally be robust optimisation, as optima of the perfect problem might
not be satisfactory. We recall again the work of Firl , which performed sensitivity analysis of optimal
solutions with the application of geometrical imperfections [83]. Robust optimisation is however di�cult
to implement in early stages of design: no real-world application to the building industry was found.

The third limitation is that optimisation yields a unique solution to a problem. The solution depends
on the chosen design space, the optimisation target. The result of the optimisation can be of no value, for
example because the solution is too sensitive to geometrical imperfections and does not ful�l the design
requirements. Many realisations of master structural engineers demonstrates also that di�erent designs
can achieve similar performances. Mueller advocates for an exploration of the design space with feedback
from the user based on non-structural criteria [176]. The feedback is performed as an enforced selection
in an optimisation scheme using genetic algorithm [177].

Finally, structural optimisation does not take fabrication into account, so that an optimal solution
might be infeasible and uneconomical. We discuss thus the possibilities o�ered by multi-criteria optimi-
sation and present some literature on fabrication-aware design.

2.4.3 Multi-criteria optimisation

Any real engineering problem is a multi-criteria optimisation problem. In architecture, the designer
has to conciliate di�erent aspects: structural performance, thermal performance, acoustics, etc. A multi-
criteria optimisation problem with only mechanical variables can be the trade-o� between force in the
structure and horizontal reaction forces for the design of foundations [66]. Finding a common optimum
for all the design objectives is generally not possible. The optimal compromise is found by computing
Pareto optima. A solution is a Pareto optimum if there is no other solution that improves one design
criterion without degrading the performance on any of the other criteria.

The search for multi-criteria optimum is di�erent from single-valued optimisation problem. The
notion of Pareto is meaningful if considered on a global level. Global optimisation algorithms - especially
genetic algorithms - are popular in the �eld of multi-criteria optimisation. A review of the most employed
techniques is proposed in [157].

2.4.4 Fabrication-aware mechanical form-�nding

The question of fabrication rationality is rarely considered by mechanical form-�nding algorithms: a
design that result from an optimisation procedure is not necessarily constructible [42]. Indeed, form-found
shapes usually require post-rationalisation in order to simplify their construction. The physical experi-
ments by the team of the Institute for Lightweight Structures of the university of Stuttgart constitute an
exception, because the cable nets used in their experiments have a constant edge length [226]. Numerical
experiments of mechanical form-�nding with embedded fabrication constraints were only considered more
recently, for example in Douthe 's PhD thesis which explored formal possibilities o�ered by mechanically
stable elastic gridshells with constant edge length [69].

A variational approach was used on to optimise the structural behaviour of elastic gridshells in [107].
The constraints and objective functions used are di�erent from the ones presented in this literature
review. They deal indeed with the construction process of elastic gridshells, which rely on bending of
�exible elements to generate doubly-curved shapes. Starting from a mesh with constant edge-length,
an optimisation procedure is used to decrease the stresses in the members, while preserving su�cient
regularity.

As seen in our discussion on architectural geometry, fabrication rationality is often solved by appropri-
ate shape parametrisation. The literature review shows that the main research focus on structurally-aware
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design is set on form-�nding. However, for structures composed of beams, the orientation of the struc-
tural layout is also of importance. The study of relationship between structural performance, fabrication
and shape parametrisation remains an open research question.Schiftner and Balzer studied the
parametrisation of previously form-found shapes by structurally e�cient PQ-mesh layouts [220]. The
process remains however a post-rationalisation process and does not allow the designer to interact with
the shape and the force pattern simultaneously. Form-�nding of polyhedral meshes without bending
was performed by [245]. The two methods consider one unique load case, with the intrinsic limitations
discussed hereabove when one aims at designing lightweight structures. The combination of structural
optimisation and fabrication-aware design has not been proposed yet.

2.4.5 Comments on mechanically-constrained design approaches

There is a close relation between geometry and structural performance of shells and gridshells. Two
points of view, form-�nding and shape optimisation allow to determine e�cient shapes. The �rst approach
is limited to one load case, which can be justi�ed for masonry structures, but not necessarily for the
lightest structures. The second approach can handle non-linearities and multiple load cases, and can
avoid non-robust solutions, with a much higher modelling e�ort to be done by the structural engineer.

Physical models often took fabrication constraints into account: think of Frei Otto 's models which
have a constant edge length. Numerical structural optimisation generally does not consider fabrication.
Optimal solutions can be di�cult to construct. Some methods have been proposed for fabrication-aware
form-�nding, but they do not harness the full power o�ered by structural optimisation. With the constant
increase of computational power, optimisation methods become more and more accessible to the designers.
The de�nition of wide design spaces for structural optimisation could overcome this di�culty and open
new possibilities for practical applications of structural optimisation in architecture.

2.5 Challenges for structural design of free-form architecture

2.5.1 State of the art on structural morphology

Two opposing design approaches exist in free-form architecture. The �rst one considers restricted
families of shapes, either by fabrication or mechanical constraints. The second approach considers the
shape as a given input that has to be rationalised by structural engineers and geometry experts. This
make it work philosophy and the design process of master builders are poles apart and this leads to
further remarks.

Architecture is a cultural discipline, and it is reasonable to state that the tools for free-form modelling
used today do not relate to the cultural background of architects and engineers. Optimisation is often
presented as a silver bullet that can solve the problems of fabrication rationality. Rich developments
in this �eld have been made in recent years, but architects and engineers fail to apply them to real-life
projects. As stated by Borgart 'a generic tool that is suitable for solving all problems is virtually
impossible, if it is indeed desired' [42].

The research on free-form structures is at the intersection of di�erent disciplines: architecture theory,
geometry, computer graphics, optimisation, structural mechanics. As such, this research topic is addressed
by several communities: architects, computer scientists, mathematicians and engineers. This diversity
leads to insightful contributions illustrated in this literature review. However, little exchange can be
noticed between the di�erent communities.

2.5.2 Research goals

The review of existing literature shows some limitations of the existing design approaches. This disser-
tation has speci�c research goals aiming at bridging the gap between computational methods developed
in structural engineering and discrete geometry.

ˆ Expand the formal possibilities of geometrically-constrained design approaches by creating fabrication-
aware equivalents of the existing tools generating free-form shapes in NURBS modelling software.
Works that address this question are presented in Chapters 3, 4 and 5.
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ˆ Propose alternatives to NURBS modelling for the drawing of complex architectural shapes. Those
alternatives should embed fabrication constraints so that drawing of non-constructible shape dis-
cretisations is impossible. Chapter 4 proposes one alternative with illustrations of its potential for
structural design.

ˆ Link the tools of architectural geometry with the cultural background of the architectural commu-
nity. This question is addressed speci�cally in Chapter 5, where descriptive geometry is reinterpreted
as a modelling tool for shapes covered with planar facets, and called themarionette technique.

ˆ Explore the possibilities o�ered by fabrication-aware structural optimisation, in the spirit of the
form-�nding by structural optimisation philosophy. This issue is studied in Chapter 6, where the
marionette technique is used to generate a large design space for the shape optimisation of shell
structures.

ˆ In the manner of Candela or Dischinger, assess the structural behaviour of the shapes proposed
for geometrically-constrained design approach. In that way, the design of those shapes can become
structurally-informed as well as constructible. The present work aims at generality and does not
focus on a given structural system or material, so di�erent structural systems should be studied.
Work in this area is presented in Chapter 7.
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Part II

Design space generation

There are many solutions, good, bad or indi�erent. The art is, by a synthesis of ends and means, to
arrive at a good solution. This is a creative activity, involving imagination, intuition and deliberate choice.

Ove Arup
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Chapter 3

Element congruence in free-form
structures

This chapter investigates the question of repetition of elements in free-form structures and presents
new results on high-node congruence in doubly-curved systems. The main tool used is a geometrical
transformation that preserves symmetries of the structural layout. The result is a family of shapes with
high node repetition.

3.1 State of the art and problem statement

3.1.1 On repetition of elements in free-form structures

The study of repetition of elements in free-form structures is an active topic of research, as repetition
decreases the construction costs and tends to rationalise the fabrication process. Some strategies for
element repetition consider an imposed shape, others tend to generate shapes with interesting properties.
Each method shows limitations: the repetition of elements is limited by the overall curvature of the form
to construct. More precisely, it will be shown that the mathematical formulation of the di�erent methods
is related to the integral of gaussian curvature.

Length repetition and the compass method

The �rst systematic procedure to generate repetition in curved structures was developed at the In-
stitute for Lightweight Structures (IL) in Stuttgart by Frei Otto's team in 1975. The method aims at
meshing a surface with a quadrilateral lattice with edges of constant length. Such meshes are known
as Tchebyche� nets: their properties are recalled by Etienne Ghys [94]. The team of the IL proposed
the compass methodto generate those meshes. Given two curves on a surface and an edge lengthL , it
is possible to propagate a Tchebyche� net by reporting the length on each curve with a compass. The
method is used extensively in the design of elastic gridshells [45][141].

The existence of a Tchebyche� net on a surface is not guaranteed, and it was proven that it is not
possible to cover surfaces whose integral of gaussian curvature exceeds2� . Tchebyche� nets are governed
by a di�erential equation. Writing ! the angle between two curves of the Tchebyche� parameterization
(u; v), and K (u; v) the gaussian curvature of the surface, this equation is written as follows:

@2!
@u@v

= � K (u; v) sin ! (3.1)

Gaussian curvature plays thus an important role in the theory of Tchebyche� nets and is a limiting factor
for practical applications of structures with high length repetition.
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Length repetition and speci�c methods

The concept of geodesic dome was introduced by the german engineer Bauersfeld and popularised by
Buckminster Fuller. It is based on a subdivision of the icosahedron an successive projections on a sphere.
Depending on the type of subdivision chosen, one can achieve regularity in lengths, but also in nodes.
There is a rich literature that considered such strategies for platonic solids, but also for archimedean
solids, which have a constant edge length. For an overview on design with polyhedra, see an anthology
by Gabriel [89]. Such methods remained however restricted to relatively simple con�gurations. More
general methods were only envisioned with the involvement of the computer graphics community. As an
example, a method was proposed to approximate arbitrary shape by assembly of Zometool models, which
consists of only nine di�erent edges [274].

Panel repetition and Lobel frames

Huard et al. studied panel repetition with planar elements [112]. The planarity constraint is hard to
handle for arbitrary meshes, but is instantly satis�ed for triangular meshes. Following a concept developed
by Alain Lobel, they study the design space o�ered by meshes constituted of equilateral triangles only.
An example of such is displayed in Figure 3.1.

Figure 3.1 � A Lobel mesh, constituted only of equilateral triangles.

It is easy to see that the gaussian curvature ofLobel frames is zero, in other terms, that only devel-
opable surfaces can be meshed with one unique triangular panel. Consider the fact that the gaussian
curvature at a vertex of a mesh is de�ned by equation 3.2:

� = 2 � �
X

i

! i (3.2)

In the case of Lobel frames, where the panels are equilateral triangles,! = �
3 and we see that a node

of valenceN has a gaussian curvature of6� N
3 � . Nodes of valence 6 have thus zero gaussian curvature.

Nodes of valence7 correspond to negative gaussian curvature and nodes of valence5 correspond to
positive gaussian curvature. This restricts considerably the design space with extreme panel repetition.
It is also noticed that node repetition is not achieved with Lobel meshes.

Panel repetition and clustering techniques

The example of Lobel frames shows that building with one unique panel restricts drastically the design
space. From a practical point of view, constructing with a restricted family of panels could be just as
economically e�cient. There is a strong interest on clustering techniques, which have been combined with
optimisation several times in order to minimise the number of families of panels necessary to approximate
a given shape.

A combination of clustering technique with optimisation has been proposed for triangular meshes by
Singh et al. [232] and for quad meshes by Fuet al. [87]. Both methods implement the k� mean algorithm
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and approximate a surface by a mesh where facets belong tok di�erent families. Compatibility between
adjacent faces is ensured by the computation of an edge-adjacency graph after clustering.

A comprehensive method based on clustering for panels approximation was developed in [76]. The
user can assign costs to each technological solution (�at, cylindrical, developable, toroidal panels) and
reduce the number of di�erent panels or moulds used. The algorithm does an optimal �tting of the
surface for each geometry of panel and can discard solutions where the approximated panels do not meet
within a given tolerance.

Notice �nally that the methods existing in the literature focus only on face repetition, without taking
into account their thickness. While probably negligible for thin cladding elements, the consideration of
o�sets should play a role for a wide family of applications in architectural design.

Node repetition

The main research on repetition of elements in free-form structures were focused either on panel or
beam repetition, but little research was available on the repetition of connections. A notable exception in
the technical literature is the work developed in [34], were extreme node repetition is reached for di�erent
mesh topologies. The method relies on the generation ofCircular Arc Structures (CAS) , where all beams
are circular arcs. Arbitrary surfaces can be covered with a constant angle via conformal mapping and
optimisation. The complexity is then reported from the node to the supporting beam layout, in the
manner of the Centre Pompidou Metz, shown in Chapter 2. When the beam have circular-hollow cross-
section, the method could eventually be economically e�cient. Other cases are likely to be much more
expensive.

Node repetition was also considered in the design of the gridshell of the Aquatoll swimming pool
in Neckarsulm. The engineers of the o�ce Schlaich, Bergermann und Partner proposed a spherical
cupola covered by a Tchebyche� net. The members are curved circular arcs, and although the angle
of the Tchebyche� net varies with the law described in equation (3.1), only one connection was used.
The built node has one degree of freedom in rotation in order to accomodate the angular variations.
This ingenuous solution requires however the introduction of a cable bracing to guarantee the structural
stability [226, 110].

Research on node repetition with straight elements was not given the same attention.The most no-
table exception is a recent publication dealing with optimisation of three-valent meshes towards symmet-
ric,planar joints (T-shape) or repetition by using a representation in a 3-dimensional hyperbolic space
[208]. The method remains limited to three-valent meshes, which have poor structural performance. The
aim of this chapter is to provide some methods for achieving node repetition in free-form structures.

3.1.2 Connections in gridshells

Steel gridshells are structure made of beams, but that act as continuous shells. Their fabrication
requires particular e�orts, and especially the connection details. The complexity of node manufacturing
is recalled by Knippers and Helbig in [131]. Most of the connections are indeed patented and require
advanced numerically controlled tools. Stefanet al. identi�ed the main connection typologies and measure
their relative performance [239]. This review demonstrates that connection details are key to the economy
of steel gridshells. Unlike cladding elements, connections are indeed structural elements and have to
transmit e�orts. Their properties can in�uence the overall structural behaviour: for example Hwang et
al. showed that the joint sti�ness has a strong in�uence on the buckling capacity of steel gridshells [115].
Another review of the di�erent connections used in the projects of the �rm Schlaich Bergermann und
Partner is proposed by Hans Schober in [226].

3.1.3 Combescure transformations

Following the guiding principle of this thesis, we study the invariance of properties of repetition by
geometrical transformations. This approach gives numerous possibilities to obtain high node congruence
in doubly-curved systems. Consider �rst the parameters describing the geometry of a single node in a
mesh. Like shown in Figure 3.2, a node can be described as a collection of vectors(t k ) corresponding to
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the beams neutral axis, and by a normaln. It is clear that the node geometry is described entirely up to
a rigid body motion by the value of relative angles between the(t k ) and between each vectort and n.

Figure 3.2 � The parameters describing the geometry of a node.

A transformation that preserves angles between the edges of a mesh preserves thus the nodes proper-
ties, including node repetition. We propose therefore the use ofCombescure transformations, also known
as transformation by mesh parallelism. Parallel meshes have the same combinatoric (same number of
vertices, faces, edges and connectivity) and their respective edges are parallels [198]. As an example, Fig-
ure 3.3 shows three parallel quadrilaterals. By de�nition, Combescure transformations preserve discrete
angles and leave the node properties (and speci�cally repetition) invariant.

Figure 3.3 � Illustration of mesh parallelism for a single planar polygon: all the �gures are parallel to
each other because their respective edges are parallel.

It can be noticed that conformal maps preserve angles for smooth surfaces or curves, but do not preserve
discrete angles. Such transformations, which include inversion with respect to spheres, are of interest in
the case of structure composed of curved members, and were used by [34] for that purpose.

3.1.4 Organisation of the chapter

New results on node repetition in free-form structures are presented in this chapter. Mesh parallelism
is used in an original way to generate structures with high node congruence. The pertinence of the method
is illustrated with the introduction of several families of shapes derived from meshes with symmetry of
revolution. Section 3.2 introduces isogonal moulding surfaces, which are images of surfaces of revolution
by Combescure transformation: a smooth point of view of this notion is presented in Section 3.3. Section
3.4 discusses the implementation of the technique and the link with smooth geometry. Opportunities and
pitfalls related to the use of Combescure transformation are discussed and illustrated with examples.

3.2 Isogonal moulding surfaces

3.2.1 Mesh parallelism and surfaces of revolution

Consider a surface of revolution meshed by its lines of curvature. We emphasize here meshes with
a symmetry of revolution: it is obvious that all the nodes along a parallel are identical. We study now
the meshes that are parallel to surfaces of revolution and call themisogonal moulding surfaces[168].
Such meshes have all their edges parallel to the ones of the surface of revolution and have thus the same
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congruence properties. An example of isogonal moulding surfaces and the associated surface of revolution
is proposed in Figure 3.4.

Figure 3.4 � A set of parallel isogonal curves: the circle generates a surface of revolution, the other two
curves generate isogonal moulding surfaces.

For a given mesh on a surface of revolution, it is possible to prescribe parallel meshes just by changing
the lengths edges on one parallel of the surface of revolution (blue curve depicted on top of Figure 3.4).
The resulting curve, also calledparallel on the resulting surface is discretised with a unique angle. Since
Combescure transformations preserve discrete angles, it is easy to see that all the parallels are planar
curves discretised with the same angle. This gave the nameisogonal, which translates to 'having the
same angle'.

Following statements can be made, based on the properties of discrete surfaces of revolution and of
transformations by mesh parallelism:

ˆ for a given parallel of an isogonal moulding surface, all the vertices are identical;

ˆ all the panels between two given consecutive parallels of an isogonal moulding surface are isosceles
trapezoids;

ˆ all the edges between two given consecutive parallels of an isogonal moulding surface are identical;
The faces of isogonal moulding surfaces are inscribed in a circle, creating so-calledcircular meshes
and the possibility to build with constant height nodes.

The introduction of isogonal moulding surfaces gives therefore a simple way to compute quad meshes
that are conical and circular meshes. They have a constant face or a constant vertex o�set, giving
interesting properties for fabrication. Therefore, the gain in cost of the connections for gridshells is made
both by repeatability and by an intrinsic ease of manufacturing. Beyond the fact that a lot of nodes are
identical, it seems that all nodes can be produced with the same rules, especially if the generatrix is an
isogonal �gure as well.

The formal universe of isogonal moulding surfaces reveals archetypal shapes in architecture, and some
doubly-curved surfaces can easily be reinterpreted with this family of shapes. Figure 3.5 shows the
rendering of a barrel vault interpreted as an isogonal moulding surface. The structure can be covered
with planar quadrilateral panels and features remarkable o�set properties. The rail curve is a parabolic
arch with 20 nodes. There are 34 arches. Without geometrical rationalization, there would be 680 types
of nodes. A regular isogonal moulding surface would have 34 types of nodes.

If there are P peaks andV valleys on the generatrix, then the number of di�erent node types can be
reduced with an appropriate isogonal subdivision of the generatrix. The number of di�erent node types
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Figure 3.5 � Free-form generated as an isogonal moulding surface.

can be approximated by Equation (3.3). The case of Figure 3.5 is illustrated on Figure 3.6: there are 2
peaks and 2 valleys, which reduces the total number of nodes to 8.

Nnodes '
Nparallels

2 (P + V)
(3.3)

Figure 3.6 � Peaks and valleys on the generatrix used on Figure 3.5

Isogonal moulding surfaces can also be used to generate doubly-curved facades using a horizontal rail
curve. The parallelism property implies that all the parallels (same family as the blue curve) are hori-
zontal, simplifying the connection of the surface with an underlying structural layout. The generatrices
(in light orange) can easily withstand loads such as self-weight, since they lay in a vertical plane and are
likely to be main structural members. The length repetition property is here key to cost reduction: if the
surface is an isogonal moulding surface, all the main structural members will be identical. An example
of application of these properties is the construction-aware design of stadia.

3.2.2 Edge O�set Mesh and moulding surfaces

Mesh parallelism can also be used to derive exact edge o�set mesh from isogonal moulding surfaces.
It has been shown in [198] that edge o�set meshes feature vertices where all edges are tangent to the
same right circular cone. This makes them interesting from a technological perspective. They are parallel
to meshes whose edges are tangent to a sphere, also known asKoebe meshes. The polyhedra of Figure
3.8 are Koebe meshes: their edges are tangent to a sphere, and, as a result, their faces have touching
incircles. Many Koebe meshes exist, from Platonic solids such as the cube displayed on the left to more
complex polyhedra.
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Figure 3.7 � A vertical doubly-curved facade as an isogonal moulding surface, all the generatrices are
equal.

As explained in Section 3.2.1, all the parallel meshes to meshes with a rotational symmetry are isogonal
moulding surface. This means that all the possible shapes parallel to the canonical Koebe Meshes, such
as the ones displayed on Figure 3.8 represent a subset of isogonal moulding surfaces. This section thus
aims at explaining which moulding surfaces are constructible with edge o�set mesh, and what kind of
limitations this implies for a design purpose.

Figure 3.8 � Canonical Koebe Meshes, the edges are tangent to a sphere and the incircles of the faces
form a circle packing.

The construction of a Koebe mesh with a rotational symmetry is equivalent to a circle packing problem
between two meridians of a sphere, as illustrated on Figure 3.9. Given� � an angular subdivision of the
parallel, or equivalently two meridians (displayed in red) and � 0, the latitude of the tangency point
between an edge of the Koebe Mesh and the sphere (displayed in blue and dashed lines on the left of
the Figure), the problem becomes one-directional and can thus be solved very e�ciently. The problem
is indeed the construction of a circle that is tangent to the three aforementioned circles, which has two
solutions (one circle on each side of the blue dashed circle). It is then possible to establish a non-linear
recurrence for the admissible values of the latitude� de�ning tangency points between consecutive circles.
Introducing t i = tan � i

2 and the constant K � = 1 + 2 sin 2 � �
2 , the solution of this recurrence follows.

t i +1 =
2t i �

�
1 � t2

i

� p
1 � K 2�

(1 � K � ) t i + 1 + K �
(3.4)

Recalling Figure 3.13 and the fact that the angles at a vertex of an isogonal moulding surface are only
in�uenced by the slope of the generatrix in the normal plane of the rail, the recurrence relation leads
to admissible values of� , i.e. of admissible slopes for the subdivision of the generatrix. These values
can be used on any isogonal moulding surface, leading to a propagation method which implementation
is discussed in Section 3.4. The result is a method to generate edge o�set meshes with a total control of
the shape.

3.3 A second point of view on isogonal moulding surfaces

It is noticed that the curves that were called parallels form a family of parallel curves in isogonal
moulding surfaces. This is a property that de�nes a family of smooth surfaces calledmoulding surfaces
introduced by the french mathematician Gaspard Monge [173] and were later studied by Gaston Darboux
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Figure 3.9 � Perspective view of the parameters of the circle packing problem: for two given meridians
(continuous) and one parallel (dotted), a unique solution exists.

[62]. This Section makes a connection between smooth moulding surfaces and discrete isogonal moulding
surfaces. The advantage of taking this point of view is to simplify the design process for architects and
engineers: it might not be straight forward to work with Combescure transformations, but we show that
isogonal moulding surfaces can be generated from two planar curves. We �rst introduce the broadest
class of surfaces that generalises moulding surfaces. We discuss then their discrete counterpart and expose
the link between discrete moulding surfaces and the isogonal moulding surfaces created by Combescure
transformations.

3.3.1 Monge's surfaces

Monge's surfaces (also known as generalised moulding surface) are a family of surfaces introduced
by the French mathematician Gaspard Monge at the beginning of the nineteenth century in his lectures
on di�erential geometry [173]. Several equivalent de�nitions of these surfaces are given in lectures and
are recalled in [194]. The generation of Monge's surfaces can be described by a kinematic procedure,
represented on Figure 3.10. The surface is generated by thesweepingof a planar curve, called generatrix
(in orange on the Figure) along another curve, called rail-curve (in blue). If the rail-curve is planar, then
the surface is called amoulding surface. There are some restriction on the kinematic of the generatix,
since it has to lay in the normal plane of the rail curve and it has to follow arotation minimizing frame .
Monge's surfaces are therefore a speci�c case of sweeping surfaces, which makes them a very familiar set
of surfaces for designers.

Figure 3.10 � Kinematic shape generation of Monge's surface: generatrix (red) and parallel (blue).

The iso-curves of the surface are called respectively generatrices and parallels. Generatrices and
parallels are the curvature lines of Monge's surfaces, and therefore form a conjugate-curves network. A
discrete version of these lines is therefore close to a conical PQ-mesh [148]. Monge also demonstrated [173]
that generatrices are geodesics of Monge's surfaces, making them interesting for the design of developable
strips. Indeed, if geodesics are known to be the shortest path between two points, another property
(which is actually more general) is that the normal vector of a geodesic is the same as the normal vector
of the surface at any point. This explains their "straightness property", which implies that when unrolled,
developable strips cut along geodesics remain almost straight, minimizing the loss of material through
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cutting. This property is well known and used in the construction industry, especially for the cutting
pattern of tensile structures [99].

3.3.2 Discrete Monge's surfaces

When both the generatrix and the rail curve are polylines, the resulting surfaces are naturally called
discrete Monge's surfaces. Discrete Monge's surfaces are generated as depicted on Figure 3.11. Consider
two consecutive edges on the rail curveE i;j and E i;j +1 . The next parallel of the discrete Monge's surface
is generated with an o�set of E i;j by a vector V of length h. The resulting line E i +1 ;j is intersected with
P, the bissecting plane ofE i;j and E i;j +1 , which gives the new vertex of the parallel. The next edge
E i +1 ;j +1 is chosen to be parallel toE i;j +1 .

This generation principle implies that there is a local symmetry for each node. It follows that the
angles between the generatrix and two consecutive edges of a parallel are equals. These surfaces have
therefore intrinsic properties that make them interesting for construction purpose:

ˆ the panels are planar trapezoids. The parallelism of opposite edges makes the use of cost-e�ective
standard opening mechanisms based on rack and pinions possible;

ˆ the trapezoids have a constant height, which is optimal for nesting the panels within a rectangular
bounding box;

ˆ the nodes of discrete Monge's surface are torsion-free.

Figure 3.11 � Generation of a discrete Monge surface by edge o�set: perspective (left) and top view
(right).

The �rst statements come directly from the generation principle presented on Figure 3.11. The last
proposition can be proven by recalling that any conical mesh respects Equation (3.5), as proven in [262].

! 1 + ! 3 = ! 2 + ! 4 (3.5)

where ! i are the angles between consecutive edges around a vertex. Here, due to symmetry with respect
to the bissecting plane, one gets: (

! 1 = ! 2

! 3 = ! 4
(3.6)

which proves that discrete Monge's surfaces are indeed PQ-Conical Meshes.
The consequence of these propositions is that all Monge's surfaces can be considered as optimal for

the most typical geometrical optimisation goals. Indeed, they guarantee both faces planarity and torsion-
free nodes. Nonetheless, the user has an intuitive understanding on how to generate them. This makes
them interesting for typical applications of free-form structures such as glazed gridshells, an illustration
of which is given in Figure 3.12.
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Figure 3.12 � Free-form as a Monge's surface, the surface is covered with planar panels and torsion-free
nodes.

3.3.3 Isogonal moulding surfaces as discrete Monge's surfaces

Moulding surface are de�ned as a speci�c subset of Monge's surfaces, the rail curve being constrained
to be planar. The design of moulding surfaces thus follows the simple procedure described for Monge's
surfaces with a planar curve for the generatrix and a planar curve for the rail. Discretising the surface
following lines of curvature, it is noticed that the parameter in�uencing the angle at a vertex are limited.
Indeed, as one can see on Figure 3.13, the only values of interest are the subdivision angle� i of the
rail (in blue) and the slope � j of the generatrix (in light orange) within the normal plane of the rail. A
consequence is that for a given parallel of a discrete moulding surface, the angles of a vertex only depend
on the subdivision angle of the rail. It follows that a moulding surface where the rail is a polyline with
only one angle has a unique set of vertex angles for each parallel and therefore, that the nodes along the
same parallel are identical.

Figure 3.13 � The angle of subdivision of the rail curve � i and the slope of the generatrix with respect
to the discrete rotation minimizing frame � j are the only parameters in�uencing the vertex angles.

From a practical point of view, this means that isogonal moulding surfaces can be generated from
two planar curves. This simpli�es the generation process compared to the prescription of Combescure
transformations. The use of two curves for shape generation is indeed highly intuitive, like demonstrated
by the success of surfaces of translation in glazed gridshells [226]. Some notorious examples of built
moulding surfaces exist, like the SAGE Music Centre [57] shown in Figure 3.14 or the Odate Dome [246].
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This illustrates that moulding surfaces have entered the formal vocabulary of some architects. However,
the property of conical mesh for Monge's surfaces did not seem to have been discussed before in the
general case.

Figure 3.14 � Sage Gateshead Music Centre (architect: Norman Foster): an example of moulding surface
covered with planar facets, (picture: Graham Robson, distributed under Creative Commons licence)

3.4 Application and computational aspects

3.4.1 Isogonal subdivision of a convex planar curve

The main challenge left with the design of isogonal moulding surfaces is the isogonal subdivision of a
planar curve. A strategy that guarantees an isogonal subdivision of a smooth convex curve is proposed in
this section. The method can be interpreted graphically, as pictured in Figure 3.15. The basic algorithm
steps follow:

1. Find the tangent vectors T A and T B at the ends of the curve, and measure their angle� AB (if the
curve is closed and convex, chose� AB = 2 � );

2. Divide � AB by the desired numbern of inner nodes. Create the vectors(T i )
n � 1
i =1 , where eachT i is

obtained by a rotation of T A by an angle of � AB � i=n ;

3. Find the points corresponding to the tangency to(T i )
n � 1
i =1 on the initial curve;

4. Intersect the corresponding lines with each other.

Figure 3.15 � A graphical method for the isogonal subdivision of a planar curve.

With this formulation, only angles that are a unit fraction of the total angular variation of the tangent
vector are admissible.

� ext =
� AB

n
(3.7)
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It is possible to be even more speci�c: the points of tangencyPi found at step 3 form a partition of
the curve with a constant integral of curvature.

� ext = ( T i ; T i + 1 ) =
Z P i +1

P i

�ds (3.8)

Intuitively, the consequence is that areas with low curvature will feature longer elements, which can
already be noticed on Figures 3.5 and 3.15. This criterion also means that fully numerical approaches
based on the integral of curvature are applicable to the search of isogonal polylines.

It has to be noticed that the algorithm can be made more �exible by letting the user prescribe an
angle of subdivision and a �rst point of tangency. The last two steps of the method described above can
be implemented with the prescribed value of the subdivision angle.

3.4.2 Isogonal subdivision of a planar curve

Consider now the case of a curve that is not convex and more precisely with varying curvature signs.
The strategy proposed above does not apply directly, but it can be generalised. Indeed, the procedure to
follow is simple:

1. Find the in�ection points of the curve and use them to make a partition of the curve ;

2. Apply the procedure described in Section 3.4.1 for each part.

By doing so, one is sure that each part will have an isogonal subdivision. The last problem to solve is to
know whether it is possible or not to have the same subdivision for each part with the simple graphical
method described above. Equation (3.8) gives an answer to this problem: it is possible to have the same
subdivision angle for two parts whose integral of curvature are commensurable (their ratio must be a
rational number). This restriction is too strong for a general purpose. For this reason, a propagation
algorithm where the user chooses the angle of subdivision is more convenient. The algorithm implemented
follows the same principle of tangency point and adapts the sign of the subdivision angle by checking the
sign of the curvature.

The algorithm proposed hereinabove has been implemented as aPythonScript in the drawing software
Rhinoceros. The benchmark for the isogonal subdivision algorithm studies two typical curves. The �rst
one is a parabola and has no in�ection point. The second one is a fourth order spline with four inner
in�ection points recalling a sine function. Both curves are shown on Figure 3.16. The in�ection points
and tangency points are found by means of a binary search algorithm.

Figure 3.16 � Benchmark curves (continuous) with end points and in�ection points, and the result of our
algorithm (dashed lines).

As seen on Table 3.1, the computation time is low, even for a large number of subdivisions. It can
be noticed that the convergence of the algorithm does not vary linearly with the number of inner nodes:
doubling the number of inner nodes will not double the computation time. The partition into several
domains with the in�ection points makes the computation slower for the sine curve. These examples
show that the algorithm proposed allows a real-time manipulation of isogonal planar curves and isogonal
moulding surfaces.

3.4.3 Computation of edge o�set meshes from moulding surface

The computation of edge o�set meshes from isogonal moulding surfaces is closely linked to the con-
struction of a Koebe mesh with a rotational symmetry, see Section 3.2.2. Such a mesh can be determined
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Type of curve Number of inner nodes Computation time [s]

Parabola

25 0.04
50 0.06
100 0.12
200 0.21

Pseudo-Sine

25 0.10
50 0.11
100 0.17
200 0.27

Table 3.1 � Computation time for the isogonal subdivision algorithm, the computation was performed on
a computer with 2.4 GHz and 2 GB memory.

with two given meridians on a sphere, or equivalently, with a subdivision angle of the parallels, as a start-
ing point. Due to its symmetries, the problem to solve can be represented on a plane, as shown in Figure
3.17. Consider the bisecting plane of the two meridians. The projection of these curves into the plane
gives an ellipse (dashed �gure), whereas the meridian in the bisecting plane is a circle (thick continuous
line). The Koebe Mesh has its edges tangent to the sphere, which means that the projection of an edge
on a meridian (blue continuous line) has to be tangent to the ellipse. In the plane displayed on Figure
3.17, the projection of an edge along a parallel is a point (in blue on the �gure). The condition of edge
tangency for Koebe mesh means that this point has to be on the central meridian (thick black circle).
The symmetry of the problem guarantees indeed that the contact has to be on the central meridian and
on the two pre-determined meridians. By this mean, starting from a point P1, one is able to �nd a point
P2 so that the line (P1P2) is tangent to the ellipse at the point P0

1. The procedure can be repeated to
construct other points P0

2 and P3, and so on.

Figure 3.17 � Propagation technique for a sphere, the dashed line is the projection of a meridian within
the plane of the central meridian

For a given point P1 and a propagation direction (either towards the North pole N or the South pole
S), there is one unique way to construct a valid trapezoid that respect the rotational symmetry and the
edge o�set property. This leads to the incremental construction of the sets of points(Pi )

n
i =1 on the circle

and (P0
i )n � 1

i =1 on the ellipse. The key information for the construction of edge o�set mesh on moulding
surface is the computation of the slope of the generatrix, which is the slope of the line(Pi � 1Pi ). This
calculation gives therefore admissible values of the slope of the generatrix for the construction of an edge
o�set mesh. The computation is very e�cient, since the problem is fundamentally one-directional.

Once the problem of the Koebe mesh on the sphere is solved, it is possible to apply this approach to
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any moulding surface. The procedure follows:

1. Subdivide the rail curve into an isogonal �gure;

2. Measure the initial slope of the generatrix;

3. Determine the propagation direction (North pole or South pole);

4. Solve the equivalent problem on the sphere with these initial values (the result is a set of tangent
vectors);

5. Find the tangency points on the generatrix, a suitable curve for an edge o�set mesh being the
envelope of the tangent lines.

The simplicity of this formulation leads to good computational performances, the calculation time being
typically below one second, even for meshes with thousands of faces. A set of typical values of computation
is given in Table 3.2, the geometry considered is a mesh on a sphere with a symmetry with respect to the
equator, as the mesh displayed on Figure 3.8. In this case, the computation time is mainly governed by
the isogonal subdivision of the rail curve.

� � � � Number of Faces Computation time [s]

5�

30� 504 0.19
60� 936 0.20
120� 2232 0.24
160� 3384 0.32

15�

30� 72 0.18
60� 120 0.20
120� 264 0.22
160� 384 0.16

Table 3.2 � Computation time for the Edge O�set Mesh algorithm for a sphere.

The method presented hereinabove is not free from simpli�cations and from hypothesis. The �rst one
is that the generatrix has to exhibit curvature in order to use the propagation technique. If it is not the
case, the algorithm will fail to �nd admissible values for the slope of the generatrix. This is rather an
intrinsic limitation of these surfaces than a weakness of the algorithm. For example, a cylinder cannot
be given an edge o�set mesh, since its Gaussian map is a circle.

Another di�culty in the use of the edge o�set mesh algorithm is that the procedure described does
not allow to cover the entire sphere with a quad mesh. Graphically, it can be seen on Figure 3.17 that
the ellipse and the circle get closer as one moves away from the equator, which means that each "step"
is smaller. Figure 3.8 shows this narrowing of the faces as the latitude is larger. Numerically, this means
that the algorithm, as it is presented here, would not converge if the normal of the generatrix is the
same as the normal of the plane containing the rail curve, which corresponds to the poles in the case of a
sphere. From a practical point a view, it is therefore necessary to prescribe a minimal angle between these
normals to stop the computation. An illustration of the practical limitations of Koebe mesh on moulding
surfaces with respect to this point is given on Figure 3.18, where a torus is meshed with our algorithm.
The narrowing of the elements towards the top of the small circle is clearly visible, and would be likely
to be considered undesired from an architectural and technological point of view. The mesh exhibited is
still an edge o�set mesh, but it does not only feature quad elements. This simple shape illustrates some
of the intrinsic limitation of edge o�set meshes in practical cases.

3.4.4 Gridshells with planar facets

In this section, an evaluation of the design possibilities o�ered by moulding surfaces, isogonal moulding
surfaces and edge o�set meshes for gridshells with planar faces is proposed. In particular, the analytical
link between the discrete mesh and the smooth surfaces leads to some remarks on the malleability of
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Figure 3.18 � Edge o�set mesh on a torus, a particular case of isogonal moulding surface where the
algorithm proposed in this article does not provide a mesh with quads only due to intrinsic limitations
of the shape.

edge o�set meshes. A case study is proposed for two archetypical examples of doubly curved shapes in
architecture: domes and barrel vaults.

Moulding surfaces are indeed well-suited for the generation of domes. The form generation principle is
illustrated on Figure 3.19: the rail curve is vertical and the generatrix is a curve with no in�ection point.
The surface generated is cut by an horizontal plane in order to illustrate possible real life application.
Three geometries of dome are considered: the rail curve (in blue) is a third order spline and remains

Figure 3.19 � Dome as a moulding surface: top view and isometric view.

unchanged, whereas the generatrix (in light orange) varies. This gives three geometries: an oblong shape,
a nearly-spherical one and an intermediate shape. A relatively coarse and a �ne edge o�set mesh have
been generated on each shape, the coarse meshes can be seen on Figure 3.20. The computation of the
meshes is instantaneous. The number of subdivisions of the rail-curve is identical for the three geometries,
which implies that all the three edge o�set meshes are parallel to each other and derive from the same
Koebe mesh on the sphere.

Figure 3.20 � Perspective view of the three domes as edge o�set meshes.

Let us de�ne the aspect ratio of a panel as the ratio of its length (maximum of the mean value of the
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lengths of two opposite edges) over its width (minimum of the mean value of the lengths of two opposite
edges). In Table 3.3, a comparison between the aspect ratio of the panelsL=l and the ratio of principal
curvatures at the apex of the domeR1=R2 is made. It appears that these quantities are very similar,
especially when the mesh is re�ned. For 50 subdivisions of the rail curve, the di�erence between these
quantities is below 2%. This simple example shows that the ratio of principal curvatures is likely to be a
key factor in the anisotropy of edge o�set meshes. Keeping this in mind, some precautions can be taken
to improve the quality of an edge o�set mesh, or controlling intuitively its anisotropy:

ˆ Reduce the variation of curvature of the rail curve;

ˆ Avoid areas with low gaussian curvature, as they are hard to cover with edge o�set meshes;

ˆ Even the curvature between parallel and generatrix in order to deal with eventual mesh anisotropy.

Number of subdivisions of the rail curve Type of Dome L=l R1=R2

15
Oblong 3.50 3.60

Intermediate 1.88 2.01
Quasi-spherical 1.12 1.13

50
Oblong 3.53 3.60

Intermediate 2.02 2.01
Quasi-spherical 1.13 1.13

Table 3.3 � Relation between aspect ratio of the panelsL=l and the ratio of the curvatures R1=R2.

Isogonal moulding surfaces are also of interest for the generation of shapes with varying curvature, such
as corrugated barrel vaults. Figure 3.21 demonstrates this possibility: the rail curve (in blue) is a B-spline
of degree 3 with a rise over span ratio of37:5 %. The generatrix is a spline curve which is also divided
as an isogonal polyline (with the exception of the in�ection points, where �at node are introduced). The
structure features nearly 700 nodes, but thanks to the isogonal moulding surface properties and to the
symmetries of the shape, only 8 types of nodes are used. Height lengths of members are required to span
between any parallels.

Figure 3.21 � Corrugated barrel vault as an isogonal moulding surface.

It can be noticed on Figure 3.21 that the panels are longer towards the supports of the structure,
which can be explained by equation (3.8): the isogonal subdivision has to de�ne a constant integral
of curvature for the rail curve. The Figure 3.22 shows that the curvature is bigger on the top of the
rail curve, which is a well known fact for curves such as parabolæ for example. The dots represent the
points of tangency found with our algorithm. This phenomenon of shortening of elements in areas of high
curvature can be problematic if the variations are important. In this case, the designer can choose to
divide straight lines by adding intermediary elements or to divide the rail curve with two angles, instead
of only one.
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Figure 3.22 � Curvature graph of the rail curve in Figure 3.21, the dots represent the tangency points
found with the algorithm presented in this paper.

3.5 Extension to other shapes

This chapter proposed a methodology for the generation of element repetition in free-form structures
based on the invariance of node repetition by Combescure transformation. An application to a speci�c
family of meshes (surfaces of revolution) was shown. The methodology can be extended to other meshes
with high node congruence. This section explores some developments of our framework.

3.5.1 Fitting of Monge's surfaces by surfaces of revolution

Congruence in Monge's surfaces

This chapter has demonstrated a clear link between surfaces of revolution and Monge's surfaces.
Surfaces of revolution are indeed Monge's surfaces with a circular rail curve. It can be noticed that if the
rail curve is a collection of surfaces of revolution, then the resulting Monge's surface is a concatenation
of surfaces of revolution. As such, the symmetries of surfaces of revolutions can be used to generate
repetition of panels, nodes and edges. The congruence increases as the number of patches decreases, it is
therefore important to approximate a given curve with as little patches as possible. This motivates the
implementation of an optimisation algorithm that allows the approximation of an arbitrary curve with a
minimum amount of circular arcs.

Algorithm principle: bi-arcs

The approximation of a given set of points by circular splines has already been used in architecture
and other �elds of computer-aided design [234, 34]. The aforementioned papers use the fact that two
prescribed points and two tangent vectors admit a one-parameter family of bi-arcs (two circular arcs),
like the one represented on Figure 3.23.

Circular arcs are here described as Non Rational Bézier curves of degree 2. Only three control points
are required, one at each end, and one on the line sector bisector. Consider a bi-arc with prescribed
points A and B and prescribed tangentsT A and T B . The two arcs are meeting tangentially at point C
following an unknown vector T C . The control points M A and M B are at the intersection of the lines
(C; T C ) and(A; T A ) or (B; T B ) respectively. They are de�ned by the equation:

(
M A = A + lA T A

M B = B + lB T B
(3.9)

The two arcs meet tangentially, meaning that M A , M B and C are aligned:

kM A � M B k2 = ( lA + lB )2 (3.10)
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Figure 3.23 � A bi-arc and the associated notations

Equations (3.9) and (3.10) lead to an equation with two unknowns that any bi-arc has to satisfy (3.11),
found in [234]:

V T V + 2 lA VT A + 2 lB VT B + 2 lA lB (T A T B � 1) = 0 (3.11)

where V = B � A. This equation has an in�nity of solutions. It can be transformed into a parametric
equation, for example by introducing the parameter r = l A

l B
. The equation becomes then a second order

polynomial equation in lA , which has one positive solution for any value ofr .
Two points and two tangent vectors give a one-parameter family of bi-arcs. In the followings, a set

of points is chosen on the curve to approximate. The associated tangent vectors are the tangent vectors
of the curve. The approximation of the curve is the set of bi-arcs generated on each set of consecutive
points of the curve. The parameters of the problems are therefore the U-values of the points on the curve
and the ratio r for each bi-arc. For N bi-arcs, there are thereforeN � 1 values for Ui , and N values for
r i .

Error formulation and optimisation

We showed how to generate a N-parameter family of circular splines approaching a reference curve.
The question of the estimation of the similarity between two curves remains. A common approach would
be to minimise the Euclidean distanceL 2 [43], but two curves can be close in terms of Euclidean distance
and have very di�erent features, as illustrated in Figure 3.24. When dealing with free-form curves, it is
more important to preserve some key visual references, like peaks and valleys.

Mathematically, this means that the criterion has to compare the orientations of the normal vectors,
as illustrated in Figure 3.24. The error metric chosen here was �rst introduced in [56] and calledL 2;1

is also discussed in [43]. Writings the arclength parameter of the reference curve� , n0 (s) the normal
on the reference curve and we writet (s) the arclength parameter on the circular spline corresponding to
the point closest to � ( s). The penalty functional E (U ; R ) is a quantity to minimise proportional to the
defect of orientation between the evaluated shape and a reference geometry.

E (U ; R ) =
X

bi-arcs

Z
kn0 (s) � n (t (s)) k2ds (3.12)

The functional penalizes changes of curve in�ection and gives satisfactory results. The integrals are
computed numerically as �nite sums for a �nite number of values of s. We write (si )

n
0 the values taken

by s from the sampling and P i the associated points, anddi the curve length betweenP i and P i + 1 :

E (U ; R ) =
X

bi-arcs

nX

i =0

di � kn0 (si ) � n (t (si )) k2 (3.13)
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The number of sampling points is chosen so that the estimation does not vary by more than 0.1% when
doubling its value. With the curves studied in this paper, this led to values between 10 and 20 sampling
points.

Figure 3.24 � Curve �tting and metrics: �tting with euclidean distance can yield non-smooth results
(left), a �tting based on the orientation of the normals and the L 2;1 metric gives more natural results
(middle and right).

The optimisation problem is an unconstrained smooth problem, which hints the use of descent algo-
rithm. The error functional is minimized by a quasi-Newton scheme: the BFGS method. This method
computes an approximate value for the Hessian matrix based only on the estimation of the gradient.
The method is easy to implement and has a good convergence: it is one of the most popular quasi-
Newton methods [180]. Once the descent direction is found, it is necessary to �nd an optimal step, which
is checked using Armijo's rule. This scheme converges quickly to solutions and works well for convex
functions.

Application

The optimisation algorithm has been applied to the rail curve of Monge's surface displayed on Figure
3.10. In this picture, the resulting Monge's surfaces are also shown, and the surfaces of revolution are
coloured in blue and white. The reference curve is non-planar and has numerous in�ection points, but
it has a double symmetry. Therefore, only an even number of bi-arcs are used. As the number of bi-
arcs increases, the curve becomes more and more similar to the reference curve, as seen on Figure 3.25.
However, this also increases the number of di�erent nodes, or panels when a Monge's surface is generated.

Reference Surface 16 arcs 12 arcs 8 arcs
Number of families of panels 200 70 50 30
Number of families of nodes 200 40 30 20

Number of families of generatrix 20 4 3 2

Table 3.4 � Repetition of elements in Monge's surfaces.

This aspect of repetition of elements is explored in Table 3.4, for a subdivision with 80 elements on
the rail and 10 elements on the generatrix. The formula for the number of families of elements is given
in equations (3.14) and (3.15):

npanels = ngeneratrix � (2narcs � 1) (3.14)

nnodes = ngeneratrix � narcs (3.15)

In this case-study, the symmetry decreases further the number of di�erent elements. Finally, the
high congruence of lengths in isogonal moulding surfaces means that there a lot of identical generatrix
in toric Monge's surfaces. This is of particular interest when the main structural elements are along the
generatrix, like in stadium design.

This case study shows that optimisation of Monge's surfaces or moulding surfaces towards concatena-
tion of surfaces of revolution is well performed by the algorithm proposed in this paper. The algorithm
reached convergence (variation of the error functional of less than 0.1%) in less than 100ms, which allows
real-time manipulation. It also illustrates the compromise that have to be met between �delity to the
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Figure 3.25 � The reference curve and the associated Monge's surface (right), and its approximation with
8,12,16 arcs (from left to right).

design intent and the project economy. In Figure 3.25, it is clear that the approximation of the rail curve
with 8 arcs is far from the initial design. The approximations with 12 and 16 arcs are much better, and
not signi�cantly di�erent, as they have the same in�ections as the reference curve.

3.5.2 Another symmetrical pattern: loxodromic surfaces

Other patterns with a symmetry of revolution could be used to generate high node congruence in
curved surfaces. However, most of them cannot be covered with planar facets and do not have particular
o�set properties. Among all the meshes that have a symmetry of revolution, loxodromic parametrisations
are of interest. Loxodromes (also known as rhumb lines) on surfaces of revolution are lines that make a
constant angle, noted� , with the parallels. Some examples of loxodromic parametrisations of a sphere
are shown in Figure 3.26.

Figure 3.26 � Loxodromic parametrisations of a sphere: with� = 20 � , 30� , 45� and 60� from left to right

The network constituted of the smooth loxodromes on a surface of revolution has a unique angle. In
order to better understand this statement, consider Figure 3.27, which displays two loxodromes making
a constant angle� with the parallels. We write � the angle made by the rhumb lines with the meridians.
Keeping the notations of Figure 3.27, it is clear that:

4 (� + � ) = 2 � (3.16)

Since � is constant, then � is also a constant. The angles between the two loxodromes(2�; 2�; 2�; 2� )
are therefore constant.

The case� = 45 � is of particular interest, since in this case the two curves cross perpendicularly and
the loxodromic parametrisation is a conformal parametrisation of the surface. Such networks are close to
conical meshes, but are not covered with planar facets [262]. The only exception is the sphere, where all
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(a) A surface of revolution and loxo-
dromes.

�
�

�
�

�
�

�
�

(b) The angles between the loxo-
dromes are constant.

Figure 3.27 � Symmetries of a loxodromic parametrisation (in light orange) on a surface of revolution.

conformal parametrisations are parametrisations by lines of curvatures. A practical consequence is that
the parametrisation of the sphere by the network of loxodromes of45� are close to conical meshes with
planar facets or circular meshes, which is an advantage for the cost-rationalisation. This parametrisation
has very likely been used in Paul Andreu's design for the Osaka Maritime Museum, although the designers
generated the curve network in order to guarantee the planarity of the panels and are not sure of the
nature of the curves drawn on the spherical dome [133]. The design is shown in Figure 3.28, where the
loxodromes are highlighted in orange.

Figure 3.28 � The Maritime Museum of Osaka (architect: Paul Andreu) is meshed with rhumb lines
(orange curve) making an angle of45� with the meridians and parallels (blue) (picture retrieved on
Wikipedia and distributed under a Creative Commons license)

Loxodromic parametrisations o�er thus a good potential for node repetition, as they feature a symme-
try of revolution, and all the nodes of the smooth parametrisation are identical. Beyond the symmetries,
it seems that nodes based on loxodromic parametrisations of surfaces of revolution can be constructed
using a common rule. The spiraling geometry created by the loxodromic parametrisation has an unde-
niable æsthetical appeal, like illustrated in Paul Andreu's design. In a loxodromic parametrisation, the
two families of curve play the same role: this is a fundamental di�erence with Monge's surface, where
the parallels and rails have di�erent properties.

In the followings, we call loxodromic surfacesthe meshes created by Combescure transformations of
loxodromic nets with a symmetry of revolution. The formal potential of loxodromic surfaces has not
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been investigated as precisely as the one of isogonal moulding surfaces in this chapter. We recall some
considerations of so-called lamella-domes in [226], which illustrates the possibilities of spiraling patterns
for glazed grid-shells.

Two di�culties arise however, and would require more development if one were to design loxodromic
surfaces with two input curves. The �rst limitation is that the two input curves should have symmetrical
spherical images, like the curves shown in Figure 3.26. This is not obvious to add this constraint in
CAD tools. The second limitation is that the design space o�ered by Combescure transformation is not
as broad for loxodromic parametrisation compared to the canonical meshes of revolution, especially for
closed nets.

The most meaningful strategy to evaluate the design space of loxodromic surfaces is therefore to gen-
erate loxodromic meshes on surfaces of revolution and to deform them with Combescure transformations.
Combescure transformations for a given mesh constitute a vector space [198]. They can be computed
through Singular Value Decomposition (SVD), and �tting problems can be solved on the vector space.

3.6 Summary of intellectual contribution

This chapter has introduced a methodology for the generation of shapes covered with high node
repetition. We showed that Combescure transformations preserve the properties of node congruence, and
used it to create isogonal moulding surfaces, a family of shapes having the same repetition properties as
surfaces of revolution. A link was made between these surfaces and smooth geometry, which allowed the
generalisation of the repetition of elements to Monge's surfaces. Like in previous research on element
repetition in free-form surfaces, the role of the integral of curvature is a key notion for the understanding
of the phenomenon.

Although one application on a speci�c family of surfaces was presented, the same methodology could
be generalised to other patterns, like the loxodromic parametrisation of surfaces of revolution. Hexagonal
or kagome pattern could be studied as well, as hexagonal patterns have more �exibility than quadrilateral
patterns under Combescure transformation. Archetypal building typologies, like domes or stadia can be
described with our method.



Chapter 4

Möbius geometry and generalised
cyclidic nets

Circles are ubiquitous in classical architecture. Surfaces of revolution were used to construct domes
on all continents, as circles can be drawn with a simple compass. The ancient Greeks and the engineers
building masonry bridges used circles to approximate complex shapes [227]. The geometry of circles in
space, also known asMöbius geometry is also a rich �eld of mathematics and plays a special role in
the study of lines of curvatures of smooth surfaces. However, there is little exchange between the two
disciplines, and the potential of Möbius geometry for architectural design is globally under-utilised.

The aim of this chapter is to link Möbius geometry with the �exible generation of architectural
shapes that satisfy di�erent fabrication constraints. In the followings of [73], we propose to parameterise
shapes by patches of Dupin's cyclides instead of NURBS. The resulting shapes have nice properties for
architectural design: they can be covered by planar facets and by torsion-free nodes.

4.1 Cyclidic Nets and Möbius geometry

4.1.1 Geometry of circular meshes

This section de�nes some key concepts related to architectural design of curved shapes. It recalls
the link between continuous and discrete geometry, and especially the role of lines of curvatures for
geometrical optimal design of quad meshes.First, we recall the role of circular meshes (introduced in
Section 2.3.4) for architectural geometry.

Circular Meshes

The importance of using planar elements for cladding has been identi�ed early in the history of
free-form architecture. Triangular meshes provide planar elements, but quad meshes are often preferred
because of simpler connection details. Due to their lower node valence, quad meshes also achieve a higher
transparency than triangular meshes. This led to a research e�ort towards planar quads (PQ)-meshes
[98, 148, 167].

Architectural designs require a structural depth, and therefore, an o�set of the reference geometry,
generally de�ned as a mesh. The notion oftorsion-free node was thus introduced to de�ne meshes where
planar beams resting of the mesh edges meet along a common axis at each node. Trivial solutions for this
problem exist (like translation along a constant vector), but non-trivial solution for layouts with torsion-
free nodes requires some restrictions, like the notion of Conical Meshes introduced in [148]. Circular
meshes constitute another important class of quadrilateral meshes where each face is inscribed in a circle.
Writing � , � , 
 and � the consecutive inner angles of a quadrangle, a circular quad is characterised by
following equation: (

� + 
 = �

� + � = �
(4.1)

89



90 4.1. CYCLIDIC NETS AND MÖBIUS GEOMETRY

Circular meshes have two interesting charateristics for architecture. First they admit constant vertex
o�set, a non-trivial torsion-free layout. Second they are seen as a discrete parameterization of surfaces
by lines of curvature [200]. The notion of non-trivial mesh o�set is actually closely linked to the lines
of curvature of smooth surfaces. A surface parameterised by its lines of curvatures yields automatically
meshes that are close to circular meshes [37, 196, 198]. It has also been noticed that planar hexagonal
meshes are closely related to Dupin indicatrix of smooth surfaces, and that the optimal placement of
hexagonal cells follows lines of curvature [261]. An example of such a mesh is shown in Figure 4.1. The
hexagonal layout has been generated following lines of curvatures of the surface, the optimisation towards
planarity being performed using dynamic relaxation [70, 228].

Figure 4.1 � A surface covered with planar hexagons, the panels layout follows lines of curvature.

Möbius transformations and Möbius Geometry

Lines of curvature play a crucial role in the e�cient discretisation of complex shapes. It is therefore
legitimate to study transformations that preserve lines of curvature. A particular group of such transfor-
mations is known as Möbius transforms, which are combinations spherical inversions and of homothetic
transformations. These transformations also map circles to circles, and therefore map circular meshes to
circular meshes. We will thus focus here on discrete surface where all faces are inscribed within circles
[35], and thereby surfaces naturally meshed by their lines of curvature. So, the general framework of this
study is the geometry of circles in space, also called Möbius Geometry.

More precisely, an inversion is de�ned by a center and a ratio. Consider a pointC, later called center
of inversion, and a real numberk. The inversion of centerC and ratio k applied to a point M is a point
M 0 de�ned by the well-known equation:

CM 0 =
k

k CM k2 � CM (4.2)

In the complex plane, the inversion of ratio k with center C (complex number zC ) reads as:

f k; C (z) = zC +
k

z � zC
(4.3)

An elementary property of inversions is that they are involutions, which means that inversions are
their own inverse transformations. This property is used in many applications shown in this chapter. It
can �nally be noticed that the ratio k is nothing more than a scaling factor. The position of the point C
is the parameter that has a true impact on the shape deformation. It is interesting to notice that Möbius
transformations do not preserve the global shape. These transforms give therefore a way to apply global
deformations to meshes while preserving local properties. Indeed Möbius transformations preserve not
only circles, but also local angles (two perpendicular curves remain perpendicular after inversion), and
are thus conformal maps. The potential of these simple transformations is illustrated in section 4.5.1.
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Combescure transformations

It has just been seen that Möbius transformations allow to modify the overall appearance of circular
meshes by preserving the circumcircles of all quads. Another transformation that has the same property
is the Combescure transformation already discussed in Section 2.3.4 [198]. By de�nition, Combescure
transformations preserve discrete angles. Therefore they map circular meshes to circular meshes, as equa-
tion (4.1) is unchanged. Combined with Möbius transformations, they o�er a wide range of possibilities
to deform circular meshes.

Two meshes related by a Combescure transformation, with respective edges(ei ) and (e0
i ), have to

satisfy a linear equation:

8i; ei ^ e0
i = 0 (4.4)

Solutions for this equation are usually found using Singular Value Decomposition (SVD) [198]. We
introduce in Section 4.3.1 a di�erent original approach, restricted to quadrilateral meshes, but that o�ers
a better performance than SVD. This technique takes inspiration from the one employed in [167], which
is applied to the form-�nding of planar-quadrilaterals meshes and discussed in Chapter 5.

4.1.2 Geometry of cyclidic nets

Circular meshes are considered as discrete equivalents of lines curvatures. The following of this section
deals with the construction of smooth surfaces parametrised by their principal curvatures from circular
meshes. The basis element used for this construction, known as Dupin cyclide, is introduced �rst.

Dupin cyclides

Dupin cyclides were discovered by the French mathematician Charles Dupin, who studied some of
their remarkable properties in 1803. Dupin cyclides can be de�ned as inversion of tori in the sense of
Section 4.1.1. Some special cases of Dupin cyclides include tori, cylinders and spheres. An example of a
cyclide with patches following the lines of curvature is shown in Figure 4.2.

Figure 4.2 � Dupin's cyclide parameterised by its lines of curvature: top (left), front (center) and per-
spective (right).

For application in architecture, some properties of cyclides are particularly appealing:

ˆ their lines of curvature are circles;

ˆ a quad whose edges are lines of curvature is inscribed in a circle: lines of curvatures thus create
naturally circular meshes;

ˆ they are isothermic surfaces [3] and can therefore be covered with Edge O�set Meshes [198].

Beside, Dupin cyclides are easily parameterised by lines of curvature (think of them as inversions of
tori). This guarantees easy subdivision of the mesh and good properties for other meshes than quad
meshes, like hexagonal meshes [261] and Tri-hex meshes.
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Cyclidic Patch

The four intersections of four lines of curvature in cyclides naturally de�ne a circle. Conversely, a
cyclic quadrilateral and a frame give a unique portion of cyclide, later calledcyclidic patch in this chapter.
Several algorithms have been proposed to convert a cyclidic patch to a NURBS surface, the one chosen
here has been proposed in [91]. The algorithm requires a cyclic quadrilateral and an orthogonal frame
(one blue and one red arrow in Figure 4.3). The other frames are generated by re�ection with respect to
the median plane of each edge of the quad and de�ne the tangent vectors of the borders of the cyclidic
patch. Notice how the median planes of each edge intersect at the center of the circumcircle of the
quadrangle in Figure 4.3: this only occurs for circular quadrilaterals, and is the reason why the initial
frame is unchanged after the four successive re�ections. The boundaries of the patch are circles which
are uniquely de�ned by two points and an orthogonal frame de�ning tangent vectors of the patches.

Figure 4.3 � Cyclidic patch: the four corners are on the same circle, the surface is naturally parameterised
by its lines of curvature. The frames de�ne tangent vectors for the edges of the patch.

The resulting surface is naturally parameterised by its lines of curvatures, since the underlying surface
is a Dupin cyclide. This means that the trivial quad meshes on cyclidic patches like the one displayed in
Figure 4.3 or Figure 4.4 are exact circular meshes.

Figure 4.4 � Cyclidic patch meshed along its lines of curvature (left) and the associated circumcircles
(right).

Cyclidic Nets

The properties of cyclides and the existence of a conversion algorithm to NURBS led to the idea
of representing shapes as a collection of cyclidic patches. The mathematical properties of such shapes,
called cyclidic nets, have been studied in [36]. Cyclidic nets are based on Circular Quadrilateral Meshes



CHAPTER 4. MÖBIUS GEOMETRY AND GENERALISED CYCLIDIC NETS 93

and require only one frame vector, the others being generated by re�ection if they belong to the same
cyclidic patch. A simple re�ection rule illustrated in Figure 4.5 allows the propagation of the frame to
adjacent patches, so that the resulting surface isC1

Figure 4.5 � A coarse circular mesh (left), the frames propagated by re�ection (middle), and the resulting
cyclidic net (right).

4.1.3 Limitations of current approaches and speci�c research objectives

The use of cyclidic nets in the �eld of computer-aided geometric design has been proposed as early as
in the 1980's [163, 73]. Some of their properties are particularly interesting: they have a rational o�set
and a low algebraic degree, meaning that geometrical operations can e�ciently be performed on cyclidic
nets. However, practical limitations, the main one being the di�culty to model surfaces with umbilical
points, restricted their possible �eld of application. We present here the main limitations of cyclidic nets
for architectural design and establish three research objectives addressed in this chapter.

Primitives for circular meshes

Cyclidic nets require circular meshes as input. We aim here at using them to generate easily
parametrised circular meshes. This approach is meaningful only if the size of the cyclidic patch exceeds
the one of the panels built in reality. The problem of specifying appropriate initial input for cyclidic nets
remains however open. Some shapes give trivial conical or circular meshes. Among them, surfaces of
revolution, moulding surfaces or Monge surfaces [168]. This formal vocabulary is however restricted and
other primitives are needed for cyclidic nets.

Complex topologies and umbilical points

Dupin's cyclides do not have umbilical points: their lines of curvature and therefore the edges of
cyclidic patches are thus strictly perpendicular. Consequently, smooth cyclidic nets require that exactly
four patches meet along a common vertex, so that shapes with complex topologies cannot be modelled.
This can also be seen considering the re�ection rule applied in Figure 4.3 and 4.5: the perpendicularity
of the frames is necessarily preserved by the re�ection operations. To cope with this limitation, the next
sections develop three new strategies that extend the �eld of possible shapes and topologies for smooth
and non-smooth cyclidic nets.

Closed loops

A signi�cant issue linked with the practical modelling with cyclidic nets is the construction of closed
nets forming loops. Indeed, a closed circular mesh does not necessarily yield valid cyclidic nets, as
illustrated in Figure 4.6. In this �gure, the re�ection rule is applied along the closed strip, and the
resulting surface is not continuous. Closed surfaces are required for the modelling of building façades or
roofs, so that this limitation is problematic for architectural design.
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Figure 4.6 � A closed circular mesh which yields invalid cyclidic nets

Surface smoothness

Creases, understood as normal vector discontinuity, are an essential feature of free-form architecture.
As an example, they are a well-known feature of Frank Gehry's architectural language and were also
used by master designers like Eduardo Torroja for the Zarzuela Hippodrome or Nicolas Esquillan in
several designs [25, 158, 174]. However, their construction remains a challenge, as creases are generally
not aligned with lines of curvature, excluding the possibility to build them as conical meshes. Nicolas
Esquillan's works give good examples of creased shells, like illustrated in Figure 4.7. However, each
solution was tailored for a speci�c project, leaving no general method to generate constructible creases
[174].

Figure 4.7 � The CNIT: a creased shell designed by Nicolas Esquillan

The usual modelling tools, even based on post rationalisation of geometry hardly deal with the problem
of discontinuity of normal vector in the rationalisation of free-form structures. The only recent examples
dealing with curved crease in architecture consider developable surfaces [128], which are sensitive to local
buckling due to their zero Gaussian curvature.

Research questions

Applications of cyclidic nets for architecture have already been proposed in [34], the cyclidic patches
being typically the size of panels. This solution has the advantage of generating one unique type of node,
but it requires building with circular arcs. Besides, if the designer wants to modify the structural layout,
with this solution a complete remeshing is required. Moreover, considering the fact that a cyclide can
easily be meshed by its lines of curvature to form a circular mesh, one might see cyclidic nets as a tool
to de�ne the global shape and the underlying discretisation of each cyclidic patch as the real structural
layout. Doing so, the designer works with circular meshes, keeping the density of the mesh as a parameter
almost independent of the shape. The opportunity o�ered by larger cyclidic patches as global modeling
tool is unexplored up to now, although the potential for automation of the mesh generation with cyclidic
nets seems promising.
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We propose here to explore the possibilities o�ered by this strategy and to address the limitations
presented in this section. The main contributions of this chapter follow:

ˆ The extension of cyclidic nets to arbitrary topologies by the implementation of a hole-�lling algo-
rithm.

ˆ The construction of cyclidic nets with creasing by the adaptation of their rule of construction.

ˆ The construction of closed cyclidic nets without discontinuity in Section 4.4.2.

ˆ The creation of a family of shapes calledsuper-canal surfaces, derived from simple primitives for
cyclidic nets is proposed in Section 4.2.

ˆ Some problems for the practical modelling with super-canal surfaces are presented in Section 4.3,
like curve-�tting problems are solved and constitute an original contribution of this chapter.

ˆ Some rules for shape composition with super-canal surfaces and generalised cyclidic nets are pre-
sented in Section 4.5.

4.2 Constructing new families of shapes with cyclidic nets: super-
canal surfaces

Cyclidic nets and Möbius geometry o�er a rich potential for the modelling of free-form architecture.
They require however coarse circular meshes as input. This section considers the simplest input possible
for cyclidic nets: a circular strip. By using transformations that preserve circular meshes, the formal
possibilities o�ered by this simple approach are expanded. We call the shapes generated with this method
super-canal surfaces, by reference tosuper-cyclides, which are extensions of Dupin cyclides [8]. In this
Section, the generation principles for super-canal surfaces are introduced.

4.2.1 Canal surfaces

Consider a circular strip supporting a cyclidic net such as the one displayed in Figure 4.8. The
resulting surface has circular lines of curvature in one direction. Such surfaces are calledcanal surfaces.
Canal surfaces are a fundamental family of surfaces in the context of Möbius geometry, as this family is
indeed invariant by Möbius transformations. Canal surfaces are de�ned as envelopes of spheres. They are
commonly used in computer-aided design, as spheres can be manipulated interactively by the designers.
The de�nition of properly parametrised envelopes of spheres is still a topic of research [20]. In the example
of Figure 4.8, eight circles in the same plane are used to generate a canal surface. Only the portion of
the canal surface above the construction plane is shown.

Canal surfaces can be de�ned as surfaces such that lines of curvatures are circles. With this point of
view, the invariance of canal surfaces under Möbius transformations is obvious, because inversions preserve
lines of curvatures and circles. Another way to look at it is that Möbius transformations preserve both
spheres and angles, therefore an envelope of spheres is preserved by inversions. Notice that the shape-
generation of canal surfaces with Dupin cyclides has been studied in [237]. We use an optimisation
approach introduced in [33] to obtain shapes with smooth parametrisations.

These surfaces are very easily parameterised by cyclidic patches, as Dupin cyclides are particular
cases of canal surfaces. TheC1 continuity and generalisation to C0 continuity is insured by re�ections
according to the method described in [36].

4.2.2 A general framework for shape generation

In this section, we propose to extend to formal vocabulary of canal surfaces by using combinations of
Combescure and Möbius transformations. We have seen that the generation of canal surfaces requires a
simple input: a circular strip. Therefore, the proposed methodology translates into a simple framework
where the end-user has the control of three curves: the two boundaries of the circular strip and one curve
crossing the strip. This makes the proposed shapes comparable to two-rails sweeping surfaces, which
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SURFACES

(a) Circular strip supported on a given
curve (red)

(b) One of the cyclidic nets supported
on the circular strip

Figure 4.8 � A canal surface created from a coarse circular strip

are commonly used in Computer-Aided Geometric Design. The three curves used for construction are
necessarily perpendicular to each other. Indeed, canal surfaces do not have umbilical points (except poles),
and consequently, their lines of curvature are necessary perpendicular. The designer thus chose a rule
of construction for the surface, i.e. a speci�c combination of Combescure and Möbius transformations.
Each rule giving eventually additional degrees of freedom further discussed in the next sections. The
identi�ed families are proposed in Figure 4.9. The nomenclature for the di�erent surfaces follows:

ˆ the letter C denotes that the initial shape was subjected to a Combescure transformation;

ˆ the letter M denotes that the initial shape was subjected to a Möbius transformation;

ˆ the order of the letters gives the order of composition of the transformations:CM means that the
initial shape was subject to a Möbius transformation, then a Combescure transformation;

ˆ the name of the initial shape subject to the transformations stands at the end: for example a
M � revolution surface is an inversion of a surface of revolution.

Figure 4.9 � Shapes created with our method

Many surfaces well-identi�ed in the literature can be generated with this method as illustrated in
Figure 4.9. All the common surfaces used for geometrically-constrained methods for PQ meshes fall into
the category of super-canal surfaces, with the exception of scale-trans surfaces. The curves used in surfaces
of translation and scale-trans surfaces do not correspond in general to lines of curvatures and cannot be
approached by circular meshes. It appears that moulding surfaces and Monge's surfaces discussed in
chapter 3 are a subset of the shapes generated by Combescure transformations of canal surfaces. From
a practical point of view, shapes with a family of planar curves are of great interest in construction. For
that reason, we restrict the examples of application toCM � surfaces, where the families of circles are
transformed into planar curves.
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4.2.3 Mechanical properties of super-canal surfaces

We propose here a comment on the mechanical properties of canal and C-canal surfaces. We have seen
in chapter 2 that structural artists like Dischinger or Candela developed theories to analyse the structural
performance of the shells they designed. Such developments are not necessary here. C-canal surfaces
play indeed a particular role in shell theory, as Rogers and Schief proved that their lines of curvatures
are also lines of principal stresses under a uniform external load [211, 219]. This result was also proven
for canal surfaces before in [236]. This induces two remarkable features for the behaviour of the shapes
previously presented:

ˆ principal stresses lines following principal curvature lines, the natural mesh of C-canal surfaces is
an optimal mechanical layout for a grid structure;

ˆ all closed shapes generated by this method are in equilibrium under uniform pressure and therefore
suited for pneumatic structures.

Therefore, C-canal surfaces can be considered as the results of some form-�nding problem. We point out
that this result is limited to closed surface: free edges must be treated with special attention. Before
showing the shape generation framework, we should make a comment on potential applications for shallow
roof structures. A normal pressure load is surely very close to a uniform distributed load for surfaces with
moderate curvature. It can be concluded that shallow canal surfaces are close to funicular shapes under
uniformly distributed load. This kind of consideration has been documented for shallow arches: shallow
circular arcs, parabola or catenary have similar geometry and mechanical behaviour, especially buckling
capacity. For more comments on this topic, the reader can refer to [249]. From this short literature
review, we conclude that C-canal surface are interesting in terms of fabrication, but also because of their
mechanical performances.

4.2.4 Properties of the structural layout

Table 4.1 sums up the di�erent properties of the surfaces created with our framework. As one ap-
plies Möbius and Combescure transforms, some properties are lost a priori. Among other remarkable
properties, it may be noticed that the images of surfaces of revolutions are isothermic surfaces, and it
possible to parametrise them with conformal squares. C-canal surfaces are of interest because they have
a network of planar curves that simplify manufacturing and an interesting structural behaviour.

Isothermic Planar curves Stress lines Circular mesh

Canal surface
revolution

Yes

Yes Yes Yes

M-revolution
General case No

C-canal surface
C-revolution (moulding)

Yes
CM-revolution
General case No

Super-canal surfaces No No No Yes

Table 4.1 � Properties of the shapes developed with our framework.

4.2.5 Input for design with super-canal surfaces

In the following of Glymph et al.[98], we propose to design super-canal surfaces from two curves. The
simplest way to parameterise a canal surface is to take a strip of circles as input parameters, as pictured
in Figure 4.8. A two parameters family of cyclidic nets can be supported on the circular mesh: the choice
of those parameters can be done to ful�ll some design requirements, like the shape smoothness, evaluated
for example with conformal Willmore energy [38].

To de�ne the strip of circles, the user can draw manually a collection of circles, or entirely parametrised
it by a boundary curve and the radii of circles or a target length for each border. The latter parametri-
sation is depicted in Figure 4.10, whose input data follows:
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1. a list of points on a curve in space;

2. one point P in space de�ning the �rst circle;

3. a function describing the lengths of each edge crossing the strip (thick orange lines on Figure 4.10).

Figure 4.10 � Parameters creating a circular strip that can support a canal surface

It is then possible to construct one unique circular strip passing through the input points by propa-
gation, in the manner of [72]. The construction of a circular strip restricts the two boundaries to be lines
of curvature of the resulting surface. Section 4.3.2 will show how this condition can be relaxed, while
keeping the parametrisation of the shapes by cyclidic nets and circular strips.

4.3 Implementation of super-canal surfaces

The implementation of super-canal surfaces within modelling software requires the solution of several
problems, like the optimal �tting of curves by canal surfaces, or the e�cient computation of transfor-
mations preserving circular meshes. This Section deals with the solution of such problems, which make
super-canal surfaces an interactive tool for complex shape modelling.

4.3.1 E�cient computation of Combescure transformations

The generation of super-canal surfaces requires the computation of Combescure transformations. A
new algorithm for computation of Combescure transformations of quadrilateral meshes is proposed in
the followings. It will be shown that it outperforms techniques classically used, and that it requires the
minimum number of operations possible.

Let us consider two parallel quadrilaterals, like the ones shown in Figure 4.11. Up to a translation,
prescribing the lengths of two sidesl0 and l3 (thick lines on the �gure) is su�cient to determine a
unique quadrilateral with internal angles � ,� ,
 ,� . The last point C (white dot on the �gure) is found
by intersecting two lines (dashed lines on the �gure). For the sake of simplicity, we consider planar
quadrilaterals in the reference plane(ABD ): the equations are written in a frame centered inA and
represented by the blue arrows in the �gure. The intersection is found by solving the following equations:

�
l0 + l3 cos�

l3 sin �

�
=

�
cos� cos (� � � )

� sin � sin (� � � )

�
�
�

l1
l2

�
(4.5)

In the same way, prescribing the lengths of all edges on two intersecting lines, as shown in Figure
4.12 is su�cient to determine the entire parallel mesh. In this image, the thick lines correspond to edges
which have prescribed lengths. Starting from a quadrilateral with two prescribed lengths, it is possible to
apply equation (4.5) and �nd the last point of the quadrilateral (white dot). It is then possible to apply
this procedure to the next quadrangle in the same row, and so forth, up to completion of each strip.

This iterative procedure is computationally e�cient. The number of operations and the use of memory
is proportional to the number of faces in the mesh, as the solution of the propagation requiresNM
applications of equation (4.5) for a mesh ofN times M facets. Therefore, the computation time varies also
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Figure 4.11 � Two quads related by a Combescure transformation.

Figure 4.12 � Propagation method for the computation of a Combescure transformation with quadrangles.

linearly with the number of faces, as discussed in [167]. This technique is thus more e�cient than SVD,
which requires assembling of matrices and has a complexity of max(N 2M; NM 2). The computational
gain is especially important for large meshes and makes the method proposed in this chapter suited for
real-time applications.

Constructing a Combescure transformation is equivalent to solving a linear system of equations. It
can be noticed that the method proposed in this Section is equivalent to write this linear problem in a
sparse form: if written in a matrix form, the matrix would be tri-diagonal.

4.3.2 Generation of canal surfaces

The previous section discussed how canal surfaces can be parametrised with circular strips supporting
cyclidic nets. This generation method leads however to a strong formal restriction, as it imposes the two
boundaries of the strip to be lines of curvature of the resulting canal surface. The practical consequence is
that the second curve is restricted to be on a developable surface passing through the �rst curve, whereas
the designer would prefer to de�ne it independently. In modelling applications, specifying contour curves
of canal surfaces is of interest and is still an active topic of research, like illustrated in [26] for example.
This section introduces thus an original algorithm for the shape generation of canal surfaces from two
curves where only one of the two curves is a line of curvature of the canal surface. The problem is
illustrated in Figure 4.13 and it will be shown that it admits a one parameter family of solutions.

Preliminary considerations

The relevant de�nition of canal surfaces in this case is to consider them as the envelope of a family of
spheres. Remarkable properties of canal surfaces, and of lines of curvature in general can be mentioned:

1. Canal surfaces are envelopes of spheres, and as such, the spheres generating the surface meet
tangentially with any curve of a canal surface.

2. The envelope of the lines directed by the normal of the surface along a line of curvature is a
developable surface.
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Figure 4.13 � Input data for the curve-�tting problem. Line of curvature (orange), line to �t (red), and
surface containing the centers of the spheres (white).

From remark 1, we get that the locus of the centers of the spheres generating the canal surface is on
the surface generated by the normals of the surface. From remark 2, we get immediately that this is a
developable surface. Actually, it is a speci�c case of Monge's surface [168]. Hence, once one normal has
been chosen, the other normals are determined uniquely so that the envelope is a developable surface. The
locus of the centres of the spheres is therefore controlled by one orientation parameter. This is illustrated
in Figure 4.14: choosing the orientation of the normal is equivalent to choosing a surface tangent to the
resulting canal surface.

Figure 4.14 � Line of curvature: one developable surface containing the centres of the spheres (white).
The developable surface perpendicular to it (blue) is tangent to the resulting canal surface.

Computation of the locus of centre

Consider now that a normal vector and a line of curvature have been speci�ed for the canal surface.
The locus of centres is on a developable surface. So far we did not use any property of the second curve.
We notice however that the centres of the spheres are on thebisector surface of the two curves. Such
surface is de�ned as the envelope of the points which are equidistant to both curves. They have been
studied in [77] for example.

Therefore, the centres of the spheres can be found by intersecting the bisector surface of the two
curves and the developable surface constructed from the normals. Both surfaces are in�nite, and it seems
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intuitive that they will have an intersection in non-degenerate cases. The construction of the whole
bisector surface is however not necessary, as it is meaningful to consider only a �nite collection of spheres
that will construct the cyclidic net that parametrise the canal surface.

Consider the �rst curve discretized with n subdivisions, as depicted in Figure 4.15. The centres of
the spheres belong ton lines belonging to the developable surface. LetP k be the kth point on the �rst
curve, C k the centre of the bi-tangent sphere on the corresponding line andC0

k the closest point to C k

on the second curve. We minimise the following functional:

F =
nX

k=0

(kC k P k k � k C k C0
k k)2 (4.6)

The positions of the C k are encoded with independent unique parameters. Each term of the sum can
thus be minimised individually by the means of Newton's method.

P k

C k

C0
k

Figure 4.15 � The curve �tting problem: the locus of the sphere centres (in dark blue) belongs to the
developable surface chosen by the user, and eachC k belongs to a straight line of this surface. The locus
of centres is equidistant to both input curves.

Algorithm for spheres generation

The algorithm for the generation of a canal surface from two curves follows:

1. Select two curves, one of them being the future line of curvature on the �nal surface.

2. Choose a slope or orientation of the canal surface: specifying one orientation restricts the locus of
centers to be in a uniquely de�ned developable surface.

3. Discretise the line of curvature with points P k , and generate the lines containing the centres of the
spheres on the developable surface.

4. Initialise the C k with C k = P k .

5. Minimise Equation(4.6) with Newton's method.

6. Construct the sphereSk of center C k and radius Rk , with Rk = kC k P k k.
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Generation of a supporting cyclidic net

We have seen that given two curves and a supplementary condition, it is possible to de�ne one unique
family of spheres that �ts optimally the two curves. Consider now the circlesCk de�ned as the intersection
of successive spheresSk , Sk+1 , like shown in Figure 4.16. P k is the point of Ck on the input curve.

Figure 4.16 � A family of spheres (white) �tting two curves (red and orange), and their successive
intersection (blue).

It is clear that for any k, Ck and Ck+1 both belong to the sphereSk+1 . Consider Figure 4.17. Choosing
one point V k on Ck there is exactly one pointV k+1 on Ck+1 so that P k V k V k+1 P k+1 is inscribed within
a circle. The point V k is not necessarily on the curve �tted by our method. Indeed, the �tted curve is
generally not a line of curvature of the resulting canal surface.

P k
P k + 1

V k
V k + 1

Ck
Ck+1

Figure 4.17 � Two circles Ck and Ck+1 : by choosing one pointV k on Ck , one de�nes a circle and a one
parameter family of cyclidic patches.

Applying iteratively the procedure to Ck+1 and so on, we can generate a circular strip and then build
on it a cyclidic net. The circles Ck are edges of a cyclidic strip because successive circles belong to the
same sphere [36]. There are actually in�nitely many cyclidic strips supported on the created circular
strip and having the circles (Ck ) as edges. On degree of freedom remains: the orientation of the frames
used for construction of the cyclidic patches. Only one vector is constrained by the construction of the
(Ck ). The other vector of the frame is chosen in order to smooth the resulting canal surface.
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Comment

The proposed method allows for the construction of a canal surface that �ts optimally two input
curves. The surface can be parametrised instantly with cyclidic patches and covered with a circular
mesh. The tool recalls the two-rails sweep commonly used in CAD software. One curve is a line of
curvature of the resulting shape. It provides proper alignment of the mesh with the borders, which often
dictate the mechanical behaviour of the structure.

4.3.3 Generation of M-revolution surfaces

The most well-known canal surfaces are surfaces of revolution. They indeed correspond to the case
of a straight generatrix. Surfaces of revolutions have many interesting properties for applications in
architecture. They are isothermic surfaces, which means that they can be discretised as Edge-O�set
Meshes. Yet, isothermic surfaces are preserved by Combescure and Möbius transformations and they
thus inherit this property.

An interesting case of'super-surfaces of revolutions' occurs when the center of inversion and the axis
of revolution are in a horizontal plane, as shown in Figure 4.18. One family of curvature lines on the
surface of revolution is then vertical, and so is their image by inversion. Combescure transformations
preserve planarity: applying Combescure transformation after the inversion yields a surface with planar
arches. This additional property is particularly interesting for applications to hierarchised structural
system with continuous arches and secondary structure. A speci�c method has therefore been developed
speci�cally to generate these surfaces, it consists of solving the inverse problem detailed in the followings.

The input data for the problem are displayed in Figure 4.18. The user prescribes one planar curve,
one circle in the same plane comprising the endsP 1 and P 4 of the curve, and two points P 2 and P 3 on
this circle. The objective is here to reconstruct the initial surface of revolution, therefore the problem is
to �nd a center of inversion C so that the image of the quadrangleP1P2P3P4 is an isosceles trapezoid.

Figure 4.18 � Problem for the practical design with inversion of surfaces of revolutions.

Isosceles trapezoids are the only cyclic quadrilaterals that have parallel opposite edges. Notice that
the problem is planar and can thus be formulated with complex numbers. The parallelism corresponds
to the fact the direction vectors are colinear (identical up to a scaling by a real numbert). Assigning
the complex numbersz1, z2, z3 and z4 to the points P 1 , P 2 , P 3 and P 4 , and writing zj;C the complex
number associated to the image ofzj by an inversion of centerC, we obtain equation (4.7):

z2;C � z1;C

z3;C � z4;C
= t 2 R (4.7)

We can use the equation (4.3) to express equation (4.7) with respect to thezj and obtain equation (4.8).
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It is independent of the ratio of inversion k: the position of the center of inversion is the only value of
interest in this problem.

�
z2 � z1

(z1 � zC ) (z2 � zC )

�

�
z3 � z4

(z3 � zC ) (z4 � zC )

� = t 2 R (4.8)

After simpli�cations, this equation leads to a second order equation inzC . The general form of (4.8) can
be written as:

A t z2
C + B t zC + D t = 0 (4.9)

with 8
>><

>>:

A t = z2 � z1 + t � (z4 � z3)
B t = � (1 + t) z1z3 + ( t � 1) z1z4

+ (1 + t) z2z4 + (1 � t) z2z3

D t = z3z4 (z2 � z1) + tz1z2 (z4 � z3)

The case ofA t = 0 can occur only when the quadP1P2P3P4 is already an isosceles trapezoid. In the
other cases, for each value oft, there are two complex solutions giving two positions for the center of
inversion in the complex plane. It is thus possible to solve this inverse problem with a straight-forward
solution based on complex analysis.

An illustration of this problem is shown on Figure 4.19. On this image, all the facets are inscribed
within circles. The free-form shape is thus covered with planar facets and torsion-free nodes. Since the
circle shown in Figure 4.19 is in the horizontal plane, it is noticed that one family of lines of curvature
consists of planar vertical arches. The solution proposed here can easily be extended to the case of a
spherical guide curve with two successive inversions.

(a) M-revolution surface (b) CM-revolution surface obtained by a Combescure transfor-
mation

Figure 4.19 � Surfaces generated by inversion of a surface of revolution constructed from one curve and
two points on a circle.

4.3.4 C-canal surfaces

C-canal surfaces are de�ned as the surfaces resulting from Combescure transformations of canal sur-
faces. We consider the meshing of canal surfaces by their lines of curvature: on family of which is made of
circles. The image of those circles by Combescure transformation is therefore a family of planar curves,
as Combescure transformation preserve planarity. There is therefore a practical interest for the builder,
since large portions of the structure can be prefabricated and pre-assembled easily as planar elements.
We discuss here practical generation of C-canal surfaces.

Figure 4.20 shows the three input data for the generation of a C-canal surface. In the generation
method proposed here, the user can specify one curve, a collection of lengths de�ning indirectly a second
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(a) Circular strip (b) A canal surface supported on the
strip

(c) A C-canal surface covered with D-
strips

Figure 4.20 � Generation of a C-canal surface

curve, and a planar cross-section that is obtained by Combescure transformation of a circle. The inputs
controlled by the designer are thus the same as the one described in Figure 4.10, with the control of one
section curve in addition.

The lengths of the edges are speci�ed for the C-canal surface, but at the beginning, only the canal
surface can be computed. An optimisation procedure is thus required to �nd the canal surface that will
�t the input data after Combescure transformation.

Writing L the target lengths for the curves crossing the C-canal surface (see Figure 4.10), we generate
�rst the canal surface F (u; L ). There is one Combescure transformationf that maps the �rst circle
of the canal surface to the section curves chosen while preserving the rail curve. After the Combescure
transformation, the resulting lengths L 0 on the C-canal surface di�er from L . However, Figure 4.20
shows that a canal surface and a C-canal surface related by a Combescure transformation have similar
boundaries, even if they do not perfectly coincide. Therefore, a descent method can be used to minimise
the error:

E (L k ) =
X

k

(L 0
k � L k )2 (4.10)

The minimisation of this error is not di�cult. The optimisation is done for each L k successively.
This prevents from computing the whole Combescure transformation at each iteration, but only the strip
where the error is evaluated. With this precaution, the computation remains lightweight and stable. This
optimisation procedure can be extended to the �tting of two curves, like done in 4.3.2.

4.3.5 Meshing of super-canal surfaces

A key feature of the proposed method is that it operates fundamentally on smooth surfaces. It
is therefore independent from the mesh density. For example, the solution of equation (4.9) does not
require any knowledge on the discretisation of the curves, but only the four prescribed points. Therefore,
remeshing of super-canal surfaces is extremely simple.

Given a discretisation on the guide curves, it is possible to �nd their image by a composition of
Combescure and Möbius transformationsf so that they �t with the boundaries of a canal surface. The
meshing on the canal surface is done using cyclidic patches, like explained in Section 4.2.1. The inverse
transformation f � 1 is then computed and maps the mesh so that it �ts the reference curves. It has
already been pointed out that inversions are involutive maps. Combescure transformations are linear
maps and can easily be inverted with the algorithm proposed in Section 4.3.1. The computation of
inverse transformation is thus extremely light. These properties are used extensively to remesh super-
canal surface and is illustrated in Figure 4.21.
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Figure 4.21 � Remeshing procedure for a super-canal surface.

4.4 Generalised cyclidic nets

The term generalised cyclidic netregroups cyclidic nets and their extension to doubly-curved creases,
closed nets, and nets with singularities, via a hole-�lling strategy. These three issues are developed in
the following.

4.4.1 Doubly curved creases with generalised cyclidic nets

In this section, we generalise the construction rules of Cyclidic Nets to deal with discontinuities of
normal vectors. The fundamental shapes remain cyclidic patches, the only di�erence with the usual
cyclidic nets as de�ned in [73, 36] is the re�ection rule for the normal vectors, as illustrated in Figure
4.22a.

v

u = u0
v 0

(a) Classical smooth rule

v
v 0

u = u0

�

(b) Generalised rule with crease

Figure 4.22 � Re�ection rule for cyclidic patches.

When propagating the frame of the cyclidic patch from one face to the other, the classical approach
keeps one vector and inverts the other: (

u0 = u

v 0 = � v
(4.11)

In equation (4.11), u refers to the common edge between the two patches. The �rst equality means that
two patches have the same boundary; the second equality translates the continuity of tangent vectors
to form a C1 surface. Therefore the second equality is not necessary if one only deals with C0 surfaces.
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Equation (4.11) can thus be written in a more general form, illustrated in Figure 4.22b:
(

u0 = u

v 0 = R u ;� � v
(4.12)

R u ;� is a matrix representing the rotation along the vector u with an angle � called crease angle in this
chapter. Equation (4.11) is therefore a speci�c case of (4.12), with an angle� = � . This generalised
de�nition has to be consistent for any patch, which implies that the crease angle has to be constant along
a polyline, i.e. a line of curvature of the resulting cyclidic net. This restriction is not surprising, as it is
the result of one of Joachimsthal's theorem on lines of curvatures: given two surfaces that cross along a
curve C which is a line of curvature of both surfaces, then the angle between the two surfaces is constant
along C [62]. Intuitively, this constraint can be understood by the fact that lines of curvature have zero
geodesic torsion: the angle made by the surface normal and the rotation-minimising frame of lines of
curvature is a constant. The crease angle must thus be kept constant along a line of curvature.

Another restriction is that it is not possible to introduce creases in two di�erent directions. The
continuity of the surface would be lost otherwise. A few examples of creased structures are shown in
section 4.5.5.

4.4.2 Closed nets

General problem formulation

We deal now with the problem of closed cyclidic nets. Indeed, the re�ection rule determining the
edges of cyclidic nets does not take closed loops into account and the modelling with closed cyclidic nets
is generally not possible. For the sake of simplicity, consider a unique strip constituted of circular quads.
A cyclidic net can be generated by propagating an orthogonal frame chosen arbitrarily on the �rst quad.
Consider the frame vectorsu i ; v i that de�ne the boundaries of cyclidic patches, and their propagation
along a closed polyline. They are de�ned by:

8i > 0; u i = Ti � 1 � Ti � 2 � : : : � T1 � T0 (u0 ) (4.13)

where Ti is the re�ection with respect to the median plane of the ith edge. A closed smooth cyclidic
net should reconnect itself with a continuity of tangent vectors, and therefore should verify the following
equation:

TN � TN � 1 � : : : � T1 � T0 (u0 ) = u0 (4.14)

Ideally, the designer would like to select anyu0 arbitrary and that it veri�es equation (4.14). Mathe-
matically, this problem is exactly the same as the existence of constant vertex-o�set for circular meshes,
a topic covered in [147].The following statements can thus be made:

ˆ closed continuous cyclidic nets are supported on circular meshes admitting a constant-vertex o�set;

ˆ this is equivalent to the fact that the boundary has to be quasi-spherical (there exists a parallel
curve which has its vertices inscribed in a sphere);

ˆ the border of a continuous cyclidic net can be �lled with a continuous net, since it is a pseudo-
spherical curve.

The second proposition can be simpli�ed in the case of a planar curve discussed further. The closing
condition is equivalent to the fact that the boundary curve is parallel to a curve inscribed in a circle. This
is expressed simply with an angular criterion used within the proposed framework. For an even-sided
planar curve, we introduce (� k ) the external angles of the curve, shown in Figure 4.23 and have:

NX

k=0

(� 1)k � k = 0 (4.15)

The composition rule for re�ections applies if the transition between two cyclidic patches is governed
by equation (4.11). Since the �rst equalities of equation (4.11) and (4.12) are identical, the re�ection de-
scribed in (4.14) are unchanged. It follows that the statements made on cyclidic nets can be extrapolated
to generalised cyclidic nets.
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� 0

� 1

� N

Figure 4.23 � A closed curve and its external angles.

Generation of closed canal surfaces

The construction of canal surfaces proposed in Section 4.2 can be extended to closed strips with several
limitations. The �rst one has just been discussed: a closed cyclidic net gives a smooth closed surface if
and only if the discrete guide curve is a pseudo-spherical curve (it is parallel to a curve which has all its
vertices inscribed within a sphere). The second condition corresponds to the possibility of drawing the
last circle of the strip. Consider Figure 4.24: the �rst circle of the strip is written C0, the penultimate
circle Cf , the initial point P and the �rst and last point of the curve P 0 and P f respectively. There are
two cases:

ˆ C0 and Cf belong to the same sphere, then the circle going throughP, P 0 and P f intersects the
circle Cf in two points. This circle is the solution we are looking for and is represented with dashed
lines on Figure 4.24.

ˆ In the other cases, the spheres(C0; P f ) and (Cf ; P 0 ) are distinct. Their intersection is a circle
intersecting the circle C0 and Cf in two di�erent points. This circle is the only solution that allows
the closing of the circular strip, and it does not intersect C0 in P.

In the �rst case, only the intersection of the last circle and Cf is unknown. In the second case, the
position of P cannot be speci�ed arbitrarely (as in set 2. for open strips). Compared to open strips,
there is therefore a loss of at most two degrees of freedom for the control of the shape.

Figure 4.24 � Problem of a closing strip

Figure 4.25 shows a rendering of a façade covered with a canal surface inspired by the transportation
hub of San Francisco designed by SOM and Schlaich Bergermann und Partner (the structural system
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supporting the cantilevering façade is not shown). The modelling of surfaces with closed loops is partic-
ularly crucial for façade design, as they generally provide full enclosure for buildings. A typical example
is the construction of stadia, which have the same topology as tori.

Figure 4.25 � A visualisation of a façade as a canal surface, covered with a circular mesh.

4.4.3 Hole �lling problem

Principle of the algorithm

The main limitation with cyclidic nets as a design tool is the design of complex topologies. The fact
that two consecutives edges on a cyclidic patch have to be perpendicular makes it impossible to assemble
more than four patches around a vertex. This di�culty has already been pointed out in [135], where a
hole-�lling strategy has been proposed. This method only works for symmetrical shapes and can therefore
not be applied in a general framework. A general method extending this proposition and allowing for
non-symmetrical hole-�lling is thus proposed here.

From a practical point of view, the designer shrinks the opening down to a hole of the size of a panel.
This requires an iterative procedure: in the example of Figure 4.26, the �lling strategy has been applied
three times. The proposed method leavesn parameters for the designer for each step of a hole �lling
strategy, which makes it di�cult to control the overall smoothness of the surface. It is therefore necessary
to automate the choice of these variables. A simple way to do this is to minimise a smoothness functional.
An example of target functional is the distance of the new corner points to a circle. The choice of other
functionals is discussed in Section 4.4.4.

Figure 4.26 � The result of the hole �lling strategy, with smooth T-joints between patches.
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Krasauskas' algorithm

Consider Figure 4.27, the hole to �ll has six edges. We writeC i the vertices andCi the circular edge
going from C i to C i + 1 .

(a) Choice of the P L
i (b) Finding the P R

i

(c) Corner circles (d) Propagation of a circular mesh

Figure 4.27 � The steps of the hole �lling strategy, the choice of P L
n � 2 is constrained in order to have a

closed circular strip.

The designer must chose two pointsP L
i and P R

i on each circular arcCi . The algorithm proposed in
[135] follows:

1. Choose arbitrarely the P L
i ;

2. Find the P R
i so that P L

i , P R
i + 2 and Ci +1 belong to the same sphere. At this step all the points on

the boundaries are chosen.

3. Draw the corner circles, which are determined by this procedure;

4. Choose any pointP 0 on the �rst circle and create the middle circles by propagation.

The main di�culty with this method is that the last quadrangle, highlighted in red on Figure 4.27
is a priori not inscribed within a circle, unless some symmetries are at stake. The system is thus over-
constrained. We prove here that one additional condition has to be imposed on one of theP L

i ;i + 1 in order
to yield exact circular meshes supported on the boundary arcs, and thus valid cyclidic nets.
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Preliminary statements

We suppose that the
�
P L

i

� n � 1
0 are chosen arbitrarely, the

�
P R

i

� n � 1
0 are chosen with the rule explained

in Section 4.4.3. We also suppose known the pointP 0 . This section shows how to determine a value of
P R

n (equivalently P L
n � 2 ) so that the quad mesh depicted on Figure 4.28 is a circular mesh. The circles

are generated with intersection of particular spheres described in this section.

C0

Figure 4.28 � Notations of the hole �lling problem.

We call Sn the sphere de�ned by the points
�
C0 ; P L

n ; Cn ; P L
n � 1

�
. We call P n the intersection of the cir-

cles
�
P L

n ; P 0 ; P R
n

�
and

�
P R

n ; Cn ; P L
n � 1

�
. We call P 0

n the intersection of the circles
�
P n � 1 ; P R

n � 1 ; P L
n � 1

�
and�

P R
n ; Cn ; P L

n � 1

�
.

The mesh generated is valid if and only ifP 0
n and P n are identical. We thus study more precisely the

envelopes of this points when varyingP R
n (equivalently P L

n � 2 ). Three statements can be made:

1. The envelope of all the possibleP n and P 0
n are in Sn ;

2. The envelopes of all the possibleP n is a circle going throughP 0 and P L
n � 1 ;

3. The envelopes of all the possibleP 0
n is a circle going troughP L

n � 1 .

The �rst statement is not di�cult to prove: by construction P R
n , Cn and P L

n � 1 belong to Sn . There-
fore, the circle going through these points belong toSn .

The other two statements are less immediate. Consider the envelope of theP n : we can do an inversion
with respect to any point of the circle Cn . The problem becomes then planar and is depicted in Figure
4.29. Notations for angles are introduced in Figure 4.30. The subscriptX ;i indicates the image ofX by
the inversion.

The image ofCn is a straight line, we introduced the point I , intersection of the lines
�

P 0;i P L
n ;i

�
and

�
P 0;i P L

n ;i

�
. By construction, we thus have:

8
><

>:


 0 = � � � 0


 1 = � � � 0


 0 + 
 1 = � � 
 2

(4.16)

Recall that in circular quadrilaterals, the sum of opposite angles is equal to� . This yields:

(
� 1 = � � � 0

� 1 = � � � 0
(4.17)

Combining equations (4.16) and (4.17), we get following result:
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P 0;i

P L
n ;i

P L
n � 1;iP L
n � 1;i

Cn � 1;i

P R
n ;i

P n ;i

I

Cn;i

Figure 4.29 � Trajectory of all the possible P n after inversion.

� 1 + � 1 = � � 
 2 (4.18)

This proves that the planar quadrangle IP L
n ;i P n ;i P L

n � 1;i is inscribed in the circle circumscribed to the
triangle IP L

n ;i P
L
n � 1;i . This remains true regarless the choice of the pointP n ;i : the envelope of all possible

P n ;i is on a circle. This property is preserved by inversion, and gives the proof of the second statement.

� 0

� 1
� 1 � 0


 1

 0


 2

Figure 4.30 � Notations for angles.

The same argument can be used forP 0
n ;i , leading to the proof of the third statement.

Filling algorithm

The �lling with a circular mesh is valid if and only if the points P n and P 0
n are identical. This

discussion shows that this is equivalent to look for intersection of two circles belonging to a same sphere
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Sn . The algorithm proposes thus to determine the two circles, to compute their intersection and adapt
the existing algorithm:

1. Choose arbitrarely the P L
i , except P L

n � 2 ;

2. Find the P R
i so that P L

i , P R
i + 2 and Ci +1 belong to the same sphere.

3. Choose any pointP 0 on the �rst circle.

4. Compute P L
n � 2 (equivalently P R

n ) by intersecting the two circles described in Section 4.4.3;

5. Compute all the circles by propagation.

The additional step is not computationally intensive: the algorithm is almost identical to the one proposed
in [135], but with more generality. It can be repeatedad libitum to the new hole generated in the middle
of the new mesh.

Figure 4.31 � Hole-�lling strategy applied iteratively three times on a non-regular hole.

4.4.4 Implementation and numerical issues

Smoothness of cyclidic nets

The framework proposed in this chapter has been implemented within Grasshopper—. The geometrical
tools generate the cyclidic nets and the associated subdivisions. Once the circular mesh is chosen, an
in�nity of frames can be chosen. All the underlying surfaces are C1, but some are visually more pleasant
than others, as seen in Figure 4.32. To take this aesthetic aspect into account, a fairness-functional has
been introduced to give the smoothest possible shape for a given circular mesh. The fairness function
minimised here is de�ned by:

E � (�; � ) =
Z

S

�
H 2 � ��

�
dS (4.19)

Some values of the parameter� give well-known energies:

ˆ E0 =
R

S H 2dS is the Willmore energy;

ˆ E1 =
R

S

�
H 2 � �

�
dS is the conformally invariant Willmore energy;

ˆ E2 =
R

S

�
� 2

1 + � 2
2

�
dS is a bending energy;
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The case of� = 1 has been extensively discussed in the domain of computer graphics: the energy obtained
is invariant by inversions, which makes it particularly suited for a framework based on Möbius geometry
[38]. It is commonly used as an aesthetic fairness measurement for shape modeling [229, 121]. A discrete
integration of the E � was implemented within the proposed framework, which minimizes automatically
the bending energies of the cyclidic mesh by the means of a BFGS algorithm [180]. In this chapter, the
value of � was set to 2. For the example of Figure 4.32, with 24 patches, the minimisation of the bending
energy takes 150 ms. Figure 4.32 shows two surfaces: one with a random choice of frame, and the other
with an optimised value of the bending energy. The second surface is visually very regular and validates
the choice of fairness functional made in this chapter.

(a) E2 = 112 (b) E2 = 29 :9

Figure 4.32 � Two cyclidic nets supported on the same base circular mesh, before and after optimisation
of the bending energy.

The same fairness functional is used for the solution of the hole-�lling problem. The hole-�lling
algorithm yields surfaces of varying smoothness, depending on the boundaries. Figure 4.33 shows some
solutions of the hole-�lling problem: the location of the singularity remains almost unchanged while
several smooth con�gurations can be obtained with the strategy proposed in this chapter. However, the
smoothest con�guration (Figure 4.33b) corresponds to the case where the hole is shrunk towards a regular
hexagon.

(a) E2 = 38 :7 (b) E2 = 36 :5 (c) E2 = 38 :2

Figure 4.33 � Several solutions obtained with hole-�lling problem for an irregular hole

Shape smoothing of super-canal surfaces

Some input data for curve subdivision and initial frame orientation might lead to visually unpleasant
results. Therefore, we use the strategy proposed in [33] by taking the position of the vertices and
the orientation of the normal vector to the cyclidic net at one node as variables and we optimise the
smoothness and �t exactly the input curve. More precisely, the points on this curve can be parametrised
by the vector u. The other parameter governing the shape of the canal surface is the length of the edges
crossing the circular strip L . The cyclidic net is also generated by the choice of an orthogonal frame,
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parameterised by two angles� and � . We minimise the following functional:

F1 (u; L ; �; � ) =
X

edges

1
R2

edge (u; L ; �; � )
(4.20)

Where Redge is the radius of the edge of the cyclidic net. The computation of the function is immediate
and does not require additional, and its minimisation gives satifying results and is done in real-time. The
user can specify additional constraints, like the angle made by the normal and a reference plane. In such
cases, the degrees of freedom� and � become coupled, and the normal rotates along a cone. The choice of
the functional described in equation (4.20) is motivated by its simplicity, as it can be computed e�ciently.
Indeed, it does not require the construction of NURBS patches and the evaluation of smoothness function
de�ned in equation (4.19). A possible improvement would be to consider a quaternionic parametrisation
of cyclidic nets, as an analytical formula for the Willmore energy of a cyclidic patch was computed in
this framework by [275].

The minimisation is done by the means of the BFGS algorithm. Figure 4.34 shows the smoothing of
a canal surface based on the introduced energy. Notice that only local changes are made, but that the
problematic area with high curvature is solved.

(a) Before optimisation (b) After optimisation

Figure 4.34 � Optimisation of the smoothness of a canal surface.

4.5 Practical use for architectural design

The previous sections presented improvements of cyclidic nets for the modelling of complex architec-
tural shapes. We propose here a discussion on the use of generalised cyclidic nets in architecture and
structural engineering.

4.5.1 Shape generation framework

The study of cyclidic nets demonstrates that a circular mesh and a frame can generate a collection
of NURBS parameterised by their lines of curvature. This collection of surfaces can then be easily
meshed with conical or circular PQ-Meshes or planar hexagonal meshes. Unlike previous applications of
cyclidic meshes in architecture, we suggest that the shapes can be described with large cyclidic patches,
the subdivision of the patches being kept as a design parameter serving other function than form, for
example mechanical performance. The result is a framework for shape modelling tailored for architectural
constraints.

This framework is presented in Figure 4.35. Starting from a coarse circular mesh, it is possible to
generate a generalised cyclidic net. The designer is free to add normal discontinuity with our method
at this step. One can then choose a panelisation strategy, depending on constructional constraints
or æsthetics. The most common design strategies for structural and façade layout yield interesting
geometrical properties without post-rationalisation. This method is thus a bottom-up approach, allowing
designers to check di�erent construction solutions for the same shape.
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Coarse circular mesh

+Cyclidic patch
+creases

+hole-�lling

Generalised cyclidic net
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Figure 4.35 � Framework for shape generation with generalised cyclidic nets

A brief comparison with NURBS is proposed in Table 4.2. A parallel can be found between the control
polygon of NURBS and the circular mesh of cyclidic nets. Unlike control points in NURBS modeling,
the vertices of Cyclidic Nets are all on the modeled surface. The surface resulting from cyclidic nets are
only C1, which is a drawback in many industries, but is not a very serious issue in architectural design.
Indeed, the �nal shape is very often built with �at or developable panels, which makes the built envelope
at most a C1 surface. Finally, it is noticed that NURBS have some limitations when complex topologies
are concerned, a popular alternative is the use of subdivision surfaces, mainly based on the Catmull-Clark
subdivision scheme [53]. A review of existing methods is proposed in [151].

NURBS Cyclidic Net
Base shape Control Polygon Circular Quad Mesh + one frame

Interpolation Bernstein polynomial Cyclidic Patch
Surface regularity from C0 to C1 from C0 to C1

Isoparametric lines properties None Curvature lines
Complex topologies Subdivision surfaces Hole �lling strategy

Table 4.2 � Comparison of the NURBS and Generalised Cyclidic Net frameworks

Shape modeling with inversions

We have seen with super-canal surfaces that Combescure and Möbius transforms can be applied
on circular meshes to o�er a rich variety of shapes supporting cyclidic nets. They considerably enrich
the design possibilities of conventional geometries. We propose a simple example in Figure 4.36: a
simple surface of revolution is inverted to give a less obvious 'peanut-shaped' geometry, keeping the
notations introduced in this chapter, this shape is thus a M-revolution surface.. The inversion of surfaces
of revolution allows to model very e�ciently shapes recalling existing projects, like the forum of the
Soliday's festival [248].

The computation of the Möbius transform is based on Equation (4.2), it requires no optimisation or
matrix manipulation and can therefore be done as quickly as other simple transformations, like transla-
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(a) Surface of revolution: circumcircles (b) Surface of revolution as a cyclidic net

(c) Inversion: circumcircles (d) Inversion: cyclidic net

Figure 4.36 � A surface of revolution and an inversion to a 'peanut-shape' geometry

tions. The cyclidic net laying on the circular mesh is also generated in real-time, since it only consists in
the propagation of a frame along the net. The shape can then be subdivided in a uniform pattern.

Figure 4.37 � The 'peanut' gridshell of the Solidays forum: built project and interpretation with the
inversion of a surface of revolution.

Möbius transforms can be applied on more complex shapes than surfaces of revolution, for example
on Monge's surfaces or moulding surfaces [168, 164]. Figure 4.38 shows some inversions of the mesh
displayed in Figure 4.39, the reference geometry is at the bottom right of Figure 4.38. Although the
Möbius transform does locally preserve the shapes, the overall aspect of the models varies substantially.
All the shapes displayed in this image can be covered with circular meshes and be parameterised by
cyclidic nets.

4.5.2 Shape composition with super-canal surfaces and complex topologies

The hole-�lling strategy introduced in this chapter allows the modelling of complex topologies.The
combination of this strategy with the use of super-canal surfaces creates a rich design space. Figure
4.39 gives an example of the shapes obtained with shape composition and hole-�lling strategy. In this
image, the thicker arches correspond to boundaries of cyclidic patches. The grid structure is covered with
quadrangular panels, except two hexagons. All the circles supporting the patches lay on the(XY ) plane,
with the exception of the patches used for the hole-�lling strategy. Figure 4.40 shows the circles used for
the generation of this shape. Therefore, the surfaces apart form the holes are canal surfaces, as they are
supported on circular strips. The holes are non-symmetrical hexagons. The holes boundaries ful�ll the
condition described in equation (4.15).



118 4.5. PRACTICAL USE FOR ARCHITECTURAL DESIGN

Figure 4.38 � A family of shapes produced by inversions of the same geometry.

Figure 4.39 � A geometry with a complex topology modeled with cyclidic nets.
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The control of the shape can be done by moving the circles in the (XY) plane. In this example, the
circular strips were computed by intersecting a collection of circles which were manipulated through the
viewport of Rhinoceros.

Figure 4.40 � Only a few circles can describe a complex shape: top view of the Figure 4.39.

The formal potential of composition super-canal surfaces used in the context of generalised cyclidic net
seems important. It is possible to specify a topological skeleton corresponding to the curve supporting the
centers of canal surfaces. From this skeleton, a collection of circular strips can be generated, supporting
canal or super-canal surfaces. The main di�culty is to guarantee an intuitive manipulation of the shape
by the end user. For example, the automation of the conversion of a graph to a collection of strips is a
possible improvement of our method. Creating a library of prede�ned topologies could also be of interest
to provide the designers with guidance on the shape generation with generalised cyclidic nets.

4.5.3 Towards double layer free-form structures

Generalised cyclidic nets o�er other possibilities than gridshells with torsion-free nodes: octahedral
trusses can indeed easily be constructed from circular meshes. Figure 4.41 shows the construction of
the octahedral truss: thick grey or black lines represent the bottom and top layer respectively, thin blue
lines represent diagonals. Consider that the top layer is a circular mesh: the diagonals are constructed
by creating the joining the center of the circles to the vertices of the top layer. The centres can then
be moved in the direction that is normal to the circles, like shown in Figure 4.41b. In that manner, all
the diagonals created from a same circle have the same length, which simpli�es manufacturing. From a
circular mesh on the top layer, one can thus create the bottom layer on a family of lines. The design
space o�ered for the bottom layer is similar to the input of a marionette mesh, which will be presented
in Chapter 5. The planarity of the panels of the bottom layer can thus be described with the marionette
technique and can be computed e�ciently. The planarity of facets on upper and lower layers is however
not necessarily mandatory in practice, and other constraints could be considered, like uniformity of
lengths, node repetition, etc.

4.5.4 Practical applications

The method presented here has been used during a one week workshop in 2015. Architecture and
engineering students had to design and build a 30 m2 free-form pavilion, the only material available
was polystyrene in �at rectangular sheets. The shape is a super-canal surface meshed with circular
quadrilaterals. The pavilion, shown in Figure 4.42 is a grid structure with a torsion-free beam layout.
The o�set was computed with a re�ection rule similar to the one generating cyclidic nets. An optimisation
was performed in order to minimise the height gap at the nodes between beams of constant height. The
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(a) Top view (b) Center o�set (c) Axonometric view

Figure 4.41 � Construction of an octahedral truss from a circular mesh.

fast computation of the space of solutions was key to the success of this operation within a limited time
frame (5 days).

Figure 4.42 � A pavilion built with torsion free-nodes on a super-canal surface.

The tools presented here were used then for shape generation as well as fabrication. Hundreds of
polystyrene elements were cut according to the 3D model and assembled. The planarity of the panels
was considered for use as bracing elements and was validated on a 5m2 model, shown in Figure 4.43. Flat
panels used as bracing elements improve the overall stability and sti�ness1.

Figure 4.43 � A model of a canal surface with planar quadrangles used for bracing.

1More details and pictures can be found on www.thinkshell.fr.
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The construction of the pavilion validates the use of the numerical tools presented in this chapter. The
user feedback allowed us to identify the most relevant way to model super-canal surfaces. In particular,
the students found important to control at least one boundary curve. This explains why the method of
generation of canal surfaces presented in this work focuses on the prescription of a boundary curve, and
not on the curve supporting the centers of the sphere for example.

4.5.5 Application of curved creased

Generalised cyclidic nets o�er the possibility to create non-smooth surfaces with a straight forward
folding strategy. An example of this strategy is proposed in Figure 4.44: the same base circular mesh is
used for three designs of a tribune cover but di�erent values have been chosen for the folding angle� . All
the surfaces are regularized with the bending energy discussed in this chapter. All solutions are visually
regular, which further demonstrates that such energy is appropriate, even forC0 surfaces. Although the
overall geometry is preserved, the visual aspects of the three solutions varies signi�cantly.

(a) Smooth surface: � = 180 � (b) Creased surface: � = 135 � (c) Creased surface: � = 225 �

Figure 4.44 � Three di�erent generalised cyclidic nets supported on the same circular mesh.

The three solutions can lead architects and engineers to choose di�erent technological solutions. The
smooth surface is more suited for a grid structure. The two other solutions increase signi�cantly the local
curvature. The variant with � = 225� recalls tensile structure, which are known for their e�cient use of
material. The variant with � = 135� works with compression-dominant forces. It recalls some of Nicolas
Esquillan's shells, where creases were used to increase the buckling capacity of thin shells.

4.5.6 Non-continuous cyclidic nets

We discussed brie�y the potential o�ered by doubly-curved creases in free-form design. Another
possibility is to consider the loss of theC0 continuity, i.e. the creation of openings in doubly-curved
shapes. This kind of strategy is often employed to bring light into buildings: we can think of saw-tooth
roofs and their application to industrial buildings, but also to train station or airports, which have large
span and complex requirements. Consider for example the roof covering the railway station of Leuven
shown in Figure 4.45. The opaque surfaces resemble to portion of cyclidic nets (although the pro�le
curve is parabolic and not circular), �lling transparent covering can be set between the opaque surfaces.
The example shown here could be obtained by simple geometrical considerations, but exploring the
possibilities of discontinuous cyclidic nets could expand the versatility of such solution.

4.6 Summary of intellectual contribution

This chapter has introducedgeneralised cyclidic nets, a generalisation of the previous implementations
of cyclidic nets. Arbitrary topologies and creased structures can now be generated with these shapes, the
resulting meshes have their facets inscribed in circles. Many technological solutions can be adapted to cy-
clidic nets: from quadrangular meshes with torsion-free nodes to planar hexagonal meshes or developable
strips.

A generalisation of canal surfaces by a combination of Combescure and Möbius transformations was
proposed and applied to architectural shape generation. Curve �tting problems are solved in real-time
to provide the designer with immediate feedback. The methodology described here is general and other
families of shapes could arise from this framework. For example, it is well-known by mathematicians
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Figure 4.45 � An envelope with varying materials illustrating surface discontinuity (picture: Samyn and
Partners, architects and engineers)

that Möbius transformations of minimal surfaces are a subset of Willmore surfaces, and a lot of e�ort
has been put into the discretization of minimal surfaces as circular meshes [39].

The extension of canal surfaces proposed in this chapter have the remarkable property that their lines
of curvature are also lines of principal stress under uniform pressure when proper boundary conditions are
ensured. The gridshells derived from the can be viewed as Michell gridshell: the curve network proposed
for fabrication aspects is therefore also very e�cient from the perspective of structural engineering.
Super-canal surfaces constitute a subset of the so-calledO-surfaces studied by Rogers and Schief, and
merge fabrication and mechanical considerations. The method proposed in this chapter could be used to
generate other meshes satisfying this double optimality criterion, for example by considering isothermic
planar parametrisations and their image by combination of Möbius and Combescure transformations.



Chapter 5

Marionette meshes: from descriptive
geometry to fabrication-aware design

The design of complex architectural shapes has bene�ted from great advances from the computer
graphics community in the last decade. For instance, signi�cant e�orts were made to develop numerical
methods for the covering of free-form surfaces with planar panels. These methods di�er from the common
knowledge of architects and engineers, making them hard to use for non-specialists. The technique
proposed in the present article aims thus at bridging this gap with a method that takes inspiration from
descriptive geometry, a tool used by architects for centuries, and turns it into a real-time design tool for
PQ-meshes.

5.1 Marionette Meshes

5.1.1 Research statement

In the recent years, many tools for the modelling of shapes with PQ-meshes have been proposed. The
di�erent methods, reviewed in Section 2.3.3, are mostly based on optimisation-based approaches and on
the computation of admissible subspaces. Most of the applications are based on local mesh editing, and on
the deformation of meshes with control handles, in the manner of NURBS modelling. Optimisation-based
approaches are arguably very e�cient, but they rely on a background totally di�erent from the one of
architects. Architecture is a cultural discipline, and the tools used for shape representation and generation
are also the result of a cultural evolution. The relation between the tools proposed for fabrication-aware
design and the cultural aspect of the architectural practice is rarely discussed, so that it is di�cult to
know whether the new tools will be used e�ectively. On top of fabrication-aware design we propose to
study cultural-aware design in order to bridge the gap between research and the architectural practice.

In this chapter, we propose a method, that we name'marionette technique', for shape generation with
PQ-meshes. It relies entirely on descriptive geometry, a discipline invented in the eighteenth century.
Although not as general as other methods based on optimisation, the method makes reference to items
that are well known by architects, like plane views and elevations, so that the vocabulary of the marionette
technique is totally transparent for architects and engineers.

5.1.2 Descriptive geometry

Descriptive geometry is a technique of shape representation invented by French mathematician Gas-
pard Monge [172, 117]. It is based on planar orthogonal projections of a solid. The planes in which the
projections are done are usually the horizontal and vertical planes.

Because architectural objects have to deal mainly with gravity and vertical forces, it makes naturally
sense to separate projections in vertical and horizontal planes. The idea to use these projections to guide
structural design was used recently in the framework of theThrust Network Analysis where compression-
only structures are found from a planar network at equilibrium [209, 170]. A link between the construction
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the graph of an Airy stress function and meshing with planar facets was used to cover the roof of the
Dutch Maritime Museum with planar facets [6].

The objective of this chapter is to show that descriptive geometry can be turned into a general tool
for the design of PQ meshes and their structural optimisation. The method, calledMarionette method
is presented in Section 5.1, where the relation between smooth and discrete geometry for PQ-meshes
is discussed. Section 5.2 extend it to close strips or other topologies. Section 5.3 explores then some
applications in architecture. Section 5.4 shows �nally the generality of the proposed method, which
can be extended to meshes other than regular quadrilateral meshes and therefore constitute a promising
versatile tool to integrate intuitively fabrication constraints into architectural design.

5.1.3 Marionette Quad

The principles of descriptive geometry can be transposed to architectural shape modelling. The use of
appropriate projections provides a simple interpretation of the problem of meshing with �at quadrilaterals.
For simpli�cation, we discuss the case of a projection in the(XY ) plane in this section: the generalisation
to other projections is illustrated in Section 5.4.

Consider �rst Figure 5.1: four points have a prescribed plane viewABCD in the horizontal plane
(P1). Three points A 0, B 0 and D 0 have prescribed altitudeszA , zB and zD . In general, there is only one
point C0 with the imposed projection C so that A 0B 0C0D 0 is planar.

Figure 5.1 � Creation of a Marionette Quad with a plane view and two elevations.

The planarity constraint reads:

det (A 0B 0; A 0C0; A 0D 0) = 0 (5.1)

Expressing coordinates in a cartesian frame of(P1), and writing dBC = det 2D (AB ; AC ), dBD =
det2D (AB ; AD ) and dDC = det 2D (AD ; AC ), if the points A, B and D are not aligned, then, one
gets:

(zC � zA ) =
�

dBC

dBD

�
� (zD � zA ) +

�
dDC

dBD

�
� (zB � zA ) (5.2)

Figure 5.1 shows vertical lines used for construction, recalling the strings of a marionette, which gives
the name marionette quad. Note that the system is under-constrained if the points A, B and D are
aligned, which corresponds to a vertical quad. A projection in the horizontal plane thus allows only for
the modelling of height �elds. This limitation can be overcome by using other projections (see Section
5.4).

5.1.4 Regular Marionette Meshes

Consider now a quadrangular mesh without singularity as depicted in Figure 5.2. The plane view in
the horizontal plane is �xed, and the altitude of two intersecting curves is prescribed. Then, provided
that the planar view admits no '�at' quad (i.e. quad where three points are aligned), equation (5.2) can
be propagated through a strip, and by there, through the whole mesh. Indeed, on the highlighted strip of
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Figure 5.2, the �rst quad (top left) has three prescribed altitudes, and equation (5.2) can be used and so
forth. The same applies for all the quads of the strip. For aN � M mesh, the propagation requiresNM
applications of equation (5.2), the memory needed is3NM . The marionette technique guarantees hence
that the number of operations varies linearly with the number of nodes within a structure. The method
performs thus in real time even for meshes with thousands of nodes, as discussed in Section 5.3.1.

Figure 5.2 � Two elevations and a planar view de�ne a unique Marionette Mesh.

5.1.5 Link with smooth geometry

Partial di�erential equation

The proposed method has some interesting relations with smooth geometry. The problem of covering
curved shapes with planar panels is linked with the integration ofconjugate curves networks[148, 35].
Conjugate networks correspond to parameterisations(u; v) satisfying the following equation [35]:

det
�
@u ; @v ; @2

uv

�
= 0 (5.3)

Consider now that the components inx and y are �xed, like in the problem solved by the Marionette
technique. We are looking for the height functionsf z satisfying equation 5.3. Adopting the notation f u

to denote di�erentiation of f with respect to u, equation (5.3) is reformulated into:

det

0

@
f x

u f x
v f x

uv
f y

u f y
v f y

uv
f z

u f z
v f z

uv

1

A = 0 (5.4)

Equation (5.4) is de�ned if the parameterisation in the plane (XY ) is regular, which means if the study
is restricted to height �elds. We expand (5.4) using adjugate matrices:

�
�
�
�
�
f x

u f x
v

f y
u f y

v

�
�
�
�
�
f z

uv +

�
�
�
�
�
f x

v f x
uv

f y
v f y

uv

�
�
�
�
�
f z

u �

�
�
�
�
�
f x

u f x
uv

f y
u f y

uv

�
�
�
�
�
f z

v = 0 (5.5)

Equation (5.5) is a second order linear equation inf z (u; v). The only term of second order isf z
uv : the

equation is thus hyperbolic. Hyperbolic equations often correspond to the propagation of informations in
a system (think of the wave equation). It is thus no surprise that the marionette method corresponds to
a propagation algorithm. Loosely speaking, it can be shown that solutions of hyperbolic equations retain
discontinuities of initial conditions. The smoothness of the shape obtained by the marionette method is
thus dependent on the smoothness of the input data (plane view and elevation curves) [7].
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Boundary conditions

With the marionette method, we prescribe the values off z on two boundaries. Mathematically, we
choose two functionsf 1 (v) and f 2 (u) which correspond to the height of the two guide curves:

8
><

>:

f z (u = u0; v) = f 1 (v)

f z (u; v = v0) = f 2 (u)

f 2 (u0) = f 1 (v0)

(5.6)

The last equality correponds to a compatibility condition between equation f 1 (v) and f 2 (u), so that the
altitude of f z (u0; v0) is known without ambiguity. This equation corresponds to an integration of the
second member of equation (5.7). Writingf 3 (u) = @f2

@u (u), we have:

8
<

:

f z (u = u0; v) = f 1 (v)

@fz

@u
(u; v = v0) = f 3 (u)

(5.7)

We see now that we specify the altitude of a guide curve and the slope on the second curve. This kind
of boundary condition based on both values and derivatives is calledCauchy boundary condition and is
particularly suited for hyperbolic equations [7]. The smooth problem solved by the marionette method is
thus a classical problem in the theory of partial di�erential equations. Classical results on the existence,
uniqueness and regularity of solution can be applied, even though it is not the purpose of this dissertation.

5.1.6 Marionette Meshes with singularities

The modelling of complex shapes requires the introduction of vertices with a di�erent valence, called
singularities in the following. For example, the mesh displayed in Figure 5.3a has one singularity: the
central node has a valence of six. The mesh can be subdivided into six patches with no inner singularity
(in blue and white). This kind of procedure can be applied to any quad-mesh. Each patch is a regular
mesh, and the Marionette technique can be applied. There are however restrictions on the curves used
as guide curves due to compatibility between patches. For example, in Figure 5.3a, it is clear that the
six curves attached to the singularity can be used as guides for the six patches, whereas choosing the 12
curves on the perimeter over-constrain the problem.

(a) Decomposition of a complex mesh into simple
patches.

(b) The corresponding lifted mesh

Figure 5.3 � A Marionette Meshes with a singularity.

For an arbitrary quad-mesh, it is possible to compute the number of guide curves that can be used
to generate a Marionette Mesh. The mesh can be decomposed into simple quad domains without any
singularity by using the methods described in [247] or [244]. For example, Figure 5.3a has six domains,
the mesh in Figure 5.4a has nine domains. These domains are four sided, and it is possible to extract
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independent families of strip-domains, like displayed in Figure 5.4. Depending on the n-colorability of the
mesh, the number of families varies. The example showed is two-colorable. As a result, two families of
strips can be found and are shown in Figure 5.4b and 5.4c. Exactly one curve can be chosen across each
strip-domain. Since strips are independent, the height of these nine curves can be chosen independently
and will not over-constrain the problem.

(a) Initial mesh (b) Family of four strip-domains (c) Family of �ve strip-domains

Figure 5.4 � Decomposition of a mesh into 2 families of strip-domains. Marionette Meshes can be
generated by choosing one guide curve across each strip-domain.

5.1.7 Closed Marionette Meshes

Closed strips

Marionette Meshes create PQ-meshes by propagation of a planarity constraint along strips. One can
easily �gure that if the strip is closed, the problem becomes over-constrained. Indeed, consider Figure
5.5: the plane view of a closed strip and the altitudeszi of the points (Pi ) of one polyline are prescribed.
If the altitude z�

0 of the �rst point used for the propagation P �
0 is chosen, the planarity constraint can be

propagated along the strip. The points of the outer line are therefore imposed by the method, and the
designer has no control on them. The last pointP �

N is therefore generally di�erent from the initial point
P �

0 , leading to a geometrical incompatibility of PQ-meshes.

Figure 5.5 � Closed Marionette Strip with incompatible closing condition induced by the prescription of
the plane view of the whole strip (yellow) and the altitudes of the inner curve (blue).

In the following, we develop a method to deal with the geometrical compatibility of closed strips. The
results however can then be extended to general Marionette Mesh with closed strips. Suppose that the
two prescribed curves are de�ned as the inner closed curve and one radial curve (see Figure 5.5). By
propagation of equation (5.2), we easily see that the altitude of the last pointz�

N depends linearly on the
altitude of the �rst point z�

0 and on the altitudes of the points on the inner curveZ. It also depends on
the in-plane projection of the strip. Formally, there exists a vector V and a scalara, both functions of
the plane view, so that:

V � Z + a � z�
0 = z�

N (5.8)
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We are interested in the case wherez�
0 = z�

N . There are two possibilities:

1. a = 1 : in this case, the condition restricts to V � Z = 0 and does not depend onz�
0 . The vector Z

is in the hyperplane of V , which leavesN � 1 degrees of freedom.

2. a 6= 1 : there is only one solution for z�
0 . This is the most constrained case: the designer can only

control the inner curve of the strip.

Detailed calculations on closed strips and particular examples satisfying the conditiona = 1 are
developed in Section 5.2.

Closed meshes

The meshes with one solution are less �exible, but they can still generate interesting shapes, like the
one displayed on Figure 5.6, which recalls the example of Figure 5.5. The designer has a total control on
the altitude of the inner curve and the plane view, but cannot manipulate freely the outer curve. Note
that in Figure 5.6, the strings of the marionette are materialised as columns in the rendering, illustrating
the geometrical interpretation of the method.

Figure 5.6 � Architectural design with a closed Marionette Mesh, the altitude of the inner curve is
prescribed, the designer does not have control on the outer curve.

The most interesting case occurs when the designer has potentially the control of two curves. It relies
on a condition on the planar view explained above. A simple case where this condition is ful�lled is
when it has a symmetry. In this case, there is aN � 1 parameters family of solutions for the altitude of
the inner curve. The elevation of a closed guide curve can be chosen arbitrarely and projected into the
hyperplane of normal V , keeping the notations of equation (5.8). This operation is straight forward and
allows to control the elevation of a second curve, like for open meshes. An example of this strategy is
displayed in Figure 5.7, where all the meshes have the same planar view.

Another look at the problem

The problems speci�c to closed strips or meshes can be understood by the consideration of the equiv-
alent smooth problem. The partial di�erential equation (5.5) remains unchanged but the boundary
conditions expressed by equation (5.7) are not valid anymore. Indeed, a closed surface imposes a period-
icity of the solution. Consider the case where we want the curves(u = constant) to be closed, there exist
a certain period T so that:

8
>><

>>:

f z (u = u0; v) = f 1 (v)

@fz

@u
(u; v = v0) = f 3 (u)

8u; f z (u; v + T) = f z (u; v)

(5.9)
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Figure 5.7 � Some shapes with planar faces and a closed mesh generated with the method proposed in
this chapter.

This additional boundary condition might over-constrain the problem and the existence of a solution
is not certain.

5.2 Some results on closed strips

The aim of this section is to discuss with more detail the problem of closed strips. First, we write
the propagation problem on a strip. This step is purely computational, but is necessary to introduce
a quantity of interest. We interpret then the geometrical meaning of the compatibility condition with
respect to the mathematical formalism introduced. Then, we present some particular cases where the
closing of a strip is possible regardless of the choice of the altitude on the outer curve.

5.2.1 Propagation equation

Consider the closed strip discussed in Section 5.1.7. For each facet, we can apply the planarity
constraint of equation (5.2). Writing zi the altitude of the i th point of the inner curve and z�

i the altitude
of the i th point of the outer curve, we can rewrite this equation. For the sake of simplicity, we replace
the ratios of the 2D determinants by scalarsai and bi . We make following identi�cations:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Pi , A

Pi +1 , B

P �
i , C

P �
i +1 , D

ai ,
det2D (AB ; AC )
det2D (AB ; AD )

bi ,
det2D (AD ; AC )
det2D (AB ; AD )

We get hence following equation:

z�
i +1 = (1 � ai � bi ) zi + ai z�

i + bi zi +1 (5.10)

We make the following hypothesis, which is easily veri�ed by recurrence:

8i > 0; z�
i =

iX

k=0

vk zk + A i z�
0 (5.11)
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In fact, we can be even more precise and compute the value ofA i . We make the hypothesis that:

8i > 0; A i =
i � 1Y

k=0

ak (5.12)

Proof This is true for i = 1 due to equation (5.10). Then, we proceed by recurrence. Assume that
(5.12) is true for i , then we show that this is true for i + 1 . We plug equation (5.11) into equation (5.10)
and get:

z�
i +1 = (1 � ai � bi ) zi + ai

 
iX

k=0

vk zk + A i z�
0

!

+ bi zi +1 (5.13)

There is only one term in z�
0 , and it veri�es equation (5.12). Our hypothesis is thus proved.

5.2.2 Geometrical interpretation

The ratios ai can be interpreted with elementary plane geometry. Consider Figure 5.8a: the ratioa
is de�ned with 2D determinants and can be expressed with the vectors norms and angles. We have:

a =
kAB kkAC k sin �
kAB kkAD k sin �

(5.14)

We recognise the areas of the trianglesABC and ABD , so that a can be rewritten as:

a =
A ABC

A ABD
(5.15)

The two triangles used for the computation of ai are shown in Figure 5.8b.

�
� Inner curve




(a) Angle notations (b) The two triangles used to compute ai .

Figure 5.8 � Planar view of a quadrilateral

5.2.3 General solutions for a closed strip

Recall that we are interested in �nding the solutions so that z�
N = z�

0 , which also writes:

z�
N � z�

0 =
NX

k=0

vk zk +

 
N � 1Y

k=0

ak � 1

!

z�
0 = 0 (5.16)

We also want the space of solutions to be as large as possible, and therefore, we don't want it to depend
on the choice of the altitude on the outer curvez�

0 . This implies a new condition:

N � 1Y

k=0

ak = 1 (5.17)

In the following, we discuss the invariance of this equation under some transformations and show some
particular cases where it is satis�ed.



CHAPTER 5. MARIONETTE MESHES: FROM DESCRIPTIVE GEOMETRY TO
FABRICATION-AWARE DESIGN 131

5.2.4 Invariance

To have a complete overview on the problem of closed strips, we provide transformations that map
compatible strips to other compatible strips. The study of group of transformations that preserve a given
quantity is at the core of modern geometry, and for the sake of completeness, we show this point of view
dating back from Felix Klein [129].

Linear maps

The transformations we are interested in preserve equation (5.17). The most straight forward way to
do this is to preserve eachai . It is clear that all linear transformations in the plane (translation, scaling,
shearing) preserve each individual ratio. Consider indeed transformations de�ned by:

f (x; y) =
�

m11 m12

m21 m22

�
�
�

x
y

�
+

�
X 0

Y0

�
(5.18)

For two points (x0; y0) and (x1; y1), we write their image by f respectively (x0
0; y0

0) and (x0
1; y0

1). We call
M the matrix written in equation (5.18), then we have:

det
�

x0
0 x0

1
y0

0 y0
1

�
= (det M )2 det

�
x0 x1

y0 y1

�
(5.19)

It is clear that the linear map preserves the ratio of 2D determinant, since the factordetM depends only
on the parameters of the transformations. Linear maps preserve thus the geometrical compatibility of
closed strips. This is not a surprise, since linear maps preserve PQ-meshes [194].

Combescure maps

We give now another set of transformations that preserve the geometrical compatibility. We re-write
now equation (5.14) by using the properties of area of triangles:

ai =
kBC k sin 

kAD k sin �

(5.20)

Computing the product of all these values, we notice that the lengths cancel out (each length is exactly
one time at the numerator and one time at the denominator, so that:

N � 1Y

i =0

ai =
N � 1Y

i =0

sin 
 i

sin � i
(5.21)

Therefore, a transformation that preserves discrete angles preserves also the geometrical compatibility.
Such transformations are known asCombescure transformation. The image of a mesh by a Combescure
transformation has its edges parallel to the initial mesh, but it does not necessary preserve lengths.
Examples of such transformations are given in [168].

5.2.5 Particular cases

We give three simple examples where equation (5.17) is veri�ed.

Example 1: parallel edges

Equation (5.17) is veri�ed when all the ak are equal to one. This condition translates into:

kAC k
kAD k

=
sin �
sin �

(5.22)
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We write the equation of A ; B ; C; D in the cartesian plane whereeX is parallel to AB , we have:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

AB =

0

@
kAB k

0
0

1

A

AC = kAC k

0

@
cos�
sin �

0

1

A

AD = kAD k

0

@
cos�
sin �

0

1

A

(5.23)

We plug then equation (5.22) into equation (5.23) and compute the vectorCD . We get following result:

CD = kAD k

0

@
sin �
sin � cos� � cos�

0
0

1

A (5.24)

Remarkably, we notice that the vectors CD and AB are parallel. Reciprocally, if these two vectors are
parallel, then equation (5.22) is satis�ed. Therefore, a closed strip where all the projected quads are
trapezoids satis�es equation (5.17). Such planar views provide thus a large design space and the maximal
design �exibility for closed strips.

Example 2: symmetry

Consider the case where the planar view of the strip has an axis of symmetry. Consider Figure 5.8b:
eachai is de�ned as the ratio of the area of the blue and orange triangles. When the curve has a symmetry,
like the one depicted in Figure 5.9, the role of orange and blue triangle is inverted by the symmetry. Two
faces related by a symmetry have therefore inverse values ofai . Their product is naturally equal to 1,
which proves that strips with an axis of symmetry satisfy equation (5.17).

Figure 5.9 � A curve with an axis of symmetry and the inversion of the blue and orange triangles.

Example 3: orthogonal �elds

The �rst two examples are based on equation (5.17) where theai are expressed as ratios of areas. The
propagation rule is applied to each quadrilateral, but in the case of closed curves it is also interesting to
look at each vertex.

Consider Figure 5.10, equation (5.21) is veri�ed if
 0 = � 1, 
 1 = � 2 and so forth. In other terms, if the
transverse edge is the bisecting line of the inner curve, then we have a solution to the problem of closed
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Figure 5.10 � A closed curve and the angles used in equation (5.21) .

strips. This condition is a discrete counterpart of orthogonality of vector �elds. Examples of such meshes
are obtained by planar discrete moulding surfaces [168]. Discretisation of orthogonal parameterisation
of the plane will therefore yield strips that are very close to be geometrically compatible. The smooth
counterpart of this problem would be looked at carefully in further work.

5.3 Architectural design with Marionette Meshes

5.3.1 Computational set-up

The algorithms described in this chapter have been implemented in the visual-scripting plug-in
Grasshopper—for the modelling software Rhino—. This allows interaction with other numerical tools nec-
essary for architectural design, like �nite-element analysis software Karamba—. An example of interaction
between fabrication-aware shape generation and structural analysis is shown in chapter 6.

Marionette Meshes only require the solution of a linear system. The computation time is thus low,
typically it takes 3 ms to lift a mesh of 10,000 faces, with no pre-factorisation involved. Real-time
computation provides great design �exibility, even for large meshes.

In our framework, the planar views are generated with NURBS patches, and the elevation curves are
drawn as Bézier curves. The smoothness of the �nal mesh depends thus on the smoothness of the in-plane
parameterisation. A C0 projection yields a C0 solution to the hyperbolic equation (5.4), so that shape
functions with creases can easily be propagated through the mesh. Figure 5.11 shows a corrugated shape
generated from aC0 planar view and smooth guide curves. Such corrugations can be used in folded plate
structures, and could extend the formal possibilities of methods developped in [210] or discussed in [137].
An application is shown in Chapter 7.

5.3.2 Geometrical optimisation

General remarks

The method described in the previous section of this chapter constructs a space of solutions with
planar facets. This space is a vector space, which has some interesting implications for some optimisation
problems. We can indeed see the planarity constraint as a linear constraint on the coordinates of all the
vertices of a mesh. There exists a matrixA and list of altitudes z and zp so that:

A � zp = z (5.25)

The marionette method gives an intuitive way to construct this matrix, as zp corresponds to the altitudes
of vertices on the guide curves andA depends on the planar view. For a mesh withNM faces,A is a
matrix of size (N + M + 1 ; (N + 1) � (M + 1))



134 5.3. ARCHITECTURAL DESIGN WITH MARIONETTE MESHES

Figure 5.11 � A non-smooth mesh with planar facets generated with the Marionette method.

It is a well-known fact that minimisation of quadratic functions under linear constraints is equivalent
to the solving of a linear system [180]. An example of such optimisation problems with useful applications
for architectural design is given in the following.

Speci�c constraints

Some particular construction constraints can be applied to marionette meshes. For example, it is
interesting to build with planar structural members, which can then easily be manufactured at a large
scale (think of a construction with planar arches). Likewise, the installation and the mechanical behaviour
of planar arches is expected to be better if they are vertical. Keeping the point of view of descriptive
geometry, we see that this condition is realised when the plane view feature straight lines, like in Figure
5.12. This can be done without optimisation, by drawing a ruling between two planar curves.

Figure 5.12 � A planar view that yields construction with planar arches.

Surface �tting

A common problem described in the literature is the approximation of a given shape with a PQ-mesh.
In the followings, we consider that the designer prescribes a planar projection and looks for the closest
Marionette Mesh to a reference surface.

The problem is illustrated in Figure 5.13: the altitude of the vertices in the Marionette Mesh are
written z, the altitudes of the points on the reference surface are writtenz0 . The function to minimize
is written as follows:

J (z) = ( z � z0 )T (z � z0 ) (5.26)

The design space is the Marionette Meshes which have the considered planar view. This constraint is
written in equation (5.25). The optimisation problem follows:

min
z= Az p

J (z) = min ( Az p � z0 )T (Az p � z0 ) (5.27)



CHAPTER 5. MARIONETTE MESHES: FROM DESCRIPTIVE GEOMETRY TO
FABRICATION-AWARE DESIGN 135

Figure 5.13 � Optimisation problem: approximation of a reference surface with a given planar projection
(dashed lines).

Expanding the equation, one gets:

Jp (zp ) = zp
T A T Az p � 2zT

p A T z0
T

+ z0
T z0 (5.28)

A necessary condition to �nd a solution is to verify that r Jp = 0. The system reduces therefore to:

A T Az p = A T z0 (5.29)

Equation (5.29) is typical of least square problem. It is clear that the rank of the matrix A is (N + M + 1) .
It follows that the rank of A T A is also (N + M + 1) . Since A T A 2 M (N + M + 1 ; N + M + 1) , this
matrix is invertible. Equation (5.29) has therefore one unique solution. SinceA T A is clearly de�nite
positive, it follows that the extremum is in fact a local minimum. Finally, the behavior when kzp k �! 1
demonstrates that this is a global minimum.

Figure 5.14 � A target surface (left), and the optimal approximation by a surface of translation (right).

An application is illustrated in Figure 5.14, where a target NURBS is approached by a surface of
translation, which are well-known in architectural design [98]. This optimal can be considered poor, but
the key information is that it is the best in the design space chosen by the designer, so that the designer
knows that to improve the solution, he has to explore other planar views or mesh topologies. The surface
displayed is indeed the best solution possible for the planar view chosen by the designer. As computation
are done in real-time, it is easy to generate very quickly di�erent plane views with di�erent topologies,
keeping control of the aesthetic and layout of the cladding.

5.3.3 Shape exploration with Marionette Meshes

The framework introduced here intrinsically account for planarity of panels. Its mathematical formu-
lation is however suited for many architectural constraints. Hard constraints must be ful�lled exactly,
whereas soft constraints are included into the function to minimize [180]. Since the planarity constraint
is linear, soft constraints expressed as linear or quadratic functions can easily be included in the objective



136 5.3. ARCHITECTURAL DESIGN WITH MARIONETTE MESHES

function. In this case, the optimisation problem will be similar to a classical least square problem and
can be solved e�ciently.

Hard constraints de�ned by linear equations are treated e�ectively within the proposed framework.
Examples of linear constraints are prescribed volume or a maximal allowable altitude. The marionette
method imposesNM � (N + M � 1) out of NM parameters, this means that anotherN + M � 1 linear
constraints can be applied without over-constraining the optimisation problem.

Perhaps the most interesting application is the prescription of a boundary, as depicted in Figure 5.15.
In this �gure, the planar view is imposed and the user prescribes the altitude of some points of the mesh
along a curve (white circles). In this case, the number of prescribed points is superior to the number of
degrees of freedom, and the problem might be overconstrained. It might hence be preferable to turn this
problem into a soft constrained problem with a quadratic function to minimize.

Figure 5.15 � A plane view (thin lines) with a prescribed boundary (thick lines).

Other constraints could be used. For example, in the manner of NURBS-modelling, the user could
control the altitude of some handle-points, each handle decreasing the size of the space of solution by one
degree of freedom. This kind of approach has been used in optimisation-based shape exploration, but it
looses the notion of global shape control.

5.3.4 Controlling mesh distortion

In an approach using planar projection in the horizontal plane, the metric of the mesh is changed
in function of the slope. If the plane view does not take this aspect into account, this can yield high
distortions which are unwanted in practice . Consider for example that the plane view is a square grid:
the resulting surface is obviously a surface of translation de�ned by equation (5.30):

z (x; y) = f (x) + g(y) (5.30)

The functions f and g correspond to two elevation curves. Consider now a parallelogram on the surface
of translation de�ned for (x; y; x + � x; y + � y). It is immediate to get a �rst order development of the
lengths of the edgeslx and ly we compare it with the in-plane length � x and � y:

8
>><

>>:

lx =

r

� x2
�

1 + ( f 0(x))2 + o(� x2)
�

ly =

r

� y2
�

1 + ( g0(y))2 + o(� y)2
� (5.31)

The relative change of length� l : is thus given by:
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+ o(� x)

(5.32)
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Figure 5.16 � A regular planar view can yield length distortion in elevation (left). The elevation can
inform the plane view regularity to yield meshes without length distortion (right).

The relative length between the parallelogram and its projection is thus related to the slope. The problem
is decoupled inx and y due to equation (5.30). In practice, it is possible to mesh a surface of translation
with a constant edge length: Figure 5.16 shows two meshing strategies for a surface of translation, one
with a regular planar view and irregular mesh, the other with an irregular planar view but constant edge
length.

This remark shows that the problem of edge length regularisation can be easily solved with the
marionette method if the elevation curves are continuous curves which can be subdivided. With surfaces
of translation, a discretisation of the elevation curves with constant length yields a Tchebyche� net. This
is not the case for general marionette meshes, so that the choice of uniform subdivision of the elevations
is not necessarily the true minimiser of edge length distortion. Post-rationalisation techniques could
then be implemented to minimise the variance of edge lengths in each direction and further simplify
manufacturing.

5.4 Generalisation of the method

5.4.1 General projections

It appeared that prescribing a horizontal view and applying the propagation technique presented here
only allows for the modelling of height �elds. This is a limitation of this method, although height �elds
surfaces are commonly used for roof covering. Other projections can be used for more shape �exibility.
The planarity constraint for a quad can be extendend to the case of non-parallel projections, like in
Figure 5.17.

Figure 5.17 � A Marionette Quad with non-parallel guide lines.

Some projections are of practical interest for archetypal projects. Towers and facades can be modelled
with cylindrical projections. Stadia can be designed using projections on torus or on moulding surfaces,
the o�set directions corresponding to the normals of the smooth surface. Indeed, moulding surfaces
�t naturally the geometry of stadia (see Figure 5.18a) and have some interesting features, discussed in
Chapter 3:

ˆ Their natural mesh contains planar curves, which are geodesics of the surface: the planarity is
preserved by the marionette transformation.
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ˆ They are naturally meshed by their lines of curvatures, which gives a torsion-free beam layout on
the initial surface, and on the �nal shape.

(a) Reference moulding surface (b) Non-symmetrical design (c) Symmetrical design

Figure 5.18 � Design of stadia obtained from a projection on a moulding surface: the prescribed curves
are the inner ring and a section curve.

5.4.2 Extension to other patterns

Application to non-standard patterns

Equation (5.35) can be applied to meshes composed of triangles and hexagons, also known as Kagome
lattices. It reveals that the number of d.o.f is comparable to the one of quadrilateral meshes. There
is therefore a straight forward way to lift Kagome lattices with the marionette technique. Figure 5.19a
shows the guide curves for the Kagome pattern. Other isolated points are required to lift the mesh. The
altitude of these points can for example be chosen in order to optimise mesh fairness, which has been
characterised in numerous works by an energyF de�ned in equation (5.33), where v i is the i th vertex of
a polyline:

F =
X

polylines

X

i

kv i � 2v i + 1 + v i + 2k2 (5.33)

The functional is quadratic and is not di�cult to minimise under linear constraints. Figure 5.19c
shows a mesh derived from an hexagonal pattern: three guide curves can be used to lift the mesh. The
number of degrees of freedom of the examples of Figure 5.19 are evaluated in Section??.

(a) Kagome lattice (b) Dual Kagome lattice (c) Hex pattern

Figure 5.19 � Marionette method applied to several patterns, white dots correspond to prescribed alti-
tudes.
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5.4.3 Evaluation of the dimension of the space of solutions

This section proposes to extend the Marionette method to other patterns than quads. First, we
discuss the estimation of the size of the design space o�ered by the marionette technique in the most
general cases. We illustrate then those remarks on the generality of the method with various patterns.

Size of the design space

The facet planarity constraint is linear, which means that the space of meshes with planar facets is
a vector space. [65] proposed a criterion to evaluate the dimension of this vector space. For each facet,
three points can be chosen independently (3 d.o.f for each points) and the remaining points must be
chosen in the constructed plane (1 d.o.f deleted for these nodes). WritingnF the number of vertices for
each face, the estimation of the size of the space of meshes with planar facets follows [65]:

N � 3Nnodes �
X

F aces

(nF � 3) (5.34)

For a quad mesh, we getN � 2Nnodes . This number is high and is di�cult to interpret for the
designer. The projection technique used here reduces the size of the design space. Since the planar view
is prescribed, each point looses 2 d.o.f. Equation (5.34) writes:

Nmarionette � Nnodes �
X

F aces

(nF � 3) (5.35)

The size of the design space is reduced compared to general methods, but the smoothness of the �nal
shape is easily controlled. Note that techniques relying on generation of the whole vector space have to
introduce fairing energies, as the design space contains both smooth and non-smooth meshes.

For a quadrilateral mesh with n � m faces without singularity, we have Nnodes = ( n + 1) � (m + 1) ,
and nm faces. The application of equation (5.35) shows that the size of the design space isn + m + 1 ,
which is exactly what is found by the marionette method.

We propose here to count the number of degrees of freedom for the meshes drawn in Figure 5.19.
We use equation (5.35) to estimate the available degrees of freedom and compare this number with the
number of prescribed points drawn in Figure 5.19. Each time, it is easy to propagate the altitudes in the
manner of what has been done with quadrilateral meshes. We illustrate here the fact that the formula
(5.35) is exact for meshes with no closed curves.

Kagome pattern

The Kagome pattern shown in Figure 5.19a features191 vertices, 112 triangles, 48 hexagons and8
pentagons. The estimated number of degrees of freedom given by the marionette method follows:

N = 191 � (112� (3 � 3) + 48 � (6 � 3) + 8 � (5 � 3))

N = 191 � (0 + 144 + 16)

N = 31

This is exactly the number of prescribed nodes in Figure 5.19a.

Dual-Kagome pattern

The dual-Kagome pattern shown in Figure 5.19b has185 vertices and 156 quadrilateral facets.

N = 185 � 156� (4 � 3)

N = 29

This is the number of vertices with prescribed altitudes in Figure 5.19b.
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Hexagonal pattern

The pattern derived from an hexagonal mesh has183 vertices and 162 quadrilateral facets. The
number of d.o.f is thus:

N = 183 � 162 = 21 (5.36)

Remark

The calculation provided here shows hints for the number of guide curves to use to lift the mesh. Notice
however that the d.o.f must be uncoupled: for example it is not possible to prescribe independently the 4
altitudes of the vertices of a quadrilateral face. Our choice of guide points does not violate this constraint.

For both the dual kagome and the hexagonal pattern, the planarity constraint cannot be propagated
throughout the whole mesh, additional isolated altitudes have to be prescribed.

Illustration

Figure 5.20 shows a Kagome lattice covered with planar facets generated with the marionette method.
The design started from a planar view generated with a NURBS patch, a Kagome was then generated
following the isoparametric lines and lifted with the marionette technique. One of the guide curve is the
parabolic arch of the entrance, the other is an undulating curve following the tunnel. Like for PQ-meshes,
the computation is done in real time.

Figure 5.20 � Free-form design covered by planar Kagome lattice.

5.4.4 Equivalence between kagome and quad meshes

The short study done here shows that the generation of planar kagome meshes with the marionette
technique require the input of two guide curves and of additional isolated points. It is therefore similar to
the generation of PQ-meshes, and a natural conclusion would be that kagome and quadrilateral meshes
can be obtained from the same parametrisations of surfaces. The following paragraphs demonstrate that
it is possible to generate a planar kagome mesh from a planar quadrilateral mesh.

Systematic studies on the exploration of the design space o�ered by the kagome pattern are lacking,
and this structural pattern is not fully understood and rarely considered for fabrication. Like quadrilateral
grids, kagome grids present a node valence of four, which indicates a reasonable cost of fabrication. The
kagome pattern can be found in Japanese basketry, where the members are woven. Among other usage,
kagome grids have been used in the architecture of Shigeru Ban and for ornamentation purpose. Under-
standing their technological possibilities and mechanical performances could create new opportunities for
the design of e�cient structures.
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Figure 5.21 � A Kagome grid pattern covered with planar facets generated with the method described in
this section.

An algorithm for Kagome pattern with planar facets

We present here an original method that converts planar quadrilateral (PQ) meshes to planar Kagome
(PK) meshes. The algorithm takes a PQ-mesh as an input, like illustrated in Figure 5.22. Not all PQ-
meshes are acceptable, but only those which can be coloured as a chequerboard. In the algorithm, the
dark faces become hexagons and the white one become triangles. Starting from a quad mesh (left), one
must determine intermediary points (middle) which de�ne new vertices of the Kagome grid (right).

Figure 5.22 � Conversion of a quadrilateral mesh to a Kagome mesh

The choice of the intermediary point is restricted by the fact that the two adjacent hexagons have to
be planar. Consider three consecutive planar quadsQi � 1, Qi and Qi +1 . The algorithm determining the
new vertices can be written as follows, and is detailed in Figure 5.23:

1. Compute the barycentreG i of the quadrangleQi ;

2. Compute the intersection of the planes(Qi � 1), (Qi +1 );

ˆ If the intersection is a plane, create the nodeN i = G i ;

ˆ If it is a line (L ), create the nodeN i as the orthogonal projection of G i on (L ). N i is the
closest point to G i on (L ).

3. Repeat steps 1 and 2 in a chequerboard pattern.

Other points on (L ) could be chosen, but the choice proposed in this algorithm yields satisfactory and
regular results, as illustrated in Figure 5.21.

Finally, we noticed in our formal explorations that the algorithm can encounter some di�culties if the
curvature of the surface is very low. With numerical imprecisions, the binary choice of the second step
of the proposed algorithm can lead to instabilities. Therefore, we introduce a number" corresponding to
the fabrication tolerance for planarity. If the distance between G and each of the two planes is inferior
to " , we set the point G as a vertex of the Kagome mesh.

It must be noticed here that the Kagome mesh obtained from a square grid in Figure 5.22 is irregular:
the hexagons seem a bit stretched. Simple trigonometric considerations show that the regular Kagome
pattern in the plane is obtained from a rectangular grid with an aspect ratio of

p
3. The grids generated
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Qi � 1

Qi

Qi +1

(a) Step 1

Qi � 1

Qi

Qi +1

(b) Step 2

Qi � 1

Qi

Qi +1

(c) Creation of the new edges

Figure 5.23 � Details of the conversion to a Planar Kagome mesh.

in Chapter 7 will use the same rule, as we aim for visually regular patterns, like the ones displayed in
Figure 5.21 and 7.20. Some simple geometrical properties of these grids are discussed in Section 7.3.3.

In Chapter 2, we discussed the link betweenconjugate curves networkand planar quadrilateral meshes.
The conversion technique presented here and the results on the marionette method show that kagome and
quadrilateral meshes have similar rigidity with respect to the planarity constraint. Therefore, PK meshes
can be obtained from parametrisation by conjugate curves of a surface. In particular, the parametrisation
by lines of curvature yields planar kagome meshes. Therefore, the framework developed with generalised
cyclidic nets proposed in Chapter 4 could bene�t from this �nding and yield planar kagome meshes
automatically. The possibilities o�ered by this pattern in gridshell structures are investigated in Chapter
7.

5.5 Summary of intellectual contribution

We have introduced an intuitive technique for interactive shape modelling with planar facets. It
is based on descriptive geometry, which has been used by architects and engineers for centuries. The
concept has many applications, in particular the modelling of PQ-meshes with or without singularity.
Some examples show the formal potential of our method. The framework was also extended to Kagome
and dual-Kagome lattices. It is likely that other polyhedral patterns can be treated with the Marionette
technique. The generality of the method has also been demonstrated by changing the projection direction,
a method with large potential if used on mesh with remarkable o�set properties.

Quadratic optimisation problems, like surface-�tting problems can be solved e�ciently with the mar-
ionette technique. A simple example where only the altitudes of the guide curve are the only parameters
was detailed, but controlling the plane view with NURBS patches could allow for a more general solution
of such problems. The separation of variables in horizontal plane and vertical plane can potentially give
birth to e�cient numerical methods for geometrical optimisation.

Furthermore, we made a comment on the underlying smooth problem solved by the method, which
gives indications on the smoothness of the shapes arising form this framework. We have seen that this
smoothness depends on the smoothness of both the planar projection and the guide curves, which can
be generated with any usual modelling tool based on NURBS, T-spline and Bézier curves. Moreover, it
was shown that marionette meshes give an intuitive illustration on the principle of subspace exploration,
a powerful tool for constrained optimisation of meshes. The underlying smooth parameterisation of
marionette meshes could hence open new possibilities for e�cient parameterisation of fabrication-aware
design space in structural optimisation problems.
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Chapter 6

Fabrication-aware structural
optimisation of shell structures

The previous part introduced di�erent methods for fabrication-aware shape generation without as-
sessing their relevance for structural engineering applications. Conversely, the existing literature on shape
optimisation of shell structures rarely considers fabrication. This chapter proposes to apply the mari-
onette technique to the shape optimisation of shell structures and to merge fabrication and mechanical
considerations. A benchmark comparing the marionette technique, presented in the preceding chapter,
and NURBS modelling is hence performed and validates the potential of the marionette technique in
applications to structural design.

6.1 Shape optimisation of shell structures

6.1.1 Design-space parametrisation

Parametric modelling is a popular approach used in the design of complexly shaped structures. In
this section, we study parametric structural optimisation and more speci�cally, shape optimisation of
shell structures. The proper parametrisation of the design space is indeed crucial for the reliability of
the results. Opposing philosophies for domain parametrisation coexist, based on the number of degrees
of freedom used in the optimisation problem.

CAD-based approach

Surface modelling is usually performed using Computer-Aided Geometric Design (CAGD). It is there-
fore natural to use the parameters generating the shapes for structural optimisation. This strategy was
�rst introduced by Braibant and Fleury [46]. A common approach is to consider the surface as a linear
combination of basis functions (e.g: NURBS) [10]. The shell thickness can also be considered as a design
variable and can be encoded by NURBS as well. The parametrisation of such problems is thus light, as
few design variables are required, typically a CAD-based parametrisation features less than 100 degrees
of freedom: this makes sensitivity analysis easier to perform, and many algorithms can be used to solve
small problems (gradient-based algorithms, variations of the simplex algorithm or even meta-heuristics
like genetic algorithms, etc.). However we point out that the choice of the parametrisation is important
because it can restrict the design space. Badly parametrised problems can potentially yield poor optima.
This is surely a limitation in mechanical engineering, as well as for fabrication-aware design.

Node-based approach

The second parametrisation is to consider the data of the �nite element model as design variables.
Namely, node coordinates and shell thickness at nodes can be used, which involves a minimal modelling
e�ort. The method is also called �nite element parametrisation or parameter-free optimisation (which
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should be understood as free of CAD-parameters). This point of view gives a very large design space,
and better optima. However, the size of the design space has two drawbacks. First the problem is large
and makes optimisation much longer than in CAD-based approaches. Sensitivity analysis is also harder
to perform and requires experienced users and optimisation specialists. This disadvantage might be tem-
pered by the increase of computational power, which makes the optimisation possible in a reasonable time.
The second limitation, which is actually the biggest shortcoming of the �nite element parametrisation,
is that it leads to non-regular solutions, as illustrated in Figure 6.1. The 'optimal' result illustrated is
distorted, so that the �nite element analysis becomes unreliable. This explains that the method, although
proposed early in the history of structural optimisation [86], was abandoned progressively. In order to
deal with these limitations, new methods for regularisation and �ltering have been introduced [84]. By
implementing �lter and choosing di�erent �lter radii, the designer can generate di�erent optima.

Figure 6.1 � Result of optimisation of a plate with a hole with a node-based parametrisation [46]

6.1.2 Handling fabrication constraints

Fabrication constraints are not usually considered in structural optimisation. In fact, no instance of
geometrical constraint, like facet planarity, was found in our review on shape optimisation of shell or
gridshell structures besides simple cases, like the optimisation of gridshells described with surfaces of
translation [80, 270]. Fujita and Ohsaki considered the optimisation of shell by imposing constraints on
surfaces invariants (for example a zero gaussian and developable surfaces) [88]. This point of view is
di�erent from the one adopted in architectural geometry, which considers that surface parametrisation
is the key problem to be addressed for construction rationality. By de�nition, surface invariants do not
depend on the chosen parametrisation: the method proposed by Fujita does therefore not give the ruling
direction for developable surfaces and cannot be extended to the generation of PQ-meshes.

We shall make here a comment on how constraints are handled in optimisation and why existing
techniques are not fully satisfying. We could view the fabrication constraint from a mathematical point
of view. We consider a parametric spaceS of dimensionn with parameters x and write g an operator (non
necessarily linear), which encodes fabrication constraints. The constraint can be written as an equality
constraint, which is the simplest case for the purpose of this discussion. The mathematical constraint
reads as:

8i 2 [0; p] ; gi (x) = 0 (6.1)

The optimisation problem, of the minimisation of a function f is therefore written as:

min
x 2S ;gi (x )=0

f (x) (6.2)

Typically, the planarity constraint corresponds to several thousands of constraints on a �nite-element
mesh. The most simple way to handle constraints is to use Lagrange's multipliers� i , which has p
variables:

min
x 2S ;� 2 Rp

L (x; � ) = min
x 2S ;� 2 Rp

f (x) � � i � gi (x) (6.3)

We see that we addp computations of gradient, which is not e�cient for the kind of constraints we want
to handle. Especially, in a CAD description of the design space, we have limited degrees of freedom and
a much higher number of constraints, so there might not be a feasible design.
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In practice, evaluation of Lagrange's multipliers is expensive. Constrained optimisation problems
can be solved with other methods, for example by using the method of feasible directions. The method
computes solutions that satisfy a constraint (which can be a fabrication constraint, as long as it can be
expressed as an inequality). The method of feasible directions requires a feasible design as input and can
be limited in spaces with a high number of constraints [82].

This brief discussion shows that handling multiple constraints is a tedious topic. The geometrical con-
straints envisioned in this dissertation are numerous: one constraint per face (and therefore thousands of
constraints for a mesh used for �nite element analysis). Usually, constraints in structural optimisation are
related to maximal displacement or buckling loads for a �nite set of load case combinations: their number
remains therefore inferior to the envisioned constraints. In CAD-based approaches, the constraints on
planarity of facets (or circularity, etc.) are far superior to the size of the design space and the problem
might be over-constrained. The point of view taken by the marionette technique guarantees that the
constraints are expressed as linear equations. Unfortunately, the planarity constraint in its more general
formulation and the circularity constraints do not have the same properties. We might add that the
smoothness of a PQ-mesh is not guaranteed, for reasons exposed in Section 2.3.3: PQ-mesh regulari-
sation is also needed if a parameter-free optimisation is chosen. Integrating the fabrication constraints
within the description of the design spaceS would avoid the handling of such complications and allow
for a practical CAD-based approach.

6.1.3 Problem statement

The parametrisation of structural optimisation problems is crucial to the good performance of opti-
misation algorithms. Node-based approaches give good results, but require the end-user to have a good
knowledge on regularisation and �ltering, which should not be expected from a structural engineer or
an architect. CAD-based approach considers fewer degrees of freedom: its results can more easily be
understood by engineers, but they might not be true optima. In this chapter, we focus on the second
approach in order to avoid regularisation problem.

Conciliating fabrication constraints with structural optimisation is not commonly done. With the
tools and methods described in the second part of this dissertation, there is an opportunity for new
description of design spaces for structural optimisation that would merge fabrication constraints and
mechanical performance. This chapter presents practical implementation of the marionette method that
is similar to NURBS and can be used easily by engineers. The relevance of the method compared to
NURBS modelling is assessed with comparative studies and benchmarks. Since emphasis is made on the
parametrisation of the design space, di�erent optimisation algorithms are used.

In the spirit of form-�nding by structural optimisation proposed by Ramm and Bletzinger [28], we
propose to solve unconstrained optimisation problems and optimise the strain energy or linear buckling
load. Section 6.2 presents the general methodology employed as well as the possibility to use the mari-
onette technique in a CAD-based approach, comparable to NURBS modelling. Section 6.3 and 6.4 present
comparative studies on domes and shell supported on three points. Section 6.5 proposes a discussion and
an interpretation of the results.

6.2 Methodology: fabrication-aware structural optimisation

6.2.1 Design-space exploration by structural optimisation

The purpose of this chapter is to evaluate the potential of an innovative method for the structural
optimisation of fabrication-aware design. The proposed methodology for this chapter is described in
Figure 6.2 and relies on the shape generation of meshes with planar facets, the evaluation of their
structural performance and their optimisation. The shape generation is described in Chapter 5. Two
families of exploration strategies are envisioned to demonstrate the possibilities o�ered by Marionette
meshes.

The �rst one considers a unique optimisation criterion and compares the results of optimisation both
for the NURBS and Marionette method. Having a unique criterion makes the comparison of both design
strategies more straight forward and some tendencies can be derived from this study.
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Figure 6.2 � Framework for the shape optimisation of shells

The second strategy considers several optimisation criteria. In real-life projects, engineers have in-
deed to deal with di�erent constraints and have often opposing objectives. Solutions that satisfy all
optimisation criteria at once do not generally exist, but design belonging to Pareto fronts are the most
preferable options in practice. In conceptual design, global optimisation can be preferred to generate
possibly unexpected e�cient designs.

6.2.2 Marionette method as a CAD tool

Principle

We have seen in Chapter 5 that the marionette method can be used for the modelling of quadrangular
meshes. The method is purely a mesh based approach, although we have already seen that it is the discrete
version of a hyperbolic equation. Considering a regular mesh without singularity withN � M faces, there
are 2 (N + 1) ( M + 1) degrees of freedom in the(XY ) plane and (N + M + 1) degrees of freedom for
the altitude of the guide curves. A mesh without planarity constraint has 3 (N + 1) ( M + 1) degrees of
freedom. We can conclude that, for a mesh of given topology, the planarity constraints decreases the size
of the design space by30%.

The marionette technique can be adapted into a CAD tool similarly to NURBS. We propose here
to parametrise the plane view by NURBS (or T-splines) and to use Bézier splines or other functions for
the elevation curves. Consider Figure 6.3: the plane view is controlled by a NURBS patch with nine
control points. The two elevations are Bézier splines with four and �ve control points respectively. The
NURBS patch can be meshed by its isoparametric lines and the marionette method can be applied to the
quadrilateral mesh. Notice that the marionette method naturally decouples the description of in-plane
and out-of plane views. The number of control points used for the elevations and the in-plane view do
not have to be consistent, like in the example of Figure 6.3. The number of degrees of freedomd of a
pseudo-NURBS marionette mesh for a patch withN � M control points is thus:

d = 2NM + N1 + N0 (6.4)

whereN0 and N1 are the number of degrees of freedom for each elevation curve. In our example, there are
thus 18+4+5 = 27 degrees of freedom for the marionette mesh, which is the number of degrees of freedom
of a NURBS patch with nine control points. Notice however that the two design spaces are di�erent. This
decoupling of horizontal and vertical description of the shape is a di�erence with NURBS modelling and
can be an opportunity for structural optimisation. As an example, creases can be generated by modifying
only the elevation, without adding unnecessary degrees of freedom for the plane view parametrisation.

Re�nement strategies

Our proposition presents some advantages of NURBS modelling, in particular the possibilities of
performing re�nement. It is well-known that it is possible to perform degree elevation of a NURBS
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Figure 6.3 � The Marionette method as an alternative to NURBS.

surface via Forrest's algorithm. In other terms, it is possible to increase both the number of control
points and the degree of the NURBS surface while preserving a shape. In optimisation, this means
that one can start from a coarse control net for a NURBS surface, and perform iteratively operations of
optimisation and degree elevation/re�nement. This kind of strategy yields fast convergence and avoids
the computation of local optima. Since marionette meshes as CAD tools are generated with NURBS
patches and curves, this strategy of re�nement can be used just like in NURBS modelling.

6.2.3 Choice of geometry

The comparison of the NURBS and marionette techniques is done on two geometrical con�gurations.
The �rst case-study is a dome supported on an elliptical boundary. This shape does not feature free-
edge, and is thus expected to have few local optima. It was chosen in reference to Monge's design for
an ellipsoidal dome, and to investigations performed by the o�ce Schlaich Bergermann und Partner on
surfaces of translation.

The second case-study is a shell supported on three corners and with three free-edges. Several built
examples allow for a comparison and problem initialisation. The �rst reference is the Kresge auditorium
on the MIT campus, which has a spherical shape. It is a well-known building, but lesser known is the fact
that due to poor understanding of the behaviour of the free-edges, the shell de�ected badly and had to be
repaired. The second built reference is the CNIT in Paris, which remains the largest spanning concrete
structure to this day, and was constructed as a double-layer shell. It has also local corrugation, which
is a rare feature in thin shell architecture, but can be found in other industries. Numerous numerical
studies based on the geometry of the Kresge auditorium have been conducted. One of the �rst papers
studying the possibilities o�ered by CAD-based description of the structural design space implemented
this particular problem [28].

6.2.4 Structural analysis

Structural model

The model chosen for the shell is the Kircho�-Love theory, which neglects the contribution of shear to
the strain energy. The kinematic assumption made is that lines perpendicular to the mid-surface remain
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straight (no warping) and perpendicular to the mid-surface. This theory is generally chosen for slender
shells, as studied in this chapter. Writing t the thickness andR the radius of the mid-surface, a shell is
considered to be thin if the ratio t=R is inferior to 1=20 [186]. The stress are evaluated with the formula:

8
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>>>>:
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Z h
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� h
2

� ij (z) dz
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Z h
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� h
2

z � � ij (z) dz

(6.5)

With the Love-Kircho� theory, the kinematic assumption and the fact that materials with linear elastic
behaviour are considered lead to the fact that� varies linearly in z. Equation (6.5) can thus be used to
compute the maximal stress by a simple integration, in the manner of what is done in Euler-Bernoulli
beams. In reinforced concrete shells, the assumption of linear elasticity is not veri�ed since concrete and
reinforcement go in the plastic domain under ultimate limit state. The results on maximal stress should
therefore be understood as qualitative indicators of the shell behaviour and not as design values.

Analysis

We use the �nite element method to evaluate the structural behaviour. Two analyses are performed:
linear elastic analysis and linear buckling analysis. The linear buckling analysis is the simplest perfor-
mance metric considering geometrical non-linearity. Such e�ect is known to be determining for the design
of slender structures, it is thus important to incorporate such considerations in optimisation. The case-
studies are an occasion to illustrate the compromise between design criteria (geometrically linear or not)
and to provide insight for the design of thin shell design.

Linear buckling su�ers from some limitations: since the problem is linearised, we notice that the
equilibrium is still computed on the initial con�guration, so that linear buckling overestimates the bearing
capacity of structures subject to high de�ections before buckling. We should recall however that non-
linear analysis without imperfection can be equally inaccurate1.

Even without considering material non-linearities, a rigorous assessment of the bearing capacity of a
shell is performed with a geometrically non-linear analysis with imperfection. The choice of the ampli-
tude of the imperfection as well as its shape is not obvious, although the �rst buckling mode is often
proposed. The analysis performed could have included imperfections and arclength analyses, but it was
not performed due to the time necessary for the convergence. A more complete discussion on this topic
is proposed in Section 7.2.3.

Loads, materials and boundary conditions

Di�erent load cases are studied. The �rst one, later identi�ed as LC 0, is the self-weight of the
shell, which can have an important contribution for large span structures. We will see that our models
withstand such load with limited bending. The second load case considered in our study (writtenLC 1) is
a non-symmetrical load, for which the structure is subject to important bending moments. The pattern of
the non-symmetrical load distribution is shown in Figure 6.4. A a pressure of 1kPa pointing downwards is
applied globally to the areas coloured in blue. The material used has the properties ofC20=25 concrete:
its Young's modulus E is 30GPa, its Poisson's ratio � is 0:3, and its density is 2:2.

Performance criteria

A designer has several criteria as his or her disposal in order to evaluate the performance of a shell
structure.

ˆ the strain energy E;
1To better understand this, consider an example given in the textbook written by Bathe [22]. An arch subject to a

symmetrical load has a non-symmetrical �rst buckling mode. If no imperfection is applied, the load path preserves the
symmetry and the arch will buckle following the second mode. In this case, the nonlinear analysis without imperfection gives
a higher estimate of the buckling capacity than the linear buckling load. This problem vanishes as soon as a geometrical
imperfection is added.
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Figure 6.4 � Areas of application of non-symmetrical loads, top view

ˆ the maximal tensile stress (for concrete shells)� max ;

ˆ stress levelling which aims at specifying a stress state in the shell and to minimise the functionR
S (� � � ) dS;

ˆ the maximal displacement under a design load� max ;

ˆ the linearised buckling load;

ˆ the mass;

ˆ the limit load under geometric and material non-linear analysis.

Again, we stress that an optimisation problem is usually under some constraints so that mass min-
imisation under constraints of admissible displacement or stress has a practical interest. In mass min-
imisation problems under feasibility constraint, the governing constraint (displacement, buckling load,
maximal stress) depends on the load case combination chosen, so that it is harder to come up with general
statements. For that reason, in the followings, we consider maximal displacement, maximal tensile stress
and linear buckling loads as performance criteria. By studying each performance metric separately, we
aim at showing which formal strategy is chosen by the optimisation algorithm, so that an engineer could
eventually use this information in practical applications.

Normalisation of criteria

In order to get more clarity when comparing optimisation algorithms, we will consider normalised
values. The most e�cient design regarding one criterion is assigned with the value1. All the normalised
values will be comprised between0 and 1. The subscript � indicates that the value is non-dimensional.
The minimisation of maximal displacement is equivalent to the maximisation of its inverse, so that we
create the following non-dimensional performance criterion:

1
�
�

=
min �

�
(6.6)

Likewise, the normalised linear buckling load is de�ned as follows:

�
pcr =

pcr

maxpcr
(6.7)

The minimisation of the maximal tensile stress leads to the creation of a dimensionless value constructed
from the highest and lowest value of� found during exploration of the design space.

�
� =

max � � �
max � � min �

(6.8)
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Slenderness

Our study considers shells subject to both axial forces and bending. The relative value of the associated
sti�ness depends on the shell slenderness: this value has to be considered in our optimisation. Although
thin shells are usually built in reinforced concrete, we adopt an isotropic shell model, in the following
of the examples already cited in this dissertation. Writing D = D11 = D22 the bending sti�ness and
A = A11 = A22 the axial sti�ness for an isotropic shell, we have the classical results:

D =
Et 3

12 (1� � 2)
(6.9)

A =
Et

(1 � � 2)
(6.10)

Introducing L the span of the shell, the non-dimensional ratio D
L 2 A is given by:

D
L 2A

=
1
12

�
t
L

� 2

(6.11)

Our study is based on �xed boundary conditions, we have to consider di�erent shell thickness in order
to explore plausible optimisation problems. This is especially the case for the dome with free-edges, where
the bending sti�ness of the edge can have an in�uence on the structural response. We choose thus two
values for t

L based on realistic values for the shell with free edge:1
250 and 1

1000 . These values might seem
low, but we consider optimised shells, which can be highly e�cient: such slenderness can be commonly
reached. To get a point of comparison: the shell of the Kresge Auditorium has a span of 48 meters, and
a thickness at the apex of 9.8 centimetres and a maximal thickness of 14 centimetres. Its slenderness is
thus approximately 1=500. The e�ect of slenderness is less critical for the dome, which does not have
free-edge. One slenderness oftL = 1

400 was thus chosen.

6.2.5 Derivative-free optimisation

We use derivative-free optimisation algorithms for the single-valued optimisation problems2 (see Table
6.1). The optimisation algorithms are the one of the NLOpt library [119]. This library was used in
structural optimisation by [55], where a comparison of the relative performance of all the algorithms is
performed. More speci�cally, we use the plug-inGoat for Grasshopper , which interfaces the NLOpt
library with the environment of Grasshopper .

Optimisation strategy Algorithm

Local
Constrained Optimization by Linear Approximation - COBYLA [201]
Bounded Optimization by Quadratic Approximation - BOBYQA [203]

Subplex - SBPLX [213]

Global
Dividing Rectangles Method - DIRECT [120]

Controlled Random Search - CRS2 [122]

Table 6.1 � Optimisation algorithms implemented in NLOpt used in this comparative study.

A review of derivative-free algorithms is done byPowell , who invented the COBYLA and BOBYQA
algorithms used in this chapter [202]. From his point of view, such algorithms are suited for optimisation
of problems with up to 100 parameters. This is in accordance with the size of problems we are aiming to
solve in a CAD-based description of the design space, where the number of parameters is relatively low.

2Gradient-based algorithms could be used as well, but the �nite element analysis software used in this work does not give
access to gradient. Finite di�erence scheme would have had to be used, which would increases considerably the number of
function calls. Isogeometric analysis is an adequate tool for exact gradient estimation with NURBS modelling. Isogeometric
formulations for Love-Kircho� shell model exist [127], but an isogeometric formulation of the marionette technique would
need to be implemented. Gradient-based algorithms could be studied in future work.
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Description of algorithms

In the following, we will refer to the algorithms by their acronym. We present here a brief description
of their principle.

Constrained Optimization by Linear Approximation - COBYLA The COBYLA algorithm is
an algorithm for constrained optimisation problems. We refer here to the de�nition by Powell of his
algorithm in [202]. 'The COBYLA software [201] constructs linear polynomial approximations to the
objective and constraint functions by interpolation at the vertices of simplices (a simplex inn dimensions
is the convex hull ofn + 1 points, n being the number of variables).' At each step of the optimisation,
a linear programming problem is solved, its result is then evaluated and its value is used to improve the
linear approximation.

BOBYQA algorithm BOBYQA algorithm was also invented by Powell [203]. Its principle is similar
to COBYLA, but it performs quadratic approximation instead of linear approximation.

Subplex - SBLX Subplex3 is a simplex searching algorithm and is a variation of the well-known
Nelder-Mead algorithm [213].

DIRECT algorithm This algorithm samples the search space and creates hyper-rectangle, based on
function evaluations, it identi�es potentially optimal hyper-rectangles decides where to subdivide for the
next step [120]. DIRECT is a global algorithm and eventually converges to the global optimum. The
number of function calls can however be important, but it remains an e�cient algorithm in its category
[81].

Controlled Random Search - CRS2 Controlled random search is often compared to evolutionary
algorithms. It shares some similarities with them: it starts from a random population and explores the
design space by heuristic method, based on Nelder-Mead simplex algorithm [122].

Convergence criterion

Optimisation algorithms usually run uninterruptedly if a stopping criterion is not set. Such criterion
can be based on a maximal running time or a maximum number of iterations. In our study, we restricted
the optimisation time to 10 minutes for one optimisation run based on elastic linear analysis and20
minutes for linear buckling analysis. An additional convergence criterion on the relative change of the
optimum between two optimisation steps is set to0:001. The maximal running time considers practical
applications: in conceptual design stages, an engineer cannot spend much time on analysis and requires
a quick feedback. The local algorithms regularly converged under 10 minutes, but global algorithms
converge much more slowly because they explore the whole design space.

6.2.6 Multi-criteria optimisation

Guiding principles

In engineering practice, the designer has to make compromise between di�erent optimisation criteria.
Many competing methods exist, for example scalarisation aims at formulating a single-valued optimisation
problem by aggregating the di�erent objectives into one functional. The functional has to be constructed
so that the minimum lies within the Pareto front. Another strategy is to use evolutionary optimisation.
Evolutionary optimisation makes an analogy with the theory of evolution and natural selection. Starting
from a random population, the individuals are selected based on their �tness and can reproduce for the
next generation. The advantage of evolutionary algorithm is the diversity they can generate compared
to scalarisation techniques.

3The implementation of Steven G. Johnson di�ers from Rowan's and gave it another name in NLOpt (SBPLX), due to
Rowan's preference. In the following, we will write about the subplex algorithm as implemented by Johnson.
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In multi-criteria optimisation, the choice of the �tness function is not straight forward. There are
di�erent aspects:

ˆ Dominance rank: how many individuals dominate a given individual?

ˆ Dominance count: how many individuals are dominated by a given individual?

ˆ Dominance depth: at which front is an individual located?

The computation of all dominance indicators can be expensive if there are many individuals in the
population. Multi-criteria optimisation can become very di�cult when there are many objectives. Indeed,
for a given population size, the proportion of individuals which cannot be compared increases with the
number of objectives. One indicator has gained popularity to overcome this di�culty: the hypervolume
indicator. In a case where we aim at maximising all objectives, we can compute the hypervolume of the
set dominated by the Pareto front, like shown in Figure 6.5. Adding a point to the front increases the
hypervolume of the grey area, so that the indicator is a single-value objective to maximise.

Figure 6.5 � Pareto front (white dots) and the associated hypervolume.

In the followings, we use an evolutionary algorithms using the hypervolume method. We use the
HypE reduction and HypE mutation methods that address speci�c issues linked to the computation of
hypervolumes in high dimension, although we deal mainly with few objectives [14]. The software used is
Octopus for Grasshopper , which implements those algorithms.

Convergence criterion

Multi-objective optimisation (MOO) is used as a tool to compare in detail two design spaces. The
maximal running time is set to 15 hours so as to guarantee a good representation of the Pareto front.
We will see that the Pareto front found by multi-objective optimisation contains better solutions than
what was found by single-objective optimisation. The reader should not attach too much importance on
the di�erence between the performance of the two strategies, since one of them ran much longer and was
used as a reference for comparison of the design spaces.

6.2.7 Comparison of the methods

Our methodology is based on the use of di�erent optimisation algorithms. For each model (NURBS
or marionette), the algorithms �nd di�erent optimal values. Likewise, a same algorithm (for example
COBYLA) will �nd two di�erent optima for the NURBS or the marionette model. We want to as-
sess whether the choice of the marionette method has an impact on the performance of optimisation
algorithms.

For a non-dimensional performance criterion
�
a, we compare the average of

�
�
aMarionette �

�
aNURBS

�

to the standard variation s for all the realisations of
�
a. We de�ne the dispersion indicator � as:
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The number � has a qualitative interpretation. First, notice that � � is always positive, so that positive
values of � indicate that the marionette models perform better on average. If � is close to zero, then
the marionette and NURBS model have similar performance. If the absolute value of� is larger than 1,
this means that the di�erence between marionette and NURBS models is statistically signi�cant. We are
interested in normalised data (between0 and 1), the absolute value of

�
�
aMarionette �

�
aNURBS

�
cannot

exceed1. Intuitively, the case with the greatest dispersion is when
�
a take two distinct values

�
a0 and

�
a1

for the marionette and NURBS models. In such case, the only contribution to the standard deviation is
due to the di�erence between the marionette and NURBS model. In this case, it is simple to compute
� , writing n the number of algorithms tested, we have:

� =
n

�
�
a1 �

�
a0

�

r

2n
� �

a1 �
�
a0

2

� 2
= 2 � sign

�
�
a1 �

�
a0

�
(6.13)

We thus gave an argument showing that� is bounded as follows:

� 2 < �
�

�
a

�
< 2 (6.14)

A more involved calculation can show that the considered con�guration corresponds to a local ex-
tremum of � . Note that the absolute value of � does not indicate how much a model outperforms the
other (in equation 6.13, the amplitude of

�
�
a1 �

�
a0

�
does not in�uence the value of� ). The value of �

simply indicates whether or not the di�erence between marionette and NURBS is statistically signi�cant.
To quantify the di�erence, we use the mean relative variation e which is de�ned by equation (6.15).

e
�

�
a

�
= <

�
aMarionette �

�
aNURBS

�
aNURBS

> (6.15)

6.3 Shape optimisation of a dome

6.3.1 Geometric and mechanical constraints

The �rst case-study is a shell supported on a closed curve de�ned as a quadratic Bézier spline. Its
topology is represented in Figure 6.6. It has a width of40 meters and a length of57 meters. The problem
has two axis of symmetry, so that we can focus on one quarter of the structure. The NURBS model
is generated with two NURBS patches, the plane view of the marionette mesh is generated with two
NURBS patches as well. The elevation curves of the marionette mesh are represented in light orange in
the middle of Figure 6.6. The parametrisation is kept as simple as possible: the two NURBS patches
have both 3� 3 control points and they share a common boundary, so that there are15 control points in
total. The notations for the control points are given in Figure 6.6.

We do not allow for normal discontinuities in the problem, so that some constraints on the positions
of the control points arise. Table 6.2 shows the degrees of freedom for the NURBS and Marionette
technique. All the points with the subscript 2 are �xed, both in the NURBS and Marionette models,
and are not shown in the table. The sign� indicates a constraint enforced by the symmetries of the
problem. For example, the pointsB 1 ; C1 ; D 1 have to be aligned in order to guarantee aC1 continuity of
the surface parametrisation. There are6 degrees of freedom in the plane view for both models and two
degrees of freedom on the elevation for the NURBS.

The elevation curves of the marionette mesh are represented in orange in Figure 6.6. One elevation is
constrained by the boundary. The other elevation is a curve crossing the boundary. It is represented as a
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Figure 6.6 � Parametrisation of the elliptic dome

A 0 A 1 B 0 B 1 C0 C1 D 0 D 1 E0 E1

Marionette Fixed x y A 1 :x; B 0 :y y x; C0 :y y � y y
NURBS z x; A 0 :z y; z A 1 :x; B 0 :y; B 0 :z y x; C0 :y; z y � y; � y; �

Table 6.2 � Degrees of freedom for the marionette and NURBS model in the dome problem.

quadratic Bézier spline. The continuity between patches creates one degree of freedom. The marionette
mesh model has7 degrees of freedom, whereas the NURBS model has8 degrees of freedom. They are
therefore expected to have similar performances.

6.3.2 Initialisation

The two models are initialised with similar geometry and similar performance criteria. The initial
value is expected to be e�cient: it has a parabolic section with a moderate rise-over span ratio (hL = 25%).
The continuity between patches guarantees load transfer between patches. Figure 6.7 shows the initial
geometries for the NURBS and marionette meshes. They are visually very close and their mechanical
performances are similar.

(a) Marionette mesh (b) NURBS

Figure 6.7 � Initial geometries for the domes.

6.3.3 Single-criteria optimisation

We present �rst results on single-criteria optimisation with the non-dimensional performance criteria
de�ned in Section 6.2.4. The initial values are also shown for comparison. The relative performance
of the di�erent algorithms is discussed. Because we focus on several performance criteria, we provide a
multi-criteria cartography and optimisation in the next subsection.
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General comments

Figure 6.8 displays the optimal results for the minimisation of the maximal displacement. The initial
design was already e�cient. The best optimisation algorithm reduces the maximal displacement by
more than 30%, which is a considerable improvement. The Marionette models yield in general better
performances than NURBS models, although the best optimum is found in the NURBS design space.
The di�erent algorithms have similar performances for the Marionette method, but they have varying
quality in the NURBS design space. The dispersion coe�cient is positive and close to one which indicates
that on average, Marionette outperforms NURBS. The relative di�erence between the Marionette and
NURBS model is of 13%.

�
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Figure 6.8 � Optimal values found for the minimisation of the maximal displacement under self-weight.

The minimisation of the maximal displacement under non-symmetrical loads gives more diverse re-
sults. The optimal designs cover a wide range of performance: the choice of the optimisation algorithm
in�uences the �nal results, especially for the NURBS model. The results of optimisation are shown in
Figure 6.9. The optimisation with marionette models outperforms clearly the optimisation with NURBS
models, as shown by the indicator of dispersion computed in equation (6.17). The mean di�erencee
is of 145%, so that the tendency is much more visible than for the optimisation of displacement under
self-weight.
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Figure 6.9 � Optimal values found for the minimisation of the maximal displacement under non-
symmetrical load.
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The maximisation of the buckling load improves the initial design signi�cantly. The linear buckling
load is indeed increased by a factor of50% after optimisation. This is an important improvement in the
context of slender structures, which are usually designed regarding non-linear criteria. We might add that
engineers can lack of intuition when facing non-linear behaviour of structures. Optimisation can play an
important role for the improvement of the design of structures sensitive to instabilities. The marionette
mesh clearly outperforms the NURBS model for the COBYLA and CRS algorithms, which is illustrated
by the dispersion coe�cient.

�
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�
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�
= 1 :01 (6.18)
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Figure 6.10 � Optimal values found for the maximisation of linear buckling load under self-weight.

Figure 6.11 shows the dimensionless tensile stresses after optimisation of both structures. There is no
clear di�erence between the marionette and NURBS models, although the optimal designs with NURBS
parametrisations have a better performance on average:

�
�

�
� max

�
= � 0:41 (6.19)
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Figure 6.11 � Optimal values found for the minimisation of the maximal tensile stress under self-weight.

We should comment the absolute values found by this last optimisation as well. The minimisation
of the maximal tensile stress shows that both marionette and NUBRS design spaces are wide enough
to �nd compression-only solutions under self-weight. The SBPLX algorithm �nds indeed con�gurations
with compression-only structures. The DIRECT algorithm also �nds near zero maximal tensile stress.
The other algorithms do not succeed in eliminating tension in the structure, but decrease drastically the
maximal tensile stress compare to the initial design.

Relative performance of the algorithms

The results of optimisation show that the algorithms have di�erent performances. The coe�cient of
variation for the whole data set is of 6:0% for marionette meshes and24:6% for NURBS models. This
means that NURBS models are more sensitive to the choice of the optimisation algorithm. For example,
for the minimisation of energy under non-symmetrical load, the relative di�erence between the worst
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Figure 6.12 � Optimal values found for the minimisation of the maximal tensile stress under self-weight.

and best optimum is of 20% for the marionette model and superior to 300% for the NURBS model.
There is no simple rule that would allow to select the best optimisation algorithm. We introduce a
measurement for the comparison of optimality of algorithms and call an optimum with non-dimensional
performance criterion superior to n% an n% optimal design. Table 6.3 shows the number of times that
an algorithm succeeds in �nding the n% optimal design. There are4 optimisation problems solved (one
for each objective function), each algorithm being run both on the marionette and NURBS design space,
the maximal value within the table is of 8. SBPLX and DIRECT seem to dominate the other algorithms,
but they can eventually fail to give an optimal design. For example, DIRECT �nds very poor optima for
the minimisation of displacement under non-symmetrical load.

COBYLA BOBYQA SBPLEX DIRECT CRS2
100%optimal design 2 0 1 1 0
99% optimal design 2 0 2 3 0
95% optimal design 3 1 6 5 1
90% optimal design 4 4 7 6 2

Table 6.3 � Relative performances of optimisation algorithms: count of near optimal designs.

Interpretation of the results

The best optima found for the marionette and NURBS design spaces are shown in Figure 6.13. The
optima of the NURBS and Marionette design spaces are visually similar, except for the minimisation
of maximal tensile stress. The minimisation of energy under non-symmetrical load leads in both cases
to an increase of the rise, the rise-over-span ratio reaching �nally50%. This noticeable change in the
geometry might explain the various performances of the di�erent optimisation algorithms. In other
optimisations, the rise-over-span ratio remains limited to 25%. The in-plane parametrisation changes
between the di�erent optima, although it is not as immediate to see its in�uence. The most simple
parameter to interpret is the position of the umbilical point, which tends to move away from the support
after optimisation.

Comparison of Marionette and NURBS

The optimisation of NURBS and Marionette meshes shows some di�erences between the design spaces.
There is indeed a signi�cant dispersion for three of the chosen objective functions. It can be attributed to
variations of the performance of optimisation algorithms for the NURBS parametrisation. Getting rid of
the few outliers reduces greatly the dispersion� . We should state that besides those outliers, the NURBS
and Marionette design space are highly similar. The optima of the marionette design space and of the
NURBS design space are very close (they are all within a5% range), so that di�erences between NURBS
and Marionette can be attributed to the way algorithms tend to the optimum rather than on the value
of the respective global optima themselves. This issue is not studied often, as literature on optimisation
usually evaluates one speci�c optimisation algorithm to various problems. We show here that studying
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(a) Marionette, optimal � 0 (b) Marionette, optimal � 1 (c) Marionette, optimal buckling (d) Marionette, optimal �

(e) NURBS, optimal � 0 (f) NURBS, optimal � 1 (g) NURBS, optimal buckling (h) NURBS, optimal �

Figure 6.13 � Geometry of the best optima for each objective for the dome.

various algorithms for a same problem can lead to di�erent optima, and that the choice of optimisation
algorithm is a very sensitive topic. This fact lead to the contribution of Clune on appropriate algorithm
selection for optimisation [55]. We propose a qualitative explanation on how optimisation algorithms
explore the marionette design space in Section 6.5.

6.3.4 Multi-criteria optimisation

Single-objective optimisation gives a partial information about the performances of a design. For
example, a solution that minimises the strain energy does not necessarily have a high buckling load.
In this section, we represent the results of multi-objective optimisation in order to highlight areas of
compromise. Figure 6.14 shows the Pareto front computed for the maximale tensile stress� max and the
critical buckling factor � under self-weight.
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Figure 6.14 � Multi-criteria optimisation

The results of single-valued optimisation are also added in the graph. Notice how optima for stress
minimisation have a low buckling capacity in the NURBS design space. The comparison of the two Pareto
fronts con�rms the results of single-valued optimisation in the sense that the NURBS design space provides
better optima for the minimisation of the maximal stress, whereas the marionette design space provides
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better optima for the maximisation of buckling. The horizontal line in Figure 6.15 represents the minimal
tensile stress in the marionette design space. The vertical line represents the maximal buckling load in
the NURBS design space. It can be noticed that no Pareto front dominates entirely the other. Many
points of the marionette frontier are dominated by the NURBS frontier because of the maximal tensile
stress (some Pareto optima of the NURBS design space are below the horizontal line). Some points of the
marionette frontier dominate the NURBS frontier because of a high linear buckling load (they are on the
right of the vertical line). The distance between the two frontiers in the � component is of0:1MPa. Since
we are dealing with realistic loads, span and construction materials, such a di�erence can be considered
as negligible from an engineering perspective. The maximal tensile stresses found by optimisation are
indeed extremely low and inferior to the tensile strength of concrete for both design spaces. Likewise,
the di�erence between linear buckling load is of a few percent only.
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Figure 6.15 � Comparison of the Pareto fronts (E; � ) of the two design spaces.

The multi-objective optimisation shows that the Pareto fronts of the marionette and NURBS models
are highly similar. The di�erences observed during single-valued optimisation seem to be linked to the
performance of algorithms themselves rather than by di�erences between the NURBS and Marionette
framework.

To go further, we study another multi-criteria optimisation problem: the minimisation of strain energy
and maximisation of linear buckling load. Figure 6.16 represents the Pareto front found by evolutionary
algorithm for the marionette framework together with the optima found by single objective optimisation
which have been discussed before. Those optima are close to the Pareto frontier. The non-pareto data
from the last generation is represented with grey crosses.

Figure 6.17 shows the Pareto front for the same objectives and the NURBS design space. The shape
and amplitude of the Pareto front are comparable with the one of the Marionette design space. The
optimal values of single-objective optimisation with the NURBS design space are also shown. It can be
noticed that those optima are far away from the Pareto front compared to what is observed in Figure
6.16. This con�rms our interpretation stating that 'true' optima of the marionette design space are not
necessarily better, but they are easier to reach by single-objective optimisation algorithms in the case of
the ellipsoidal dome.

The comparison of the two Pareto fronts is shown in Figure 6.18. The two fronts are close to each
other for low values of � 0: the NURBS front dominates then the front of the marionette design space
(for pcr between 80kPa and 95kPa.The front of the marionette design space dominates the front of the
NURBS design space for high values ofpcr . The vertical dashed line represents the maximal buckling
load found in the NURBS design space.

The multi-objective optimisation demonstrates that the two design spaces have similar performance,
and that a wide variety of designs can be selected following the structural imperatives. Both design spaces
can yield structures with limited or non-existent tensile stress under self-weight. The di�erences revealed
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Figure 6.16 � Pareto front for the objectives 'maximal displacement' and 'linear buckling load' for the
marionette design space.
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Figure 6.17 � Pareto front for the objectives 'maximal displacement' and 'linear buckling load' for the
NURBS design space.
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Figure 6.18 � Comparison of the Pareto fronts (pcr ; � 0) of the two design spaces.
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by single-valued optimisation are not necessarily found in this detailed analysis. The logical conclusion
is that the marionette design space set in this comparative study is easier to explore with single-valued
optimisation algorithms under time constraint. We propose now to study a second example in order to
con�rm these �rst observations on optimal shell design.

6.4 Shape optimisation of a shell with free-edges

6.4.1 Geometric and mechanical constraints

The second case study focuses on a shell supported on three corners. The geometry of the shell is
illustrated by Figure 6.19. The shell has a span arbitrarily set to 130 meters. The geometry has six
planes of symmetry and can be decomposed into six domains without singularity, where the marionette
technique can be applied. The symmetry is chosen here to simplify the modelling and reduce the number
of variables. The NURBS models are built from patches of degree 2 with 9 control points. The planar
view of the marionette meshes is built with the same kind of patch, whose control points are shown in
Figure 6.19. The orange area shows the admissible area for the supports of the structure (wherez = 0 ).
The shapes are trimmed with a horizontal plane.

(a) Overall plane view (b) Plane view of one patch

Figure 6.19 � Parametrisation of the CNIT problem with the marionette technique

Like for the dome, the symmetry implies some constraints to the position of the control points. We
recall the constraints in Table 6.4: notice that NURBS and marionette parametrisations have the same
number of degrees of freedom in the plane, but that the planarity constraint reduces the number of
parameters encoding vertical position of control points.

A 0 A 1 A 2 B 0 B 1 B 2 C0 C1 C2

Marionette Fixed x; y Fixed t x; y x; y Fixed x C2 :x = B2 :x
NURBS t x; y Fixed t; z x; y; z x; y; z z x; z C2 :x = B 2 :x, C2 :z = B 2 :z

Table 6.4 � Degrees of freedom for the marionette and NURBS model in the CNIT problem.

The marionette and NURBS models have8 and 9 degrees of freedom in the horizontal plane respec-
tively. The elevations of the marionette mesh are controlled with quadratic and cubic Bézier splines
drawn in Figure 6.20. In planeP2, we impose horizontal tangency at the crown, which leaves two degrees
of freedom: the height of the crownh and the slope at A 2 . In plane P1, we do not impose restrictions
on tangency, which leaves three degrees of freedom: the height of three control points. We recall that a
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cubic spline with control points (P i ) and parameter t (between 0 and 1) is given by following equation:

B (t) = (1 � t)3 P 0 + t � (1 � t)2 P 1 + t2 � (1 � t) P 2 + t3P 3 (6.20)

For marionette meshes, the(x; y) components are determined by the planar view. Equation (6.20) has to
be modi�ed. We retrieve the correspondingu value of each raised point on the NURBS patch and create
a normalised parameteru between0 and 1. We introduce the altitudes of the control points zi , so that
for each point to raise (x (u) ; y (u) ; 0), we can assign an elevation:

z (u) = (1 � u)3 � z0 + u � (1 � u)2 z1 + u2 � (1 � u) z2 + u2 � z3 (6.21)

Figure 6.20 � Parametrisation of elevations for the marionette method.

In total, the marionette mesh and NURBS model both have 15 parameters. The size of the design
space is identical due to enrichment of the description of the elevations for the marionette technique.

Supports We have de�ned an area of admissible location of the supports. Small changes of the shape
of the support can indeed radically change the behaviour of a shell, and investigations on this aspect
were of interest. Some shapes generated with the NURBS or marionette method do not �t within the
prescribed domain (delimited by a line). We deal with this issue by using a penalty method. For a shell
with parameter x, we have a constraint on the supportd (x) � 0. A quadratic penalty is added to the
initial objective function to minimise f (x):

f � (x) = f (x) + �g (x) (6.22)

where

g(x) =

(
0 if d (x) � 0

d (x)2 if d (x) > 0
(6.23)

The scalar � is a penalty factor, which is set arbitrarily to 1000. The initialisation is a feasible design,
and we veri�ed that all the algorithms converged indeed to feasible designs.

6.4.2 Initialisation

Local optimisation algorithms are sensitive to the initial position. We considered an initialisation with
similar performances for NURBS and marionette meshes. Because NURBS patches are not necessarily
parametrised by conjugate curve network, the starting point of optimisation is not identical for the
NURBS and Marionette models. The initial geometries are shown in Figure 6.21. We chose surfaces with
a straight pro�le, so that the Bézier patches are close to be developable surfaces. In that manner, the
optimisation algorithm can converge towards shapes with either positive or negative gaussian curvature
at the boundary. The height of both shells is set to55 meters.
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(a) Marionette mesh (b) NURBS

Figure 6.21 � Initial geometries for the shells on three supports.

6.4.3 Single-criteria optimisation

General comments

Shells with t
L = 1

1000 The minimisation of displacement leads to di�erences between marionette and
NURBS-based optimisation, as seen in Figure 6.22. On average, the marionette models have better
results, which is illustrated by the dispersion criterion. Notice however that this is due to the poor
performance of the NURBS model with the CRS2 algorithm. The best optimum is found within the
NURBS design space. Unlike the results for the dome on an elliptical boundary, the performance metric
is improved by an order of magnitude by structural optimisation.
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Figure 6.22 � Optimal values found for the minimisation of displacement under self-weight( t
L = 1

1000 ).

The minimisation of the displacement under non-symmetrical loads is subject to high variations of
algorithmic performance, as illustrated in Figure 6.23. The results on the marionette all outperform
results of the NURBS framework (the mean relative variation e is 59%), but the coe�cient of dispersion
remains inferior to 1. It can be noticed that two di�erent optimisation algorithms can indeed have very
di�erent output: choosing the right optimisation technique (in this case SBPLX) is more crucial than
choosing between the Marionette or NURBS design space.
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Figure 6.23 � Optimal values found for the minimisation of displacement under non-symmetrical load
( t

L = 1
1000 ).

The results of the optimisation for linear buckling are summed up in Figure 6.24. The optimisation of
the linear buckling load shows a signi�cant di�erence between the marionette and NURBS design spaces.
Indeed, the best optimum found in the NURBS design space reaches60% of the best optimum found in
the marionette design space. Like for the minimisation of displacement under non-symmetrical load, the
di�erence between optimisation algorithms is also signi�cant, but the di�erence between marionette and
NURBS models is more signi�cant, as seen in equation (6.26).
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Figure 6.24 � Optimal values found for the maximisation of linear buckling load under self-weight ( t
L =

1
1000 ).

Shells with t
L = 1

250 The result of the minimisation of displacement under self-weight for shells with a
slenderness of 1

250 are shown in Figure 6.25. Shells with lower slenderness show less di�erences between
the NURBS and marionette frameworks. The best optima of each design space di�er by10%. The
di�erence between the two parametrisations is not very signi�cant, as shown by the dispersion indicator
computed in equation (6.27).
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Figure 6.25 � Optimal values found for the minimisation of displacement under self-weight( t
L = 1

250 ).

The shell with lower slenderness (t=L = 1=250) are subject to less dispersion than the highly slender
shells (t=L = 1=1000). The bending sti�ness seems to regularise the local exploration of the design space.
This is particularly visible in the case of minimisation of displacement under non-symmetrical loads,
which is shown in Figure 6.26. The marionette models performs better than the NURBS models by16%
on average, but this is not a strong trend. The di�erence between the best optima of two design spaces
is indeed only of10%.
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Figure 6.26 � Optimal values found for the minimisation of displacement under non-symmetrical load
( t

L = 1
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The objective function which presents the most signi�cant di�erences between the NURBS and mar-
ionette design space is the maximisation of the linear buckling load. The best optimum of the NURBS
framework reaches70% of the best optimum of the marionette framework.
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Figure 6.27 � Optimal values found for the maximisation of linear buckling load under self-weight ( t
L =

1
250 ).

Relative performance of algorithms

The optimisation of shell supported on three supports shows a higher dispersion of algorithm perfor-
mance than with domes. The coe�cient of variation is of 35% for the marionette design space and52%
for the NURBS design space. This dispersion can be explained by the fact that the initial design is far
from being optimal and by the sensitivity of the performance with respect to the shape of the free-edge.
We notice that the optimisation algorithms give very di�erent optimal values, and that no optimisation
method outperforms systematically the others. However, we can make some speci�c comments. Table 6.5
shows the number near-optimal designs found by optimisation algorithms for the 6 di�erent optimisation
problems.

COBYLA BOBYQA SBPLEX DIRECT CRS2
100%optimal design 2 1 2 1 0
90% optimal design 3 1 3 1 0
85% optimal design 4 1 5 5 2

Table 6.5 � Relative performances of optimisation algorithms: count of near optimal designs.

First, the CRS algorithm never �nds the optimal solution within the given time. The explorative
nature of the algorithm requires many function calls before convergence, so that it is outperformed by
the majority of the other algorithms. Likewise, BOBYQA never �nds optimal or near-optimal solutions:
we can deduce that the quadratic approximation of the objective function is not as e�cient as the
linear approximation performed by COBYLA. DIRECT generally has a better performance and regularly
outperforms all the other algorithms used in the benchmark. The SBPLX algorithm gives regularly good
results when using a design criterion based on linear analysis. In that case, a function call takes200
milliseconds. In an optimisation run of 10 minutes, up to 3000 function calls can be made: the local
algorithms have enough time to reach the (local) optima. The linear buckling analysis requires however
approximately 2 seconds, so that local algorithms do not all reach optima and run through the 20 minutes.

Interpretation of the results

The best optimal results of the Marionette and NURBS design spaces for the shells witht
L = 1

250 are
shown in Figure 6.28. This overview of optimal design illustrates the variety of strategies that can be
used by designers to improve the performance of shell structures. The solutions are indeed more diverse
than the optimal designs of the dome problem in Figure 6.13. Optimisation algorithms explore di�erent
areas of the design space, so that several families of optimal design can be identi�ed. The optima of the
NURBS and marionette design space have a similar strategy for the minimisation of displacement under
self-weight: the rise over-span remains approximately equal to40%, and negative curvature is introduced
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locally at the edge. The optimal designs for the minimisation of displacement under non-symmetrical
load introduce negative curvature on the whole surface. This solution recalls some shells designed by
Felix Candela . The shells maximising buckling have a very di�erent strategy: the marionette mesh
introduces a crease and the free-edge has a positive gaussian cuvature, whereas the NURBS model has a
very high negative curvature at the free-edge.

(a) Marionette mesh, optimal � 0 (b) Marionette mesh, optimal � 1 (c) Marionette mesh, optimal buck-
ling

(d) NURBS, optimal � 0 (e) NURBS, optimal � 1 (f) NURBS, optimal buckling

Figure 6.28 � Geometry of the best optima for each objective
�

t
L = 1

250

�

For shell with slenderness of 1
1000 , optimal con�gurations have normal discontinuities between patches,

both for the NURBS and marionette models. Many built examples show that this can indeed be a mean-
ingful strategy. Consider for example notorious shells built on punctual supports: the CNIT (engineer:
Nicolas Esquillan), the market hall in Royan (engineers: Bernard Lafaille and René Sarger) or the restau-
rant Xochimilco (engineer: Felix Candela). All those shells are based on geometrical principles, but are
highly e�cient. With a thickness of 8 centimetres and a span of 52.4 meters, the market hall has a
slenderness comparable to the most audacious designs by Heinz Isler, which are compression only struc-
tures under self-weight. Solutions optimised for buckling or non-symmetrical load cases tend to introduce
crease. The crease introduce more curvature and each sector behaves like an arch with high bending
sti�ness. This explains the introduction of creases for objectives that require high bending sti�ness,
like buckling or non-symmetrical loads. This solution is however less e�cient than pure shell action for
symmetrical loads, so that the no 'optimal' solution outperforms the others on all optimisation criteria.

Comparison of NURBS and Marionette

The comparative study for 6 families of optimisation problems shows that the problems parametrised
with the marionette mesh regularly outperforms the NURBS model. In 22 out of 30 comparisons, the
optimisation �nds a better solution with the marionette method. In six comparative optimisation families,
the marionette design space has the best optimum �ve times. The di�erence between the two design space
is statistically signi�cant, so that the marionette design space can be considered to be of high quality.
Multi-criteria optimisation should provide more detailed answers about this statement.

6.4.4 Multi-criteria optimisation

In the followings, we show results of multi-criteria optimisation for both NURBS and marionette
framework for shells with t

L = 1
1000 . The considered objectives are the two displacements and the linear

buckling load. We display the absolute values, so we recall that displacement is minimised, whereas linear
buckling load is maximised.
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Figure 6.29 represents the Pareto front found after 50 iterations of the evolutionary algorithm for a
population size of200. Since there are three objectives, the objective space cannot be simply represented
in two dimensions. We show thus three projections of the design space. It is noticed that there are three
clusters of optima, represented in di�erent colours. Each of these cluster dominates the others on one
of the projections. For example, the black cluster dominates the others in the� 0/ � 1 map, the blue one
dominates the others in the pcr =�0 map and the orange one dominates in thepcr =�1 map. The clusters
have a high dispersion along the� 0 components (they are elongated in this direction). This means that
by increasing slightly the displacements under symmetrical loads, one can improve signi�cantly other
performance metrics of a structure. For example, one can double the buckling capacity compared to the
structure that minimising � 0 with marginal loss of sti�ness. Such trade-o� should be considered carefully
by engineers.

0 0:05 0:1 0:15 0:2
0

0:01

0:02

0:03

0:04

Displacement � 0 (m)

D
is

pl
ac

em
en

t�
1

(m
)

(a) � 0 / � 1 map

0 5 10 15 20
0

0:05

0:1

0:15

0:2

Buckling load pcr (kPa)

D
is

pl
ac

em
en

t�
0

(m
)

(b) pcr / � 0 map

0 5 10 15 20
0

0:01

0:02

0:03

0:04

Buckling load pcr (kPa)

D
is

pl
ac

em
en

t�
1

(m
)

(c) pcr / � 1 map

Figure 6.29 � Pareto front for three objectives for the marionette design space for the shell witht=L =
1=1000. Three clusters, in three di�erent colours can be identi�ed.

Results of multi-criteria optimisation for the NURBS design space can be found in Figure 6.30. The
�ftieth generation (with a population size of 200) is shown. Unlike the marionette design space, no
cluster can be identi�ed. Some similarities arise however. Consider for instance Figure 6.30b: shells with
a low displacement also have a relatively low buckling load. By choosing a strain energy that equals
120% of the minimum strain energy, one can multiply the linear buckling load of the structure by a
factor of 2. Interestingly, it can be seen that the maximal buckling load of the front obtained with the
NURBS design space is far below the one found with the marionette design space. The evolutionary
algorithm failed to �nd the cluster that would be equivalent to the blue cluster of Figure 6.29. This
is in accordance with the di�erence found between marionette and NURBS models in the single-valued
buckling optimisation. Performances on other metrics are less visible, but the vast majority of the Pareto
front of the Marionette space dominate the Pareto front of the NURBS model. The di�erence observed in
single-valued optimisation must therefore not only be attributed to the peculiarities of the single-valued
optimisation. They reveal a di�erence of quality between the NURBS and marionette design space,
namely here the better performance of the marionette design space, that we attribute to the enrichment
of the description of one elevation.
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Figure 6.30 � Pareto front for three objectives for the NURBS design space for the shell witht=L = 1=1000.

6.5 Discussion and guidelines

6.5.1 Sensitivity to initialisation

The optimisation of the shells on three supports demonstrates that optimisation can signi�cantly
improve the performance of a structure. The optimisation procedures lead to signi�cant changes of the
parameters (and thus the visual appearance of shells) and of the performance metrics. For example,
the strain energy can be divided by a factor of70 after optimisation. The linear buckling load can also
be multiplied by more than 20 without signi�cant change of mass. This drastic improvement of the
mechanical behaviour shows that the initialisation is far from being optimal: this could be expected,
since the marionette and NURBS patches have a very low gaussian curvature. The dome structure on
contrary was initialised with a good design: the optimisation improved this design, but the change is not
as signi�cant.

The di�erence of behaviour of optimisation algorithms with the shells with free-edges compared to the
closed dome can be interpreted by two factors. First, the non-optimality of the initialisation implies that
the optimisation algorithms will look for solutions 'far away' (in the parameter space) from the initial
input, so that they might get stuck in local optima. This was expected in our study and motivated our
choice of initialisation. An initialisation with a strong negative gaussian curvature at the free-edge would
have unlikely yielded optima with vanishing curvature at the free-edge. Second, the design of shells with
free-edges is much more challenging than the design of domes, since many strategies can be employed to
sti�en a free-edge. This di�culty was already observed by Bletzinger and Ramm.

6.5.2 Relevance of the marionette technique in structural optimisation

The marionette method provides a rich design space for fabrication-aware shape generation. The
performance of optimisation algorithms is comparable to the one of NURBS, and when single objective
functions are considered, the Marionette method often outperforms NURBS in our study. This might
seem counter-intuitive, as the latter one o�er a wider design space and should feature better global
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optima. However, it also has many undesirable con�gurations. For example, consider the �rst case-study
of a dome. The NURBS model has one additional degree of freedom, it can be seen easily that the
additional mode corresponds to the deformation of one elevation. The additional shape parameter of the
NURBS model can be seen in Figure 6.31. The intuition of an engineer is that this mode is not the most
relevant for structural modelling. Increasing the number of degrees of freedom (for example by taking
4� 4 control points for the in-plane parametrisation), would not create interesting modes of deformation
for the NURBS model.

Figure 6.31 � The shape parameter speci�c to the NURBS model.

We should however be careful with sweeping generalisations. The problems studied in this chapter,
which are classical problems in shape optimisation of shell structures, were properly parametrised by
following examples in existing literature. As an example, the decomposition in six di�erent patches
is necessary for the appropriate modelling of the shell on three supports. The case-studies, although
based on a fair amount of optimisation runs, did not investigate the in�uence of mesh topology on the
results. Choosing appropriate parametrisations and mesh singularities is important for NURBS-based
optimisation, but it is even more important for the marionette method.

6.5.3 Proper parametrisation

It appears that some features, like the curvature of free-edges a�ect drastically the structural behaviour
of shell structures. By aligning the mesh with the free-edge, it is possible to control this value with only
one parameter, and eases the local exploration of the design space. Moreover, free edges are often visible
and the alignment of the panels layout with it can be considered more æsthetically pleasing.

The present study considered two variations on the boundary conditions. The shell on three supports
considered a bounding region for the boundaries so that the shape of the boundary could change during
optimisation, whereas the ellipsoidal dome has �xed boundaries. The second example is obviously more
constrained, and since marionette meshes have less degrees of freedom than regular meshes, we should
make a comment on the topic of imposed boundaries. Treating linear hard constraints (like vertex
position) with the marionette method can be done by Singular Value Decomposition. As discussed in
Chapter 5, the resulting vector space can be null if too many constraints are imposed. This is not the case
of the ellipsoidal dome. One of the most delicate aspects is thus the handling of straight boundaries. If
the mesh is aligned with it, this constrains highly the shape generation, as the marionette mesh is locally
a cylinder. Therefore, it is necessary to have quad meshes which are not aligned with straight boundaries
if one wants double curvature at the supports. This di�culty was already highlighted in [245].

6.5.4 A possible improvement: the optimisation of gridshells

Structural parametrisation of gridshells

The marionette technique and NURBS are methods that create surfaces with a speci�ed parametrisa-
tion. The optimisation problem treated in the present chapter considered shells with isotropic material,
so that only the parameter 'shape' is signi�cant. The parametrisation itself becomes an important design
parameter when constructing discrete structures, like gridshells. In such cases, the structure has a certain
anisotropy depending on the orientation of the members. The parametrisation of the structure in�uences
thus the distribution of sti�ness. The question of parameterisation of gridshell structures is extremely
important, as it impacts their bearing capacity and the fabrication. [267] optimised the parameterisation
of gridshell structures in order to minimise their de�ection under di�erent load cases. It is however more
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Figure 6.33 � An overview of several mesh topologies obtained by combination of simplicial meshes: 15
di�erent design are proposed, creating as many design spaces.
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meshes as a vector space, we can imagine a vertex-based optimisation with a set of linear constraints, so
that �nite-element parametrisation could be used with marionette meshes as well.

The separation of the parametrisation of the plane view and of the elevation �nds motivation in the
theory of thin shells. We see indeed a relation between this point of view and the one taken byPucher :
by separating the vertical and horizontal components of the stresses, one notices that vertical equilibrium
(and form) can be derived from horizontal equilibrium (with the choice of a proper stress function), see
for example [264]. It is indeed a well-known fact that horizontal equilibrium of thin shells under vertical
loads is found by integration of anAiry stress function, whereas vertical equilibrium is found by solving
a more complex non-linear di�erential equation. Enriching the description of the elevation in marionette
meshes will hence provide more possibilities to �nd a good geometry.

The case-study shows that geometrically linear or purely equilibrium-based thinking is not necessarily
the best solution for thin shells. We notice indeed that the minimisation of the strain energy or of the
maximal tensile stress can yield structures with low buckling capacity. On the Pareto fronts generated
in our multi-objective optimisation, increasing of a few percent the strain energy of a shell can indeed
improve signi�cantly its buckling capacity. For highly optimised shells, the e�ect of non-linearities should
be considered with care. EkkehardRamm called thin shell the Prima Donna of structures. It carries
load e�ciently through membrane action, so that extreme slenderness can be achieved. It is however
sensitive to imperfections and instabilities, so that catastrophic failures might occur [206].

Like all CAD-based optimisation techniques, the optimised shape has the same topological features
as the initial shape. The biggest challenge left is to provide guidance on the topology to chose. We
did not provide new tool or algorithm for that purpose but we identi�ed existing methods that can
be combined with the marionette technique to generate di�erent parametric design spaces of surfaces
covered with planar facets. These tools could be used for the design of particular structural systems. As
a preliminary step in this direction, the next chapter proposes a systematic study of two non-standard
structural systems where the form is generated with the marionette method.
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Chapter 7

Application to innovative structural
systems

This chapter proposes to study the design of non-standard structural systems within a fabrication-
aware design space. We showed previously that semi-regular or non-smooth patterns can be generated
easily with the Marionette technique. The potential of gridshells meshed with patterns constituted of
triangles and hexagons, also known askagome patternand generalisation of folded plate structures are
investigated.

7.1 Problem statement

7.1.1 Statement

The marionette technique proposed in Chapter 5 is an intuitive method of complex shape generation,
which has a high potential for the parametrisation of structural optimisation problems. The method pro-
vides indeed the end-user with a rich fabrication-aware design space. Chapter 6 proposed the exploration
of this design space in the context of shape optimisation of shell structures. The marionette method
is revealed to be an e�cient way to parametrise structural design problems, but remains restricted to
conventional systems.

In Chapter 5, we discussed non-standard applications of the marionette method, beyond quadrilateral
meshes and beyond smoothly parametrised surfaces. The method is indeed not limited to quadrilateral
meshes, and the smoothness of the projection and elevation curves has no in�uence on the solution of the
marionette problem. The aim of this chapter is thus to propose an assessment of the marionette method
for the generation of non-conventional structural systems. This approach can be compared to the one of
Candela or Dischinger, who evaluated the mechanical behaviour of the shapes they built with analytical
formulæ.

In the followings, we consider two structural systems illustrated in Figure 7.1 for which the marionette
method can be applied: gridshells with a Kagome (tri-hex) mesh and folded plate structures. These two
types of structures can be considered as discrete shells, and as such, they are sensitive to buckling and
instabilities, although the Kagome grid shown in Figure 7.1 is designed with respect to bending due
to its shape and boundary conditions. This chapter studies speci�cally the relevance of non-standard
con�gurations generated with the marionette meshes, especially with respect to mechanical criteria, like
sti�ness or buckling capacity.

First, a speci�c literature review on the design and analysis of gridshells and folded plate structures
is presented. The general methodology for shape generation and structural analysis is then detailed in
the second section. The performance of kagome gridshells and folded plate structures are then assessed
in the third and fourth section. The �fth section discusses the potential of the geometrically-constrained
methods developed in this dissertation.

177
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(a) Cité Musicale (arch: Shigeru Ban, picture: Nicolas
Gromond)

(b) Wooden folded plate structure (picture: IBOIS)

Figure 7.1 � Two structural systems studied in the Chapter: Kagome gridshell (left) and folded plate
structure right).

7.1.2 Research questions

Fabricators face an increasing demand of non-standard structural systems, illustrated by some of
the recent realisation of Shigeru Ban. While there is a rich literature on the analysis of commonly built
structural systems, the designers are often left with few guidelines for innovative structural con�gurations.
This chapter merges fabrication considerations (planarity of facets) with an evaluation of the structural
behaviour of such con�gurations. The main contributions of this chapter are:

ˆ A comparative study on the stability of Kagome and quadrangular gridshells;

ˆ Propositions for corrugation strategies of folded plate structures;

ˆ A comparative assessment of the structural performance of the two proposed corrugation strategies;

ˆ Design guidelines for Kagome gridshells and folded plate structures.

In the following, we present the methodology employed in this chapter.

7.2 Methodology

7.2.1 Parametric study

The aim of this chapter is to provide engineers and architects with basic knowledge on some innovative
structural systems during conceptual stages of design. We propose thus a parametric study taking into
account global shape parameters: rise-over-span ratio, grid density (for gridshells), rate of corrugation
(for folded plate structures), etc. The nature of the parameters depends on the structural systems,
for this reason di�erent parameters are introduced for gridshells (in Section 7.3.5) and for folded plate
structures (in Section 7.4.6). Most of the parameters introduced, like rise-over-span and grid density,
have an in�uence on the visual aspect of the structure. Figure 7.2 shows an example of parameters used
in the study on kagome gridshells.

The parametric studies performed in this chapter aim at proposing a comparative assessment between
a standard structural system and a non-standard system. The comparison with technological solutions
that are well-documented on a large number of models (more than 800 models were constructed in this
chapter) provides the designers with references and lead to an evaluation of the potential o�ered by
kagome gridshells and folded plate structures. Based on the obtained results, we emphasize on the their
interpretation with simpli�ed models in order to extrapolate the performances of kagome gridshells and
folded plate structures to other geometries or load cases. Figure 7.3 represents the methodology employed
in this chapter.
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Figure 7.2 � An example of parametric study.

Shape generation Performance assessment Comparison Design guidelines

Marionette method - Finite element method

- Linear buckling analysis

Homogenisation

Figure 7.3 � Framework for performance assessment.

7.2.2 Shape modelling with the marionette method

This chapter illustrates the possibilities o�ered by the marionette method for structural design. The
shapes are thus generated with the marionette technique. The plane view is parametrised by NURBS
patches, and the elevation are controlled with NURBS curves. In our study on folded plate structures,
speci�c rules are applied for the corrugation in order to generate non-smooth surfaces. These rules can
be considered as local perturbations, but the overall shape parametrisation is done with NURBS patches.
The methodology for shape generation is illustrated in Figure 7.4.

In order to compare with previous literature on gridshells, we restricted the shapes of gridshell struc-
tures to surfaces of translation. The literature on the structural analysis of free-form folded-plate struc-
tures being more limited, we set emphasis on the formal possibilities of the marionette technique and
studied more complex shapes.

7.2.3 Structural analysis

Structural analysis is at the core of the methodology employed in this chapter, as we want to establish
guidelines for the conceptual design of non-standard structural systems. The analysis software used
is Karamba, a plug-in integrated with parametric CAD tools Rhinoceros— and Grasshopper— [205,
204]. This software enables to perform structural analysis within a 3D-modelling environment, which
considerably eases the design process for structural engineers.

Finite element modelling

We use the �nite element method, which �nds an approximate solution of the weak form of a PDE
problem. In mechanics, the weak form is found with the formulation of the principle of virtual work. It
can be demonstrated that the solution of the �nite element problem converges towards the solution of
the weak form with mesh re�nement [22]. We discuss here the choice of elements as well as the choice of
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Figure 7.4 � Methodology for the generation of non-standard structural con�gurations.
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subdivisions.

Gridshells The gridshells are modelled with beam elements with three elements per member. The
subdivision allows to capture eventual localised buckling modes, which can arise in gridshells.

Folded plate structures Mechanical attachment is a key aspect in the structural response of folded
plate structures. Therefore, we discuss the modelling of connections between plates, which is illustrated
in Figure 7.5. Each plate is slightly shrunk and subdivided, and springs are introduced between the
duplicated nodes. The localz axis of each spring is aligned with the edge boundary (orange arrow in
Figure 7.5). In that way the force F z corresponds to in-plane shear,F y corresponds to out-of-plane shear.
The links restrict translations, and allow rotations along y and z axis. Rotations are restricted along the
x axis.

z

Figure 7.5 � Model of structural attachment: initial geometry (left), shrunk plates with subdivision
(middle) and links between the duplicated nodes (right).

The linkage between the plates is made with spring elements. The spring axial and shear sti�ness
are not a parameter of our study, but could be taken into account depending on the type of connection
used. Our study considers springs that act as rigid links for the translational degrees of freedom. Figure
7.6a shows the in�uence of the axial and shear sti�ness on the overall displacement of a plated structure
under a uniform live load. It is noticed than when increasing the axial and shear sti�ness of the spring,
the maximal displacement converges to a certain value. The springs act then as rigid links. The spring
sti�ness was thus set accordingly to this convergence graph at107N=m.
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(b) In�uence of mesh re�nement on convergence

Figure 7.6 � Numerical studies on the convergence of the Finite Element model

Folded plate structures are modelled with the TRIC element [9], a linear triangular element. The
convergence of the �nite element model with mesh re�nement is studied with a plated shell. Figure
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7.6b shows the convergence of elastic energy and maximal displacement with respect to the number of
subdivisions along each edgen. The total number of elements varies with the square of N. Displacement
and energy are compared to a reference value, set for 15 subdivisions of each edge, which corresponds to
79; 000 elements. The graph shows that convergence of the model is quickly reached. The convergence
of elastic energy and displacements is above95% for 6 subdivisions per edge. We choose this re�nement
value in the following, as it is a good compromise between convergence and computational e�ciency.

Buckling analysis

This chapter implements geometric non-linear analysis on structures with imperfections, but also
considers linear buckling analysis. The sti�ness matrix of a structure can be written as the sum of
K E the elastic sti�ness (independent of the applied loadP) and of K G the geometric sti�ness (which
decreases here withP). The linear buckling analysis makes the assumption that the coe�cients of K G

vary linearly with the amplitude of P and �nds thus couples of buckling factor and displacement vector
(�; � ) so that:

(K E + � K G ) � � = 0 (7.1)

The non-linear buckling problem becomes therefore the eigenvalue problem shown in equation (7.1),
the lowest eigenvalue� 1 giving an estimate of the buckling capacity of the structures. The linearisation
hypothesis is in fact a Taylor development, and it is valid if the displacements before buckling are small.
In structures subject to large deformations, like gridshells, the linear buckling analysis can overestimate
largely the real buckling capacity. In detailed design, fully non-linear analysis is thus required to assess
the bearing capacity of gridshells, but the linear buckling analysis can be quickly estimated and can be
helpful in conceptual design stage [152].

7.3 Stability of Kagome gridshells

Results on the stability of Kagome gridshells are presented in this section. First, the speci�c geometries
and parameters used in this study are de�ned. Then, we present the results of the parametric study on
the linearised buckling loads of Kagome gridshells.

7.3.1 Previous work on the mechanics of single-layered gridshells

Grid shells are structures composed of beam elements, but that act as continuous shells. They are
usually covered with a transparent envelope. Their design must consider fabrication constraints, like the
planarity of facets, but also structural performance. In Chapter 5, we presented two innovative methods
to cover kagome gridshells with planar facets. This section presents existing literature on the analysis of
gridshells. The techniques presented are usually applied to triangular and quadrilateral meshes. So far,
there is no study on the structural performance of kagome gridshell.

Due to their high slenderness, gridshells are usually designed with respect to buckling. The structural
behaviour of gridshells is usually governed by non-linear e�ects, most noticeably buckling [49]. Four
buckling con�gurations can be observed in gridshells:

ˆ Global buckling in the manner of a shell;

ˆ Member buckling;

ˆ Snap-through of one node;

ˆ In-plane rotation of one node.

Some design recommendations, often emphasizing simple shapes, like spherical cupolas have been pub-
lished. Gioncu published a state of the art on the buckling of reticulated structures in 1995 [96]. A
report produced by the Working Group of the International Association for Shells and Spatial Structures
(IASS) in 2005 completes this review with analytical and numerical results, demonstrating the important
advances made in that �eld [124]. A novel issue is to be published in 2016. A design guide for the stability
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of reticulated shells with a thorough literature review is proposed in [90], showing a great mastery of this
topic.

These guidelines identify two approaches to evaluate the structural behaviour of a grid structure:
homogenisation methods and numerical experiments. The following section establishes a parametric
numerical study, and uses previous work on homogenisation of grid structures to comment the numerical
results.

Homogenisation and equivalent shell thickness

Homogenisation techniques aim to formulate an equivalent continuous behaviour of a heterogeneous
structure with a cell repeated periodically. These methods use the superposition principle and usually
work well for structures with a linear behaviour [138]. They have been successfully used for planar grids
[140], but a rigorous extension to gridshells is di�cult because of the loss of periodicity, due to the
variations of curvature. A discussion on this topic is proposed by Gioncu and Balut [97].

The advantage of equivalent thickness model is that they provide structural engineers with simpler
formulæ and can be of practical interest for conceptual structural design. Some attempts to provide
equivalent shell thickness have been used in previous studies [48, 267, 152, 141]. However, these models
do not allow for the modelling of localised buckling and the study of the in�uence of imperfections for
shell structures remains tedious for non-trivial shapes. Nowadays, the ever-growing computational power
makes the use of �nite element modelling and non-linear analysis ubiquitous in practice, and numerical
simulations are often preferred to homogenisation formulæ.

Numerical experiments

Numerical methods are used for the practical design of gridshells, because they allow for integration of
complex issues, like material non-linearities or geometrical imperfections. Some guidelines for the analysis
of reticulated domes have been proposed by Katoet al. [125, 126]: these studies introduced geometrical
imperfections and semi-rigid nodes. Bulenda and Knippers [49] performed parametric studies on domes
and barrels vaults and evaluated the in�uence of imperfections on the stability of gridshells. A more
complete study using �nite element analysis to evaluate local node sti�ness of patented connections has
been performed by Huanget al. [115]. Bruno et al. assessed the in�uence of nodal imperfection and
of Eigenmode Imperfection Method (EIM) more recently [47]. Malek et al. [152] performed numerical
investigations on the buckling of spherical cap domes and considered geometrical values, like grid spacing,
or height over span ratio, as parameters. This approach lead to recommendations for the design of
gridshells with triangular or quadrangular layout.

Other studies have evaluated the in�uence of residual stresses in elastic gridshells [141, 169]. A
more complete analysis was performed on the elastic gridshell built for the Soliday's festival in Paris,
considering accidental ruin of some members [248]. These studies show that high bending stresses due
to the form-�nding process of elastic gridshells have little in�uence on the buckling capacity of domes.
Such procedures could be extended to steel structures, in order to assess the in�uence of other residual
stress �elds on the stability of gridshells.

Imperfections

There are many di�erences between the ideal numerical shell models and the built structures. These
di�erences, or imperfections can be of di�erent nature: loads, geometry, material, residual stresses in the
members. Thin shells are known to be sensitive to imperfections [132]. These parameters are often set as
a global geometrical imperfections. Gioncu and Balut also point out that geometrical imperfection tend
to govern over material non-linearities for large span structures [97].

Typically, the di�erence between the built geometry and the computed model is of a few centimeters
at most [131]. It is therefore necessary to introduce a norm, in order to asses realistic imperfections.
In the following, the norm k � k1 de�ned as the maximal displacement is used. Bulenda and Knippers
propose a higher bound ofL=500 for the imperfection with the in�nity norm [49]. Based on data on the
precision requirements for built project [225], Maleket al. studied an imperfection of3mm [152]. For the
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design of the roof of the Great Court at the British Museum, a nor of L=200was chosen for imperfections
[233].

The choice of the shape function is discussed in Section 7.3.6. The �rst buckling mode is recommended
by design codes, and was used for example for the design of the roof of the British Museum and the Palacio
de Comunicaciones [233, 225]. However, di�erent studies show that other imperfections shapes should
be considered, as they result in a bigger reduction of the buckling capacity of gridshells. Examples of
such shapes can be found in [49] with the use of dynamic eigenmodes, and a discussion on the choice of
appropriate imperfections is proposed in [47]. It has to be noticed that there is no closed-form solution
on the worst imperfection possible, some studies even demonstrated that higher order eigenmodes can
have a more critical e�ect on the reduction of buckling capacity [269]. The purpose of the following study
being to compare relative performance between Kagome grid pattern and quadrilateral pattern, we will
consider the imperfections most commonly used in current practice.

Summary of the literature review

The design of gridshells is governed by their ultimate limit state. Catastrophic failures of steel roofs
led to a signi�cant research e�ort on the stability of reticulated shells. In practice, triangulated gridshells
are commonly built because they guarantee in-plane shear sti�ness and a shell-like behaviour. The vast
majority of the research, either based on numerical experiments or homogenisation approaches, focuses
thus on triangulated gridshells. The elegance and e�ciency of cable-braced quadrangular gridshells
proposed by the o�ce Schlaich Bergermann und Partner also led to a consequent amount of studies.
Nevertheless, other structural systems can be preferred over those two solutions because of architectural
or manufacturing constraints. For example, quadrangular gridshells with rigid connections have been
built recently. Studies on the mechanical performance of non-standard patterns are more rare. One of
the few investigations on 'exotic' patterns can be found in [153].

7.3.2 Speci�c research question

The existing literature on the analysis of gridshells is mainly restricted to triangular grids, quadran-
gular grids with cable bracing and rigid quadrangular grids. No systematic study on the performances
of the kagome grid pattern has been carried out, so that the relevance of this pattern for applications
to gridshells is not evaluated. Besides, the possibility to cover kagome grids with planar facets with the
methods proposed in this dissertation make them economically viable alternatives to rigid quadrilateral
grids. Kagome and quad grid pattern have the same node valence, which indicates similarities:

ˆ they rely on in-plane bending sti�ness of the connections;

ˆ they have the same possibilities in terms of torsion-free o�sets;

ˆ they have a similar node complexity;

ˆ they can be covered with planar faces using conjugate curves networks;

From these remarks, it can be concluded that kagome and quadrilateral gridshells without cable brac-
ing belong to the same technological design space. Therefore, the assessment of the structural behaviour
of kagome gridshells would be particularly meaningful if compared to the one of rigid quadrilateral grid-
shells.

7.3.3 Basic properties of Kagome lattices

First, we introduce some speci�c considerations about the geometry of the Kagome grid pattern
generated in our study. They tend to have a uniform member length. We propose simple calculations to
estimate the number of connections or member length per unit area for a planar Kagome lattice made
out of regular hexagons and triangles.
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Description of the pattern

The regular Kagome pattern is made out of regular hexagons and triangles. The pattern is periodic,
and can thus be described by the study of a unit-cell shown in Figure 7.7. In this image, all the edges
have the same lengthl , the dimensions of the unit cell are easily found based on properties of equilateral
triangles.

2
p

3l

2l

Figure 7.7 � A basic cell of a Kagome lattice.

The pattern is compared to a square pattern, where the unit cell is obviously a square with edge
length l .

Structural density

We compute now the edge length per unit area. In the unit cell, we count10 edges and4 half edges.
The edge length per unit areaL A is thus:

L A =

�
10 + 4 � 1

2

�
� l

2
p

3l � 2l
=

p
3

l
(7.2)

We can compare this value with the edge length per unit area for the square pattern, whereL A = 2
l . For

a same edge length, the ratio of member lengths is thus equals to
p

3
2 . This gives the estimation for the

mass ratio of equation (7.11).

7.3.4 Number of connections

The number of nodes per unit area is an important question, as the cost of connections highly impacts
the cost of gridshells. For the unit cell depicted in Figure 7.7, there are5 nodes that belong only to the
cell (in white), whereas4 nodes belong to4 adjacent cells (in black). The number of connections per unit
area is thus:

Nnodes =
5 + 4 � 1

4

2
p

3l � 2l
=

p
3

2l2 (7.3)

For a square grid, the number of nodes per unit area is simply1
l 2 . The ratio of these two values is thus

equals to
p

3
2 , which gives an estimate for the ratio used in equation (7.25).

7.3.5 Numerical experiment and choice of the parameters

Two typical free-form structures are barrel-vaults and domes. Theses shapes are easily generated using
translation or scale-trans surfaces surfaces, which have the advantage of generating planar quadrilateral
facets. A method to convert such meshes to planar Kagome meshes is described in 5.4.4.
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The dome is a surface of translation de�ned with two parabolæ.

z (x; y) =
4h
L 2 (y � L ) � y +

4H
d2

�
x �

d
2

� �
x +

d
2

�
(7.4)

Figure 7.8 � Geometrical parameters describing the dome.

The barrel vault is a scale-trans surface. The curves on the ground are sine curves, and the elevation
is a parabola. We write f (x) = dsin 2�x

L 1
, the equation of the surface follows:

z (x; y) =
4h

�
1 � 2�f (x )

L

�

L 2 (y � f (x)) ( y � L + f (x)) (7.5)

Figure 7.9 � Geometrical parameters describing the barrel vault.

The geometrical parameters describing the two models are displayed in Figures 7.8 and 7.9. The
number of geometrical parameters is quite important, we decrease their numbers by introducing non-
dimensional parameters. The physical meaning of these ratios is explained and detailed below. The main
span L of the structures is set to 30 meters. Three ratios� 1, � 2 and � 3 correspond to geometrical
parameters. The two ratios � 4 and � 5 are the performance metrics studied in this section.

Aspect ratio

The geometry has a main spanL and another characteristic length d. The �rst ratio is called aspect
ratio and is de�ned by equation (7.6). For the domes, the ratio� 1 correspond to the ratio of curvatures,
whereas for the barell vault, higher values of� 1 correspond to higher gaussian curvature (the case� 1 = 0
is a cylinder).

� 1 =
d
L

(7.6)

Notice that di�erent aspect ratios could be constructed from the barrel vault. For the simplicity of the
demonstration, it was decided to set the ratio L 0=L to 4 and the ratio L 1=L0 to 2:5. These values are
similar to the con�guration of the gridshell roof covering the museum of Downland [106].
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Rise-over-span ratio

The name is self-explanatory: the second non-dimensional parameter is the ratio of the characteristic
height h with respect to the main spanL . Common formulæ indicate that structural performance should
increase with this number.

� 2 =
h
L

(7.7)

Structural density ratio

We consider here the grids to have a mean member length ofl . The comparison of this number to
the main span, as done in equation (7.8) gives indications on the grid coarseness.

� 3 =
l
L

(7.8)

Buckling ratio

The last parameter compares the buckling pressurepcr found by linear buckling analysis to the
member bending sti�nessEI=L 4. The number described by equation (7.9) is the value that is compared
between Kagome and quadrilateral meshes. The ratioI=L 4 being kept constant in this study, the buckling
ratio will be a measure of the sti�ness due to the form and mesh topology independently of the section
properties.

� 4 =
pcr L 4

EI
(7.9)

Notice that only the quadratic moment of inertia I is considered. A comparable non-dimensional
number could be constructed with the spanL, the axial sti�ness EA and the critical pressurepcr . However,
it is a well-known fact that member shortening has more impact on very shallow structures which won't
be considered in our study.

Structural e�ciency

We introduce �nally a variable, later called structural e�ciency , in order to compare the performance
of Kagome and quadrilateral grid pattern. The parameter is de�ned as:

� 5 =
pcr :A
m � g

(7.10)

where A is the horizontal surface covered, andm the mass of the structure. The number de�ned by
equation (7.10) compares the total resultant of vertical forces to the resultant of gravity forces. It must
be noticed that for a same structural density, i.e. individual member length, the total length of members
di�ers between the Kagome and quadrilateral grid. For a square grid with edge lengthl , the total beam
length per unit area is 2

l . For a Kagome grid made of regular hexagons and triangles and edge lengthl ,

the total beam length per unit area is
p

3
l . From this simple case, an estimation of the ratio of the masses

is given by:
mKagome

mQuad
�

p
3

2
' 86% (7.11)

In other terms, for a same structural density, the Kagome grid is slightly lighter than the quadrilateral
grid. This di�erence justi�es the fact to look more closely at the structural e�ciency, and not only at
the buckling load.

Table 7.1 sums up the range of variations of each parameter. The range of parameters is chosen to
�t existing designs: for example the rise-over-span ratio remain in general superior to0:1 to avoid high
bending stresses or snap-through. The structural density are chosen so that the minimal member length
is 1:253, a reasonable value compared to built projects. Each set of geometrical parameters generates a
geometry for a quadrilateral and a Kagome grid. Two load cases are considered, as discussed in Section
7.3.6. The parametric study proposed in this Section consists thus of 500 linear buckling analysis and
several fully non-linear analysis for the study on imperfections sensitivity.
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� 1 � 2 � 3

Barrel Vault [0; 0:025; 0:05; 0:075; 0:1; 0:125; 0:15] [0:1; 0:2; 0:3; 0:4; 0:5] [
1
24

;
1
16

;
1
12

]

Dome [1; 1:33; 1:67; 2] [0:1; 0:2; 0:3; 0:4; 0:5] [
1
32

;
1
24

;
1
16

]

Table 7.1 � Variations of the parameters in the present study.

7.3.6 Material, loads and boundary conditions

The material used is steel, and we restrict our study to a linear elastic material law. Detailed studies
with plasticity have been made previously and are reviewed in [124]. These studies are necessary to
evaluate with high �delity the post-buckling behaviour of gridshells, at the cost of high computational
cost. In the �rst steps of the design process, engineers need to perform many analysis, often with simpli�ed
assumptions and a linearised buckling load is already a good indicator of the structural performance. It
was already chosen as design criterion in [152] and [169]. The modelling hypothesis follow:

ˆ the supports are pin joints with full translational restraint;

ˆ the joints are assumed to be fully rigid;

ˆ in the barrel vault, the arches are simply supported1;

ˆ distributed loads are replaced by concentrated loads at connections.

The boundary conditions chosen for the arch were set so as to restraint translations. Generally
speaking, the sti�ness of the free-edge is of high importance in the design of gridshells. An arch is
generally sti�er than the inner part of the gridshell. The sti�ness of the arches could be a parameter
of this study, but this should be considered as a speci�c design question that is not in�uenced by the
structural pattern. Several solutions are indeed possible to stabilise a free-edge, like an increase of the
cross-section (Bulenda and Knippers propose to multiply the bending sti�ness by 30) or the introduction
of a spoke-wheel bracing in the manner of russian engineer Vladimir Shukhov [226].

The members are made of circular hollow section, with a wall thickness of10mm and a diameter of
200mm for the dome and the barrel vault. With these geometries, there is no di�erence betweenI y , I z ,
and torsional buckling of members is not possible, which simpli�es the parametric study. Two load cases
are considered: a uniform projected vertical load of1kPa and a non-symmetrical load of1kPa applied
following the normal of the surfaces with the pattern of Figure 7.10.

Figure 7.10 � Areas of positive and negative pressure for the non-symmetrical load case, top view of
Figure 7.8.

Current literature focuses more on uniform symmetrical load cases [152]. Koiter has shown than
spherical caps are subject to geometrical imperfections for such load case, but not for concentrated load.
Therefore, it is meaningful to consider this kind of load case in our sensitivity analysis. Furthermore,
non-symmetrical load cases are known to be more critical than symmetrical ones for buckling and often
govern the sizing of gridshells. The asymmetrical load case is thus also considered in order to provide

1 It is a well known-fact that free-edge are weak points of gridshells, and that buckling would be localised on the free-edge.
Bulenda and Knippers observed that multiplying the sti�ness of the free-edge by 30 to 40 is su�cient to avoid such problem.
Note that there are many ways to sti�en an edge (large cross-section at the free-edge, negatively curved edge, spoke-wheel
system, etc.).
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guidance on situations closer to the engineering practice. The chosen asymmetrical load represents here
a wind load, which usually features areas of positive and negative pressure. Wind loads computed from
the Eurocode can usually be decomposed between a symmetrical and asymmetrical component. Since we
already study a symmetrical load case, we focus only on the non-symmetrical component of this load.

Imperfection sensitivity

This section focuses on the in�uence of imperfection on Kagome gridshells. Similar study could
be conducted on folded plate structures. The tested geometry is a dome supported on a circular plan
(� 1 = 1 , � 2 = 0 :2, � 3 = 1=32), and subject to a uniform vertical load. Figure 7.11 shows di�erent plots
of linear buckling load pcr normalised by the linear buckling load of the structure without imperfection
pcr; 0 computed with di�erent imperfection amplitudes for the in�nity norm. The Kagome pattern is more
sensitive to imperfections than the quadrangular pattern. For the amplitude of L=500 , the reduction of
the linearised buckling load is approximately 10%.
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Figure 7.11 � In�uence of imperfection scale on the linear buckling load.

A second order analysis is thus performed on both perfect and imperfect geometry to evaluate more
precisely the in�uence of imperfections. The load/displacement diagrams for the Kagome and quadrilat-
eral gridshells obtained are displayed in Figure 7.12a and 7.12b respectively. The four horizontal lines
represent the linearised buckling loads. Three imperfection amplitudes are considered: the �rst one is
a small imperfection (1=1500) and can be compared to the one used by Maleket al. [152], the second
corresponds to the(1=500), as proposed by Bulenda and Knippers [49], the third one is of(L=200) as
recommended in EC3 [85].

The structures with imperfections do not reach their linearised buckling loads, contrary to perfect
structures. The shapes of the load/displacement graphs are also smoother than the ones of the gridshells
without imperfection. Consider for example the imperfect geometry with a norm of15cm (L=200): the
structure behaves in a fully non-linear manner and it is hard to distinguish a linear domain. This indicates
that the linearised buckling load is not suited for structures with high imperfection norm, as high stresses
are at stake before buckling. Considering the imperfection amplitude ofL=500proposed by Bulenda and
Knippers [49], we notice that the bearing capacity of the imperfect structure decreases by approximately
15%. With the norm proposed by Malek et al. [152], the loss of bearing capacity with imperfections is
negligible for the considered geometry.

The qualitative behaviour of Kagome gridshells with respect to imperfections is similar to what has
been analysed in previous research [49, 152], and Figure 7.12a and 7.12b are indeed similar. In the
treated example, the decrease of bearing capacity with respect to imperfection (with the �rst buckling
mode) is however less important than in previous literature, for example [49] who considered cable braced
quadrilateral gridshells. It can however be compared to the decrease observed in a previous study for
quadrilateral gridshells [152]. The explanation given by Maleket al. is that quadrilateral (and Kagome)
gridshells rely on in-plane bending sti�ness of the members to withstand loads, whereas triangulated
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Figure 7.12 � Load/displacement diagram for domes with di�erent grid topologies and di�erent amplitudes
of imperfection.

gridshells can transfer out-of-plane loads with axial forces in the members. Small imperfection can
therefore introduce bending moments in triangular gridshells and change their load transfer mechanism,
from axial forces to axial and bending combined.

To go further, we propose to study the load where the displacement reaches the service limit state.
The displacement is found with a second order analysis. We set� SLS = L

200 and compare the in�uence of
imperfection for quad and Kagome gridshells. Figure 7.13 shows the critical non-dimensional service load
de�ned as pSLS L 4

EI . Kagome grids remain sti�er regardless of the imperfection. This additional criterion
shows also that the imperfection does not change the relative performance of Kagome and quadrilateral
grids for simple performance metrics used in preliminary design.
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Figure 7.13 � Non-dimensional SLS load for Kagome and Quad gridshells

This section discussed the in�uence of imperfection on the structural performance of gridshells. The
study of sensitivity to imperfection suggests that Kagome and quadrilateral gridshells without cable-
bracing have qualitatively similar behaviours for linear buckling analysis. Even if classical approaches,
like Eigenmode imperfection, illustrate the limitations of linear buckling analysis for detailed stages of
design, we propose in the following to compare the bearing capacity of Kagome and quadrilateral gridshells
by studying the linearised buckling load without imperfections, because this performance indicator is
commonly used in conceptual design stages. In detailed design, geometrical and material non-linear
analysis are required to assess the structural response of gridshells with full accuracy.
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7.3.7 Buckling of barrel vaults

Linear buckling analyses were performed on barrel vaults with di�erent geometrical con�gurations
under symmetrical loading, and the results are shown in Figure 7.15 in a non-dimensional form. In
Figure 7.15a, � 1 = 0 and there is no corrugation, while in Figure 7.15b� 1 = 0 :15 and the shape is
ondulating like the one shown in Figure 7.14. We notice that the corrugation is signi�cantly improving
the structural behaviour. The case � 1 = 0 :15 has a buckling load almost four times higher than the
cylinder (case� 1 = 0 ). The best design is shown in Figure 7.14.

Figure 7.14 � Optimal barrel vault: � 1 = 0 :15, � 2 = 0 :3, � 3 = 1
24 .
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Figure 7.15 � Comparison of the buckling capacity of Kagome and quadrangular grids for the barrel vault
geometry.

It appears that, in general, Kagome grids have a higher buckling load. In order to quantify this
assertion, we introduce the numberr , later called ratio of e�ciency , de�ned by equation (7.12). The
same parameters values are chosen identical for both grids. A ratio superior to1 indicates that the
Kagome gridshell is more e�cient than the quadrilateral gridshell.

r (� 1; � 2; � 3) =
� 5;Kagome (� 1; � 2; � 3)
� 5;Quad (� 1; � 2; � 3)

(7.12)

In the following, � 1, � 2 and P i3 have been varied and results are shown in Figure 7.16. We have
chosen to represent the buckling load in terms of� 1 and to compare the best design of both structures
de�ned by equation (7.12). This ratio remains above1:5, with a peak at 2:6. The most e�cient designs
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correspond to moderate rise-over-span ratio (� 2 = 0 :3) and a dense grid.
8
>>>>>>><

>>>>>>>:

r min (� 1) = min
� 2 ;� 3

r (� 1; � 2; � 3)

rmax (� 1) = max
� 2 ;� 3

r (� 1; � 2; � 3)

r best (� 1) =
max
� 2 ;� 3

� 5;Kagome (� 1; � 2; � 3)

max
� 2 ;� 3

� 5;Quad (� 1; � 2; � 3)

(7.13)
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Figure 7.16 � Comparison of the best designs for di�erent values of� 1.

7.3.8 Barrel vaults under non-symmetrical loads

Non-symmetrical loads were then considered with the distribution shown in Figure 7.10. The be-
haviour of the structure is then dominated by bending and becomes very di�erent for both structures.
Consider Figure 7.17: the quadrilateral grid has a higher buckling load, but the buckling occurs for a high
level of displacements, superior to20%of the span. Of course, the ruin of members will occurs before the
structure buckles and the results on linear buckling analysis are subject to caution for the quadrilateral
grid in this case. This is a general situation: under non-symmetrical loads, quad gridshells are consider-
ably softer than Kagome gridshells. For the studied example, the Kagome grid is 5 times sti�er. Using
the same SLS criterion than previously ( L

200 ), the Kagome grid clearly outperforms the quadrilateral grid.
Considering the large displacements of the quadrilateral gridshells under non-symmetrical loads, it did
not seem relevant to display the results on linear buckling analysis for this load case.
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Figure 7.17 � Load-displacement for a non-symmetrical load
�
� 1 = 0 :075; � 2 = 0 :3; � 3 = 1
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�

7.3.9 Buckling of domes

The same parametric study is then reproduced for the dome geometry. Figure 7.18 shows the non-
dimensional buckling loads computed for the symmetrical load case. Kagome and quad grids have a
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