Spiking dynamics of bidimensional integrate-and-fire neurons

Jonathan Touboul 1, * Romain Brette 1
* Auteur correspondant
1 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : Spiking neuron models are hybrid dynamical systems combining differential equations and discrete resets, which generate complex dynamics. Several two-dimensional spiking models have been recently introduced, modelling the membrane potential and an additional variable, and where spikes are defined by the divergence of the membrane potential variable to infinity. These simple models reproduce a large number of electrophysiological features displayed by real neurons, such as spike frequency adaptation and bursting. The patterns of spikes, which are the discontinuity points of the hybrid dynamical system, have been mainly studied numerically. Here we show that the spike patterns are related to orbits under a discrete map, the adaptation map, and we study its dynamics and bifurcations. Regular spiking corresponds to fixed points of the adaptation map while bursting corresponds to periodic orbits. We find that the models undergo a transition to chaos via a cascade of period adding bifurcations. Finally, we discuss the physiological relevance of our results with regard to electrophysiological classes.
Type de document :
Article dans une revue
SIAM Journal on Applied Dynamical Systems, Society for Industrial and Applied Mathematics, 2009
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

Contributeur : Jonathan Touboul <>
Soumis le : lundi 11 juin 2018 - 16:06:00
Dernière modification le : mercredi 13 juin 2018 - 01:11:53


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00276924, version 5



Jonathan Touboul, Romain Brette. Spiking dynamics of bidimensional integrate-and-fire neurons. SIAM Journal on Applied Dynamical Systems, Society for Industrial and Applied Mathematics, 2009. 〈inria-00276924v5〉



Consultations de la notice


Téléchargements de fichiers