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Abstract

We investigate the asymptotic distribution of the maximum of a frequency
smoothed estimate of the spectral coherence of a M -variate complex Gaus-
sian time series with mutually independent components when the dimension
M and the number of samples N both converge to infinity. If B denotes the
smoothing span of the underlying smoothed periodogram estimator, a type
I extreme value limiting distribution is obtained under the rate assumptions
M
N

→ 0 and M
B

→ c ∈ (0,+∞). This result is then exploited to build a statis-
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1. Introduction

1.1. The addressed problem and the results

We consider a zero mean M -variate complex Gaussian stationary time
series (yn)n∈Z

1 and denote S(ν) and C(ν) its spectral density and spectral
coherency matrices defined for each ν ∈ [0, 1] by

S(ν) =
∑
u∈Z

R(u)e−2iπuν

and
C(ν) = dg(S(ν))−1/2S(ν) diag(S(ν))−1/2

where R(u) = E(yn+uy
∗
n) and dg(S(ν)) = S(ν) ⊙ IM , with ⊙ denoting the

Hadamard product (ie. entrywise product) and IM is the M–dimensional
identity matrix. Assuming N observations (yn)n=1,...,N are available, we con-

sider the frequency smoothed estimate Ŝ(ν) defined by

Ŝ(ν) =
1

B + 1

B/2∑
b=−B/2

ξy

(
ν +

b

N

)
ξy

(
ν +

b

N

)∗

(1)

where B is an even integer, which represents the smoothing span, and

ξy(ν) =
1√
N

N∑
n=1

yne
−2iπ(n−1)ν (2)

is the renormalized Fourier transform of (yn)n=1...,N . The corresponding es-
timated spectral coherency matrix is defined as:

Ĉ(ν) = dg(Ŝ(ν))−
1
2 Ŝ(ν) dg(Ŝ(ν))−

1
2 (3)

We denote by (y1,n)n∈Z , . . . , (yM,n)n∈Z the M components of y, and sij(ν),

cij(ν), ŝij(ν), ĉij(ν) the entries i, j of matrices S(ν),C(ν), Ŝ(ν), Ĉ(ν) respec-
tively. We remark that

cij(ν) =
sij(ν)√

sii(ν)sjj(ν)
, ĉij(ν) =

ŝij(ν)√
ŝii(ν)ŝjj(ν)

1any finite linear combination x of the components of (yn)n∈Z is a complex Gaus-
sian random variable, i.e. Re(x) and Im(x) are independent zero-mean Gaussian random
variables having the same variance
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for each ν.
Under the hypothesis

H0 : (y1,n)n∈Z, . . . , (yM,n)n∈Z are mutually uncorrelated,

we evaluate the behaviour of the Maximum Sample Spectral Coherence
(MSSC) defined by

max
1≤i<j≤M

max
ν∈G

|ĉij(ν)|

where

G :=

{
k
B + 1

N
: k ∈ N, 0 ≤ k ≤ N

B + 1

}
is the subset of the Fourier frequencies

F :=

{
k

N
: k ∈ N, 0 ≤ k ≤ N − 1

}
with elements spaced by a distance (B+1)/N . Our study is conducted in the
asymptotic regime whereM = M(N) and B = B(N) are both functions of N
such that for some ρ ∈ (0, 1), M ≍ Nρ and B ≍ Nρ as N → ∞ 2 , while the
ratio M/B converges to some constant c ∈ (0,+∞). It is established that,
under H0 and proper assumptions on the time series (y1,n)n∈Z, . . . , (yM,n)n∈Z,
for any t ∈ R:

P
(
(B + 1) max

(i,j,ν)∈I
|ĉij(ν)|2 ≤ t+ log

N

B + 1
+ log

M(M − 1)

2

)
−−−−→
N→+∞

e−e−t

(4)

where
I := {(i, j, ν) : i, j ∈ [M ] such that i < j, ν ∈ G} (5)

with [M ] = {1, . . . ,M}.
In other words, under proper normalization and centering,

max(i,j,ν)∈I |ĉij(ν)|2 follows asymptotically a Gumbel distribution (see
Embrechts et al. (2013) or Resnick (2013) for a general theory of extreme
value distributions).

2For two sequences (xn)n≥1, (yn)n≥1, we denote by xn ≍ yn if there exists k1, k2 > 0
such that k1|yn| ≤ |xn| ≤ k2|yn| for all large n.
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1.2. Motivation

This paper is motivated by the problem of testing the independence of a
large number of Gaussian time series. Since hypothesis H0 can be equiva-
lently formulated as

H0 : max
1≤i<j≤M

max
ν∈[0,1]

|sij(ν)|2 = 0,

or by

H0 : max
1≤i<j≤M

max
ν∈[0,1]

|cij(ν)|2 = 0,

this suggests to compute consistent estimators of these quantities, and test
their closeness to zero.

Our choice of the high-dimensional regime defined above is motivated
as follows. Under mild assumptions on the memory of the time series
((ym,n)n∈Z)m≥1, in the low-dimensional regime where N → +∞ and M is

fixed, it can be shown that the sample spectral coherence matrix Ĉ(ν) de-
fined by (3) is a consistent estimate (in spectral norm for instance) of the
spectral coherence matrix C(ν) as long as B → +∞ and B/N → 0 (up to
some additional logarithmic terms). In practice, this asymptotic regime and
the underlying predictions are relevant as long as the ratio M/N is small
enough. If this condition is not met, test statistics based on Ĉ(ν) may be
of delicate use, as the choice of the smoothing span B must meet the con-
straints B ≫ M (because B is supposed to converge towards +∞) as well
as B ≪ N (because B/N is supposed to converge towards 0). Nowadays,
for many practical applications involving high dimensional signals and/or a
moderate sample size, the ratio M/N may not be small enough to be able to
choose B so as to meet B ≫ M and B ≪ N . In this situation, one may rely
on the more relevant high dimensional regime in which M,B,N converge to
infinity such thatM/B converges to a positive constant while B/N converges
to zero.

1.3. On the literature

Correlation tests using spectral approaches have been studied in several
papers, see e.g. Wahba (1971), Eichler (2008) and the references therein.

More recently, an approach similar to the one of this paper has been
explored in Wu and Zaffaroni (2018), where the maximum of the sample

4



spectral coherence, when using lag-window estimates of the spectral density,
is studied. In the low-dimensional regime where M is fixed and N → ∞, it is
proved that the distribution of such statistic under H0, after proper centering
and normalization, converges to the Gumbel distribution. We also mention
other related papers exploring the asymptotic behaviour of various spectral
density estimates in the low-dimensional regime: Woodroofe and Van Ness
(1967), Rudzkis (1985), Shao et al. (2007), Lin and Liu (2009) and Liu and
Wu (2010).

In the high-dimensional regime when M is a function of N such that
M := M(N) → +∞ as N → ∞, few results on the behaviour of correla-
tion test statistics in the spectral domain are known. Loubaton and Rosuel
(2021) proved that under H0 and mild assumptions on the underlying time
series, the empirical eigenvalue distribution of Ĉ(ν) defined in (3) converges
weakly almost surely towards the Marcenko-Pastur distribution, which can
be exploited to build test statistics based on linear spectral statistics of Ĉ(ν).
In Rosuel et al. (2020), a consistent test statistic based on the largest eigen-
value of Ĉ(ν) was derived for the problem of detecting the presence of a
signal with low rank spectral density matrix within a noise with uncorre-
lated components.

In the asymptotic regime where M
N

→ γ > 0, Pan et al. (2014) proposed to
test hypothesisH0 when the components of y share the same spectral density.
In this case, the rows of the M ×N matrix (y1, . . . ,yN) are independent and
identically distributed under H0. Pan et al. (2014) established a central limit
theorem for linear spectral statistics of the empirical covariance matrix, and
deduced from this a test statistics to check whether H0 holds or not. We
notice that the results of Pan et al. (2014) are valid in the non Gaussian
case. We note also that in the specific case where the M time series have
the same marginal spectral density, it is possible to directly use results on
temporally white noise tests, such as those in Li et al. (2019) and Chang
et al. (2017). To explain this, we denote by Y = (y1, . . . ,yN) the M × N
matrix of observations, and by zT1 , . . . , z

T
M the rows of Y, which, in the above

particular case, share the same covariance matrix T. Then, the row vectors
zT1 , . . . , z

T
M are uncorrelated if and only the column vectors z1, . . . , zM are

extracted from a white noise sequence with covariance T. However, in our
more general model, since each time series is generated by a different spectral
density, vectors z1, . . . , zM are not anymore iid, which prevents to use the
results of Li et al. (2019) and Chang et al. (2017).

More results are available in the case where the time series (ym,n)n∈Z,
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m ∈ [M ], are temporally white. To test the correlation of theM components,
one can similarly consider sample estimates of the correlation matrix, and test
whether it is close to the identity matrix. Under the asymptotic regime where
M
N

→ γ ∈ (0,+∞), Jiang et al. (2004) showed that the maximum off-diagonal
entry of the sample correlation matrix after proper normalization is also
asymptotically distributed as Gumbel. The techniques used here for proving
(4) are partly based on this paper. Other works such as Mestre and Vallet
(2017) studied the asymptotic distribution of linear spectral statistics of the
correlation matrix, Dette and Dörnemann (2020) focused on the behaviour
of the determinant of the correlation matrix, and Cai et al. (2013) considered
a U-statistic and obtained minimax results over some class of alternatives.
Some other papers also explored various classes of alternative H1, among
which is Fan et al. (2019), who showed a phase transition phenomena in the
behaviour of the largest off-diagonal entry of the correlation matrix driven
by the magnitude of the dependence parameter defined in the alternative
class H1. Lastly, Morales-Jimenez et al. (2018) studied asymptotic first and
second order behaviour of the largest eigenvalues and associated eigenvectors
of the sample correlation matrix under a specific alternative spiked model.

2. Main results

2.1. Assumptions

Throughout the paper we rely on the following assumptions.

Assumption 1 (Time series). The time series (ym,n)n∈Z, m ≥ 1, are mu-
tually independent, stationary and zero-mean complex Gaussian distributed
3.

For each m ≥ 1, we denote by rm = (rm(u))u∈Z (instead of rm,m) the co-
variance sequence of (ym,n)n∈Z, i.e. rm(u) = E[ym,n+uym,n], and we formulate
the following assumption on (rm)m≥1:

Assumption 2 (Memory). The covariance sequences (rm)m≥1 satisfy the
uniform short memory condition

sup
m≥1

∑
u∈Z

(1 + |u|)|rm(u)| < +∞.

3A complex random variable Z is zero-mean complex Gaussian distributed with vari-

ance σ2, denoted as Z ∼ NC(0, σ
2), if Re(Z) and Im(Z) are i.i.d. N (0, σ2

2 ) random
variables.
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We denote by sm(ν) =
∑

u∈Z rm(u)e
−i2πν (instead of sm,m(ν)) the spectral

density of (ym,n)n∈Z at frequency ν ∈ [0, 1]. Assumption 2 of course implies
that the function sm is continously differentiable and that

sup
m≥1

max
ν∈[0,1]

sm(ν) < +∞, sup
m≥1

max
ν∈[0,1]

∣∣∣∣dsmdν
(ν)

∣∣∣∣ < +∞. (6)

Eventually, as the sample spectral coherence of (yi,n)n∈Z and (yj,n)n∈Z involves
a renormalization by the inverse of the estimates of the spectral densities si
and sj, we also need that si, sj do not vanish. This is the substance of the
next assumption.

Assumption 3 (Non-vanishing spectrum). The spectral densities are uni-
formly bounded away from zero, that is

inf
m≥1

min
ν∈[0,1]

sm(ν) > 0. (7)

By Assumptions 2 and 3, there exist quantities smin and smax such that

0 < smin ≤ inf
m≥1

min
ν∈[0,1]

sm(ν) ≤ sup
m≥1

max
ν∈[0,1]

sm(ν) ≤ smax < +∞. (8)

We now formulate the following assumptions on the growth rate of the quan-
tities N,M,B, which describe the high-dimensional regime considered in this
paper.

Assumption 4 (Asymptotic regime). B and M are functions of N such
that there exist positive constants C1, C2 ∈ (0,+∞) and ρ ∈ (0, 1) such that:

C1N
ρ ≤ B,M ≤ C2N

ρ

and
M

B
:= cN −−−−→

N→+∞
c ∈ (0,+∞).

Notations. Even if the subscript ·N is not always specified, almost all quanti-
ties should be remembered to be dependent on N . Moreover, C represents a
universal constant (i.e. a positive quantity independent of N,M,B), whose
precise value is irrelevant and which may change from one line to another.
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2.2. Statement of the result

The main result of this paper, whose proof is deferred to Section 4, is
given in the following theorem.

Theorem 1. Under Assumptions 1 – 3, for any t ∈ R:

P
(
(B + 1) max

(i,j,ν)∈I
|ĉij(ν)|2 ≤ t+ log

N

B + 1
+ log

M(M − 1)

2

)
−−−−→
N→+∞

e−e−t

.

Thus, Theorem 1 states that max(i,j,ν)∈I |ĉij(ν)|2, atfer proper normal-
ization and centering, converges in distribution to a type I extreme value
distribution, also known as Gumbel distribution. As it will be clear in the
proof, the term log M(M−1)

2
is related to the maximum over (i, j) while the

term log N
B+1

is related to the maximum over ν ∈ G.

We now illustrate numerically the above asymptotic result. Consider M
independent AR(1) processes, driven by a standard Gaussian white noise,
i.e.

yn :=

 y1,n
...

yM,n

 =

θ1
. . .

θM


 y1,n−1

...
yM,n−1

+

 ϵ1,n
...

ϵM,n

 , ϵm,n
i.i.d.∼ NC(0, 1)

(9)
with θ1, . . . , θM are iid uniformly distributed on the complex disk of radius
0.9, and (N,M) = (20000, 500). The smoothed periodogram estimators are
computed using B = 1000. We independently draw 10000 samples of the time
series (yn)n∈[N ] and compute the associated MSSC max(i,j,ν)∈IN |ĉij(ν)|2. On
Figure 1 are represented the sample cumulative distribution function (cdf)
and the histogram of the MSSC against the Gumbel cdf and probability
density function (pdf). We indeed observe that the rescaled distribution of
max(i,j,ν)∈IN |ĉij(ν)|2 is close to the Gumbel distribution.

3. Application to testing

3.1. New proposed test statistic

Theorem 1 can be used to design a new independence test statistic with
controlled asymptotic level in the proposed high-dimensional regime.

Define qα the α–quantile of the Gumbel distribution: qα = F−1(α) where

F (x) = exp(− exp(−x)).
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Figure 1: sample cdf and histogram of the MSSC as defined in Theorem 1 vs Gumbel
distribution.

.

The test statistic T
(MSSC)
N defined by

T
(MSSC)
N = 1

(
max

(i,j,ν)∈I
|ĉij(ν)|2 >

q1−α + log N
B+1

+ log M(M−1)
2

B + 1

)
(10)

satisfies, as a direct consequence of Theorem 1, limN→+∞ P[T (MSSC)
N = 1] = α

under H0.
Note that in the following, the smoothing span B is set according to the

dimension M in order to illustrate the asymptotic regime in which B ≍ M .
In a practical context, the smoothing span B may be chosen via data-driven
methods, such as the one in Ombao et al. (2001). Nevertheless, although it
was used in the context of high-dimensional time series in Fiecas and von
Sachs (2014); Fiecas et al. (2019), classical span selection procedures such
as Ombao et al. (2001) usually make sense for low-dimensional time series.
The development of a new data-driven span selection method, relevant for
high-dimensional time series, is outside the scope of this paper but would be
an interesting topic for future research.

3.2. Type I error

In order to test the independence of the signals ((ym,n)n∈Z)m=1,...,M , we

consider the statistic T
(MSSC)
N defined in (10). In Table 1 are presented the

sample type I errors of T
(MSSC)
N with different combinations of sample sizes

and dimensions (ρ = 0.7 and M
B+1

= 0.5), when the nominal significant level

9



for all the tests is set at α = 0.05, and all statistics are computed from 30000
independent replications. The time series are still generated according to
model (9). One can see as expected that the type I error of T

(MSSC)
N does

indeed remain near 5% as M increases.

Table 1: Sample type I error at 5%

T
(MSSC)
N

N B M

42 20 10 0.012
316 100 50 0.035
659 180 90 0.037
1044 260 130 0.045
1459 340 170 0.046
1901 420 210 0.048
5623 1000 500 0.048
13374 2000 1000 0.049

3.3. Power

We now compare the power of our new test statistic against other inde-
pendence test statistics which are designed to work in the high-dimensional
regime. We define the Linear Spectral Statistic (LSS) test from Loubaton
and Rosuel (2021) for any ϵ > 0 by

T
(LSS)
N = 1

 sup
ν∈[0,1]

∣∣∣ 1
M
tr f(Ĉ(ν))−

∫
R f dµ

(cN )
MP

∣∣∣
N ϵ(B/N)

> κ1−α

 (11)

where µ
(c)
MP represents the Marcenko-Pastur distribution with parameter c

defined by

dµ
(c)
MP (λ) =

(
1− 1

c

)
+

δ0(dλ) +

√
(λ+ − λ)(λ− λ−)

2πcλ
1[λ−,λ+](λ) dλ

where λ± = (1 ±
√
c)2, (·)+ := max(·, 0), cN := M

B+1
and f is some function

defined on R+ satisfying regularity assumptions (see more details in Loubaton
and Rosuel (2021)). In practice, ϵ will be taken equal to 0.1. It is proven
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in Loubaton and Rosuel (2021) that under H0, T
(LSS)
N → 0 almost surely

in the high-dimensional regime but the exact asymptotic distribution of the
LSS test is unknown. Therefore, the detection threshold κ1−α for this test is

based on a sample quantile of T
(LSS)
N under H0 computed from Monte-Carlo

simulation. For fairness comparison, we also use this procedure for the new
test statistic T

(MSSC)
N . More precisely, we compute the sample (1−α)–quantile

κ1−α of a test statistic T
(LSS)
N from samples under H0, and then reject the null

hypothesis under H1 if T
(LSS)
N > κ1−α. It remains to choose a test function

f , and we again follow Loubaton and Rosuel (2021) by considering

• the Frobenius test T
(FROB)
N when f(x) = (x− 1)2

• the logdet test T
(LOG)
N when f(x) = log x

It remains to define the alternatives. For this, we consider the following
multidimensional AR(1) model:

yn+1 = Ayn + ϵn (12)

where (ϵn)n∈Z is a sequence of independent NCM (0, I) distributed random
vectors, and A is a bidiagonal matrix. Three choices of A (A(H0), A(H1,loc),
A(H1,glob)) allows us to define two alternatives:

1. H0: for |θ| < 1:
A(H0) = θ IM

so the signals ((ym,n)n∈Z)m=1,...,M are mutually independent.
2. H1,loc: for |θ| < 1 and β ∈ R, it exists an unknown pair (i, j), i > j,

such that :
A(H1,loc) = θ IM + β eie

T
j

where e1, . . . , eM represents the canonical basis of CM so the couple of
time series (i, j) is the unique correlated pair of signals. In the following
experiments, we consider the case i = 2 and j = 1.

3. H1,glob: for |θ| < 1 and β ∈ R:

A(H1,glob) =



θ 0 . . . . . . . . . 0
β θ 0 . . . . . . 0
0 β θ 0 . . . 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 . . . . . . 0 β θ


11



so all the signals are mutually correlated.

We now fix the value of the parameters involved under the three hypothe-
ses. θ will always be taken equal to 0.5. Under H1,loc, β = 0.1. Concerning
the alternative H1,glob, more care is required to choose β. Indeed, one can
define a measure of total dependence as:

r :=

∫
∥S(ν)− dgS(ν)∥2F dν∫

∥S(ν)∥2F dν
=

∑
u∈Z ∥R(u)− dgR(u)∥2F∑

u∈Z ∥R(u)∥2F

where R(u) := E[yn+uy
∗
n], S(ν) =

∑
u∈ZR(u)e−i2πuν and dg denotes the

diagonal part operator. Clearly, r = 0 under H0, and as r > 0 increases,
the M–dimensional time series become correlated. We also see that for any
fixed value of β, r is increasing with M . It is therefore more desirable to
tune β := β(M) such that r remains constant as M increases. This will
enable our tests to be compared against an alternative which does not become
asymptotically trivial.

The two alternatives H1,loc and H1,glob are useful to measure the perfor-
mance of the independence tests under two different setups. Under H1,loc,
each pair of time series are independent except the pair (y1,n)n∈Z,(y2,n)n∈Z,
whereas under H1,glob each time series has a small correlation with every
other time series.

In Table 2 and Table 3 are presented the sample powers when the type
I error is fixed at 5% for the considered tests and the two alternatives. The
asymptotic regime is the same as the one considered for Table 1: ρ = 0.7 and
M

B+1
= 0.2. All statistics are computed from 30000 independent replications.

We observe that under H1,glob, with r = 0.01, all the tests asymptotically
detect the alternative, however with different performances. The LSS test
statistics show better power which indicates that they may be more suited to
detect alternative under H1,glob than the MSSC test statistics. Under H1,loc

the results are opposite: the power of T
(MSSC)
N rapidly increases to 1 as M

increases. These results are not surprising since the MSSC test statistic is
designed to detect peaks in the off-diagonal entries of Ĉ(ν) which is exactly
the class of alternative considered in H1,loc. However, when the correlations
are spread among all pairs of time series under H1,glob, the test statistics

based on the global behaviour of the eigenvalues of Ĉ(ν) seem more relevant.
On Figure 2 are represented the ROC for each test under both alterna-

tives. We observe that T
(FROB)
N and T

(LOG)
N have similar performance and

12



Table 2: Power comparison under H1 global, type I error = 5%

T
(FROB)
N T

(LOG)
N T

(MSSC)
N

N M B

42 10 20 0.050 0.049 0.052
316 50 100 0.036 0.042 0.067
659 90 180 0.067 0.065 0.086
1044 130 260 0.142 0.122 0.133
1459 170 340 0.339 0.255 0.214
1901 210 420 0.601 0.462 0.328
2364 250 500 0.836 0.682 0.503
2846 290 580 0.960 0.852 0.672

Table 3: Power comparison under H1 local, type I error = 5%

T
(FROB)
N T

(LOG)
N T

(MSSC)
N

N M B

42 10 20 0.049 0.049 0.061
316 50 100 0.038 0.044 0.352
659 90 180 0.038 0.041 0.881
1044 130 260 0.034 0.038 0.999
1459 170 340 0.034 0.038 1.000
1901 210 420 0.035 0.039 1.000
2364 250 500 0.031 0.039 1.000
2846 290 580 0.032 0.036 1.000

outperform T
(MSSC)
N for the alternative H1,glob, while T

(MSSC)
N has better per-

formance for H1,loc.
To conclude this section, we mention that the work of Fan et al. (2019),

which extends the study of Jiang et al. (2004) on the asymptotic distribution
of the largest entry of the sample covariance matrix under a specific H1 sce-
nario, shows that a phase transition phenomenon occurs, as the asymptotic
distribution may take three different forms depending on the behaviour of
the distance between the H0 and H1 sample distributions. Extending such
results to the MSSC test statistic for a general class of alternative hypotheses
H1 would be a deep and interesting perspective requiring a significant work.
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Figure 2: ROC associated to each test under H(glob)
1 with r = 0.01 (left) and H(loc)

1 with
β = 0.1 (right) when (N,M,B) = (2846, 290, 580))

.

4. Proof of Theorem 1

We will detail in this section the main steps to prove Theorem 1, while
some details will be left in the Appendix.

4.1. General approach

First, we notice that the frequency smoothed estimate ŝi,j(ν) can be writ-
ten as

ŝij(ν) =
1

B + 1
ξyj(ν)

∗ξyi(ν) (13)

where

ξyi(ν) =

(
ξyi

(
ν − B

2N

)
, . . . , ξyi

(
ν +

B

2N

))T

.

This is a sesquilinear form of the finite Fourier transform of the M time series
samples (yi,1, . . . , yi,N)i∈[M ]. To handle the statistical dependence between the
components of ξyi(ν), we use the well-known Bartlett decomposition (see for
instance Walker (1965)) whose procedure is described hereafter.

From Assumptions 2 and 3, the spectral distribution of (ym,n)n∈Z is ab-
solutely continuous with density sm being uniformly bounded and bounded
away from 0. Therefore, from Wold’s Theorem (Brockwell and Davis, 2006,
Th. 5.7.1, Th. 5.7.2), each time series (ym,n)n∈Z admits a causal and

14



causally invertible linear representation in terms of its normalized innova-
tion sequence:

ym,n =
+∞∑
k=0

am,kϵm,n−k, (14)

where (ϵ1,k)k∈Z, . . . , (ϵM,k)k∈Z are mutually independent sequences ofNC(0, 1)
i.i.d. random variables, and (a1,k)k∈N, . . . , (aM,k)k∈N ∈ ℓ2(N) such that if

hm(ν) =
+∞∑
k=0

am,ke
−2iπkν (15)

then |hm(ν)|2 = sm(ν) and hm(ν) coincides with the outer causal spectral
factor of sm(ν). Define now s̃ij(ν), an approximation of ŝij(ν), as:

s̃ij(ν) =
1

B + 1

B/2∑
b=−B/2

hi

(
ν +

b

N

)
hj

(
ν +

b

N

)
ξϵi

(
ν +

b

N

)
ξϵj

(
ν +

b

N

)
or equivalently

s̃ij(ν) = ξϵj(ν)
∗Πij(ν)

B + 1
ξϵi(ν) (16)

where

Πij(ν) = dg

(
hi

(
ν +

b

N

)
hj

(
ν +

b

N

))
b=−B/2,...,B/2

(17)

and

ξϵi(ν) =

(
ξϵi

(
ν − B

2N

)
, . . . , ξϵi

(
ν +

B

2N

))T

.

Instead of working directly with |ĉij(ν)|2 =
|ŝij(ν)|2
ŝi(ν)ŝj(ν)

, it turns out that it is

more convenient to show the limiting Gumbel distribution for
|s̃ij(ν)|2
σ2
ij(ν)

where

σ2
ij(ν) =

1

B + 1

B/2∑
b=−B/2

∣∣∣∣hi

(
ν +

b

N

)∣∣∣∣2 ∣∣∣∣hj

(
ν +

b

N

)∣∣∣∣2

=
1

B + 1

B/2∑
b=−B/2

si

(
ν +

b

N

)
sj

(
ν +

b

N

)
:=

tr Σij(ν)

B + 1
(18)
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and where

Σij(ν) := Π∗
ij(ν)Πij(ν)

= dg

(∣∣∣∣hi

(
ν +

b

N

)∣∣∣∣2 ∣∣∣∣hj

(
ν +

b

N

)∣∣∣∣2 , b = −B

2
, . . . ,

B

2

)
. (19)

This is the aim of Proposition 1 below.

Proposition 1 (Gumbel limit for max(i,j,ν)∈I |s̃ij(ν)|2). Under Assumptions
1 – 3, for any t ∈ R, we have

P
(

max
(i,j,ν)∈I

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

≤ t+ log
N

B + 1
+ log

M(M − 1)

2

)
−−−−→
N→+∞

e−e−t

.

(20)

Once equipped with Proposition 1, it remains then to show that

max(i,j,ν)∈I
|s̃ij(ν)|2
σ2
ij(ν)

is close enough to max(i,j,ν)∈I |ĉij(ν)|2 to prove that these

quantities have the same limiting distribution. This result is given by the
following Proposition.

Proposition 2. Under Assumptions 1 – 3, as N → ∞,

max
(i,j,ν)∈I

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

− max
(i,j,ν)∈I

(B + 1)|ĉij(ν)|2 = oP (1).

As Theorem 1 is directly obtained by Proposition 1, Proposition 2 and an
application of Slutsky’s lemma, the two remaining subsections are devoted
to the proofs of Proposition 1 and Proposition 2.

4.2. Proof of Proposition 1

To prove Proposition 1, the main tool is Lemma A.4 from Jiang et al.
(2004), which is a special case of Poisson approximation from Arratia et al.
(1989). We rewrite it here for the sake of completeness.

Lemma 2. Let (Xα)α∈I be a finite collection of Bernoulli random variables,
and for each α ∈ I, let Iα ⊂ I such that α ∈ Iα. Then,∣∣∣∣∣P

(∑
α∈I

Xα = 0

)
− exp

(
−
∑
α∈I

P(Xα = 1)

)∣∣∣∣∣ ≤ ∆1 +∆2 +∆3

16



where

∆1 =
∑
α∈I

∑
β∈Iα

P (Xα = 1) P (Xβ = 1)

∆2 =
∑
α∈I

∑
β∈Iα\{α}

P (Xα = 1, Xβ = 1)

∆3 =
∑
α∈I

E
∣∣∣P(Xα = 1| (Xβ)β∈I\Iα

)
− P(Xα = 1)

∣∣∣
In particular, if for each α ∈ I, Xα is independent of {Xβ : β ∈ I \ Iα},
then ∆3 = 0.

Lemma 2 is the keystone for the proof of Proposition 1, and is a standard
tool for analyzing distributions of maxima of dependent random variables.
We now prove Proposition 1.

Proof. We start by proving (20). Define

tN =

√
x+ log

M(M − 1)

2
+ log

N

B + 1
(21)

and for (i, j, ν) ∈ I (recall that I is defined in (5), and that it depends on N ,
but in order to avoid cumbersome notations we do not recall this dependency)
the Bernoulli random variables Xij(ν) as

Xij(ν) := 1

(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)
. (22)

Define the set I(i,j,ν)

I(i,j,ν) = {(i′, j′, ν) : 1 ≤ i′ < j′ ≤ M, i = i′ or j = j′}. (23)

From (16) and under Assumption 1, if (i′, j′, ν ′) ∈ I\I(i,j,ν), then s̃i′j′(ν
′) is

independent from s̃ij(ν) since we have either

(1) i′ ̸= i, j′ ̸= j, ν ′ = ν;

(2) i′ = i or j′ = j, and ν ′ ̸= ν (implying |ν − ν ′| > B
N

by assumption), in

which case
(
ξϵi′ (ν

′), ξϵj′ (ν
′)
)
is independent from

(
ξϵi(ν), ξϵj(ν)

)
.

17



From the definition of Xij(ν) in (22),

P
(
(B + 1) max

(i,j,ν)∈I

|s̃ij(ν)|2

σ2
ij(ν)

≤ t2N

)
= P

 ∑
(i,j,ν)∈I

Xij(ν) = 0


which can be estimated by Lemma 2 as:∣∣∣∣∣∣P

 ∑
(i,j,ν)∈I

Xij(ν) = 0

− e−λ

∣∣∣∣∣∣ ≤ ∆1 +∆2 +∆3

where

λ =
∑

(i,j,ν)∈I

P (Xij(ν) = 1) =
∑

(i,j,ν)∈I

P
(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)
and

∆1 =
∑

(i,j,ν)∈I

∑
(i′,j′,ν)∈I(i,j,ν)

P
(
(B + 1)

|s̃i,j(ν)|2

σ2
ij(ν)

> t2N

)
P

(
(B + 1)

|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)

(24)

∆2 =
∑

(i,j,ν)∈I

∑
(i′,j′,ν)∈I(i,j,ν)
(i′,j′) ̸=(i,j)

P

(
(B + 1)

|s̃i,j(ν)|2

σ2
ij(ν)

> t2N , (B + 1)
|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)

(25)

∆3 =
∑

(i,j,ν)∈I

E
∣∣∣∣P((B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N | (s̃i′j′(ν ′))(i′,j′,ν′)∈I\I(i,j,ν)

)

−P
(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)∣∣∣∣ . (26)

We now have to control the four quantities λ, ∆1, ∆2 and ∆3, which requires
studying moderate deviations results for

P
(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)
18



as well as

P

(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N , (B + 1)
|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)

for all (i′, j′, ν) ∈ I(i,j,ν). The following Proposition 3, proved in Appendix C
from Rosuel et al. (2021), provides exactly this.

Proposition 3. Under Assumptions 1 – 3, there exists a constant η > 0
such that for any C > 0, we have

max
t∈[0,CBη ]

max
(i,j,ν)∈I

∣∣∣∣P((B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

> t2
)
et

2 − 1

∣∣∣∣ −−−→N→∞
0 (27)

and

max
t,s∈[0,CBη ]

max
(i,j,ν)∈I

(i′,j′,ν)∈I(i,j,ν)

∣∣∣∣∣P
(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2, (B + 1)
|s̃i′j′(ν)|2

σ2
i′j′(ν)

> s2

)

× et
2+s2 − 1

∣∣∣∣∣ −−−→N→∞
0. (28)

First, concerning exp(−λ), since tN as defined in (21) is O(logN), one
can use Proposition 3 to get

exp (−λ) = exp

−
∑

(i,j,ν)∈I

P
(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)
= exp

(
− N

B + 1

M(M − 1)

2
e−t2N (1 + o(1))

)
−−−→
N→∞

exp (− exp(−x)) .

We now turn to the control of ∆1, ∆2, and ∆3. Regarding ∆3, since under As-
sumption 1 the random variables s̃ij(ν) and s̃i′j′(ν

′) for (i′, j′, ν ′) ∈ I\I(i,j,ν)

are independent, we clearly have ∆3 = 0. Consider now (24) and (25). The
aim is to show that ∆1 = o(1) and ∆2 = o(1) when tN is defined by (21).
Using the moderate deviation result (27) from Proposition 3, and recalling
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that C represents a universal constant independent of N whose value can
change from one line to another, we get:

∆1 ≤ |I|︸︷︷︸
O(N

B
M2)

max
(i,j,ν)∈I

|I(i,j,ν)|︸ ︷︷ ︸
O(M)

max
(i,j,ν)∈I

P
(
(B + 1)

|s̃i,j(ν)|2

σi,j(ν)2
> t2N

)2

≤ C
N

B
M3 e−2t2N︸ ︷︷ ︸

O( 1
M4

B2

N2 )

max
(i,j,ν)∈I

(
P
[
(B + 1)

|s̃i,j(ν)|2

σi,j(ν)2
> t2N

]
et

2
N

)2

︸ ︷︷ ︸
=1+o(1)

= O
(

1

N

)
.

∆2 is handled similarly with equation (28) from Proposition 3:

∆2 =
∑

(i,j,ν)∈I

∑
(i′,j′,ν)∈I(i,j,ν)

P

(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N , (B + 1)
|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)
≤ |I| max

(i,j,ν)∈I
|I(i,j,ν)| e−2t2N

× max
(i,j,ν)∈I

max
(i′,j′,ν)∈I(i,j,ν)

P

(
(B + 1)

|s̃i,j(ν)|2

σi,j(ν)2
> t2N , (B + 1)

|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)
e2t

2
N︸ ︷︷ ︸

=1+o(1)

= O
(

1

N

)
.

The proof of (20) is complete.

4.3. Proof of Proposition 2

To prove Proposition 2, ie. the fact that max(i,j,ν)∈I
|ŝij(ν)|2
ŝi(ν)ŝj(ν)

and

max(i,j,ν)∈I
|s̃ij(ν)|2
σ2
ij(ν)

are close enough in probability, we work separately on

the numerator and the denominator. This constitutes the statement of the
two following propositions.

Proposition 4 (Change of numerator). Under Assumptions 1 – 3, there
exists δ > 0 such that as N → ∞,

√
B + 1 max

(i,j,ν)∈I
|ŝij(ν)− s̃ij(ν)| = OP (N

−δ). (29)
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The proof is deferred to Appendix B from Rosuel et al. (2021). A conse-
quence of Proposition 4 and Proposition 1 is that

√
B + 1 max

(i,j,ν)∈I
|ŝij(ν)|

≤
√
B + 1 max

(i,j,ν)∈I
|s̃i,j(ν)|+

√
B + 1 max

(i,j,ν)∈I
|ŝij(ν)− s̃ij(ν)|

= OP

(√
logN

)
. (30)

Proposition 5 (Change of denominator). Under Assumption 2, for any
ϵ > 0, as N → ∞,

max
(i,j,ν)∈I

∣∣ŝi(ν)ŝj(ν)− σ2
ij(ν)

∣∣ = OP

(
B

N
+

N ϵ

√
B

)
. (31)

Moreover,

0 < inf
N≥1

min
(i,j,ν)∈I

σ2
ij(ν) ≤ sup

N≥1
max

(i,j,ν)∈I
σ2
ij(ν) < +∞ (32)

and

max
i∈[M ]

max
ν∈G

1

ŝi(ν)
= OP (1), max

i∈[M ]
max
ν∈G

ŝi(ν) = OP (1). (33)

The proof is deferred to Appendix A in Rosuel et al. (2021). We recall
that for any sequences (an) and (bn), the following inequality holds:∣∣∣∣sup

n
an − sup

n
bn

∣∣∣∣ ≤ sup
n

|an − bn|.

Therefore, to show that Proposition 2 holds, it is enough to show that

max
(i,j,ν)∈I

∣∣∣∣(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

− (B + 1)|ĉij(ν)|2
∣∣∣∣ = oP (1).

This result could be proved by writing the following decomposition:

(B + 1) max
(i,j,ν)∈I

∣∣∣∣ |s̃ij(ν)|2σ2
ij(ν)

− |ŝij(ν)|2

ŝi(ν)ŝj(ν)

∣∣∣∣ ≤ Ψ3(Ψ1 +Ψ2).
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where

Ψ1 := (B + 1) max
(i,j,ν)∈I

∣∣|ŝij(ν)|2 − |s̃ij(ν)|2
∣∣ ŝi(ν)ŝj(ν)

Ψ2 := (B + 1) max
(i,j,ν)∈I

|ŝij(ν)|2|ŝi(ν)ŝj(ν)− σ2
ij(ν)|

Ψ3 := max
(i,j,ν)∈I

1

ŝi(ν)ŝj(ν)σ2
ij(ν)

.

It is clear by (20) that

max
(i,j,ν)∈I

(B + 1)|s̃ij(ν)|2 = OP (logN) .

Combining this with Proposition 5 and equation (29) from Proposition 4,
there exists δ > 0 such that

(B + 1) max
(i,j,ν)∈I

∣∣|ŝij(ν)|2 − |s̃ij(ν)|2
∣∣ ≤

√
B + 1 max

(i,j,ν)∈I
(|ŝij(ν)|+ |s̃ij(ν)|)︸ ︷︷ ︸

=OP (
√
logN)

×
√
B + 1 max

(i,j,ν)∈I
||ŝij(ν)| − |s̃ij(ν)||︸ ︷︷ ︸

=OP (N−δ)

which is OP (
√
logNN−δ). Using (33), this implies that

Ψ1 = OP

(√
logNN−δ

)
.

Similarly, using Proposition 5, for any ϵ > 0,

Ψ2 = OP

(
logN

(
B

N
+

N ϵ

√
B

))
Ψ3 = OP (1).

Combining the estimates of Ψ1, Ψ2 and Ψ3 we get that for any ϵ > 0:

(B + 1) max
(i,j,ν)∈I

∣∣∣∣ |s̃ij(ν)|2σ2
ij(ν)

− |ŝij(ν)|2

ŝi(ν)ŝj(ν)

∣∣∣∣ =
OP

(
N−δ

√
logN + logN

(
B

N
+

N ϵ

√
B

))
.

This quantity is oP (1) if
Nϵ
√
B
= o(1) which is satisfied by choosing ϵ < ρ

2
from

Assumption (4).
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