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ON THE HOMOGENEIZATION OF THE RENEWAL EQUATION

ÉTIENNE BERNARD AND FRANCESCO SALVARANI

Abstract. We study the homogenization limit of the space-heterogeneous renewal equation by means of
the two-scale convergence theory. We prove that the homogenized limit satisfies an equation involving non-
local terms, which are the consequence of the oscillations in the birth and death terms. The numerical
approximation of the homogenized equation via the two-scale limit can give an alternative way for the
numerical study of the solution of the limiting problem.

1. Introduction

Several mathematical models aim to describe cell dynamics, i.e. a process by which a parent cell divides
into two or more daughter cells and then, at the end if its life cycle, it dies (see, for example, [2, 3, 4, 12]).

The first PDE model describing such a phenomenon is the well-known McKendrick model [7], which has first
been introduced in the context of epidemiology, and then it has been used for modelling cell cultures evolution
by von Foerster [19].

This equation has been widely mathematically studied and has been used as starting point for more elaborate
models in biology and epidemiology, we refer to [11, 18] for an overview on the main mathematical properties
of the model and examples of development.

The independent variables in the McKendrick model are time and age. Hence, it does not take into account
possible spatial heterogeneities of the various terms appearing in it. However, there are several situations in
which the cell evolution is influenced by the local properties of the host medium (or substrate).

In the literature, many studies have been concerned with determining the factors influencing growth, devel-
opment, fission and death of bacteria. Some main factors are well known, such as the pH of the substrate, its
temperature, the availability of chemical nutrients. It is indeed well known that these features have a major im-
pact on cell metabolism (among the vast bibliography on the subject, see, for example, [5, 17, 8, 10, 13, 14, 20]).

In this article we investigate, from the mathematical viewpoint, how local heterogeneities in the properties
of the substrate can modify the behaviour of the cell population with respect to the averaged (homogenized)
case. In particular, we will consider a periodic spatial structure with high spatial frequency. It could mean, for
example, that we are able to take into account the local temperature variability in the substrate, or variations
in the presence of micronutrients. Our approach is based on the two-scale convergence theory, first proposed
by Gabriel Nguetseng [9] and then developed by Grégoire Allaire [1].

Our analysis shows that the homogenized limit satisfies an equation involving non-local terms. This be-
haviour is coherent with a phenomenon observed by Luc Tartar in the context of ordinary differential equations
with oscillating terms [15]. In our case, both the oscillations in the equation and in the boundary conditions
have an influence on the emergence of non-local effects in the homogenization procedure.

The structure of the paper is the following. We first describe the problem in Section 2 and then, after a
concise description of the two-scale convergence theory (Section 3), we study the two-scale limit in Section 4.

2. The space-dependent renewal equation

The renewal equation is one of the standard models which describe the vital dynamics of a population of
cells, structured by age, with birth and death phenomena (for a deep study on this equation, see [11]).

In this article, we suppose that the vital dynamics is influenced by the properties of the substrate. In what
follows, we suppose that the space variable belongs to the interval X = (0, 1) and that the time horizon τ ∈ R∗+
of the problem is strictly positive and finite.

The age-dependent spatial density is described by a function u : R∗+ × (0, τ)×X → R∗+, defined a.e.. Here
and in what follows, a ∈ R∗+ is the age variable, t ∈ [0, τ) denotes the time variable and x ∈ X denotes the
space variable.

We suppose that the speeds of the birth and death processes have a local dependence in space (for example,
we suppose that the division process is mediated by some properties of a heterogeneous substrate). We introduce
the heterogeneous (in space) age-dependent birth rate σb : R∗+×X → R∗+ and the heterogeneous age-dependent
death rate σd : R∗+ ×X → R∗+.

Under the previous assumptions, the evolution of the density u satisfies the following equation:
(2.1) ∂tu(a, t, x) + ∂au(a, t, x) = −σd(a, x)u(a, t, x), (a, t, x) ∈ R∗+ × (0, τ)×X
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with boundary condition

(2.2) u(0, t, x) =
∫ +∞

0
σb(α, x)u(t, α, x) dα, (t, x) ∈ (0, τ)×X

and initial condition

(2.3) u(a, 0, x) = uin, (a, x) ∈ R∗+ ×X.

The well-posedness of the problem has been studied by several authors, see [11]. We provide here an
alternative proof, suitable for our goals, which guarantees existence and uniqueness of the solution in a bounded
time interval.

Theorem 1. Let σd and σb be two non-negative functions of class L∞(X;L2(R∗+)). Then, if the initial condition
uin ∈ L∞(X;L2(R∗+)) and uin ≥ 0 for a.e. (a, x) ∈ R∗+ ×X, then the initial value problem 2.1–2.2–2.3 has one
and only one non-negative strong solution u ∈ L2(R∗+;L∞((0, τ)×X)).

Proof. We write the initial value problem 2.1–2.2–2.3 in integral form, by using the method of characteristics.
We deduce that, for a.e. (a, t, x) ∈ R∗+ × (0, τ)×X,

(2.4)
u(a, t, x) = 1t<auin(a− t, x) exp

(
−
∫ t

0
σd(s+ a− t, x) ds

)
+ 1t>a

[∫ +∞

0
σb(α, x)u(α, t− a, x) dα

]
exp
(
−
∫ t

t−a
σd(s+ a− t, x) ds

)
.

If we denote

(2.5) F (uin, σd) := 1t<auin(a− t, x) exp
(
−
∫ t

0
σd(s+ a− t, x) ds

)
and, for any h ∈ L∞((0, τ)×X;L2(R∗+)),

Th := 1t>a

[∫ +∞

0
σb(α, x)h(α, t− a, x) dα

]
exp
(
−
∫ t

t−a
σd(s+ a− t, x) ds

)
,

Equation 2.4 can be seen as a fixed-point problem:

(2.6) u = F (uin, σd) + Tu.

In what follows, we will show that

(2.7) u :=
+∞∑
n=0

TnF (uin, σd)

is well-defined and the unique solution of Equation 2.4 in L∞((0, τ) × X;L2(R∗+)), which is embedded in
L2(R∗+ × (0, τ)×X) because the set (0, τ)×X has finite Lebesgue measure in R2.

The space L∞((0, τ)×X;L2(R∗+)) is a Banach space with norm

‖g‖L∞((0,τ)×X;L2(R∗+)) = ess sup
(t,x)∈(0,τ)×X

(∫ +∞

0
|g(a, t, x)|2 da

)1/2

.

It is clear that T : L∞((0, τ)×X;L2(R∗+))→ L∞((0, τ)×X;L2(R∗+)) and that it is linear.
It is moreover bounded because

‖Th‖2L∞((0,τ)×X;L2(R∗+)) = ess sup
(t,x)∈(0,τ)×X

(∫ +∞

0
|Th(a, t, x)|2 da

)
= ess sup

(t,x)∈(0,τ)×X

∫ +∞

0

(
1t>a

[∫
R∗+

σb(α, x)h(α, t− a, x) dα

]

exp
(
−
∫ t

t−a
σd(s+ a− t, x) ds

))2

da

≤ ‖σb‖2L∞(X;L2(R∗+)) ess sup
(t,x)∈(0,τ)×X

∫ t

0

∫
R∗+

h2(α, t− a, x) dα da

= ‖σb‖2L∞(X;L2(R∗+))‖h‖
2
L∞((0,τ)×X;L2(R∗+))τ,

that is
‖T‖L(L∞((0,τ)×X;L2(R∗+))) ≤ ‖σb‖L∞(X;L2(R∗+))

√
τ .
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We can generalize the previous computations by studying the bound on the iterated operator Tn with respect
to the norm ‖ · ‖L(L∞((0,τ)×X;L2(R∗+))). We deduce that, for any n ∈ N∗ and for any h ∈ L∞((0, τ)×X;L2(R∗+)),
when t ∈ (0, τ),

ess sup
x∈X

∫ +∞

0
|Tnh(a, t, x)|2 da

≤ ‖σb‖2L∞(X;L2(R∗+))

∫ t

0
‖Tn−1h(· , t− a, x)‖2L2(R∗+) da

= ‖σb‖2L∞(X;L2(R∗+))

∫ t

0
‖Tn−1h(· , t1, x)‖2L2(R∗+) dt1

≤ ‖σb‖2nL∞(X;L2(R∗+))

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
‖h(· , tn, x))‖2L2(R∗+) dtn

≤ 1
n!

(
‖σb‖2L∞(X;L2(R∗+))

)n
‖h‖2L∞((0,τ)×X;L2(R∗+))τ

n.

By passing to the supremum for t ∈ (0, τ) in both sides of the previous inequality and noticing that the
right-hand side is independent on t, we have that

‖Tn‖L(L∞((0,τ)×X;L2(R∗+))) ≤
1√
n!

(
‖σb‖L∞(X;L2(R∗+))

√
τ
)n

for all n ∈ N∗.
Because of 2.5, we have that

(2.8) ‖F (uin, σd)‖L∞((0,τ)×X;L2(R∗+)) ≤ ‖uin‖L∞(X;L2(R∗+)).

Consequently,
+∞∑
n=0

‖TnF (uin, σd)‖2L∞((0,τ)×X;L2(R∗+))

≤ ‖F (uin, σd)‖2L∞((0,τ)×X;L2(R∗+)) exp
(
‖σb‖2L∞(X;L2(R∗+))τ

)
.

Therefore, u defined as in (2.7) exists and is norm-bounded:

(2.9)
‖u‖L∞((0,τ)×X;L2(R∗+)) ≤ ‖F (uin, σd)‖L∞((0,τ)×X;L2(R∗+)) exp

(
‖σb‖2L∞(X;L2(R∗+))

τ

2

)
≤‖uin‖L2(R∗+;L∞(X))exp

(
‖σb‖2L∞(X;L2(R∗+))

τ

2

)
.

Moreover, u solves the integral problem 2.6 because

u =
+∞∑
n=0

TnF (uin, σd) = F (uin, σd) +
+∞∑
n=1

TnF (uin, σd)

= F (uin, σd) + T

+∞∑
n=0

TnF (uin, σd) = F (uin, σd) + Tu.

The solution is moreover unique. Indeed, suppose that there exist two distinct (in a.e. sense) solutions u1 and
u2 of 2.6. Then, by finite induction, their difference u1 − u2 is such that, for any n ∈ N∗

u1 − u2 = T (u1 − u2) = T 2(u1 − u2) = · · · = Tn(u1 − u2).

By passing to the norm

‖u1 − u2‖L∞((0,τ)×X;L2(R∗+))

= ‖Tn‖L(L∞((0,τ)×X;L2(R∗+)))‖u1 − u2‖L∞((0,τ)×X;L2(R∗+))

≤ 1√
n!

(
‖σb‖L∞(X;L2(R∗+))

√
τ
)n
‖u1 − u2‖L∞((0,τ)×X;L2(R∗+)) → 0

as n → +∞. But u1 and u2 are distinct by hypothesis. Hence we have a contradiction and so the solution is
unique. �
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3. Basic concepts of two-scale convergence

The concept of two-scale convergence has been introduced by Gabriel Nguetseng [9] and developed by
Grégoire Allaire [1]. Its definition is the following.

Definition 1. Let X be a domain of Rd and Y = (0, 1)d. Denote with Cper(Y ) the space of continuous
functions on Y which are Y -periodic. A family of functions zε(x) ⊂ L2(X) two-scale converges to a limit
z0(x, y) ∈ L2(X × Y ) if, for any test function ψ(x, y) ∈ L2(X;Cper(Y )), we have

lim
ε→0

∫
X

zε(x)ψ
(
x,
x

ε

)
dx =

∫
X

∫
Y

z0(x, y)ψ(x, y) dxdy.

The following compactness result is crucial for using the two-scale convergence theory.

Theorem 2. Let X be a domain of Rd and Y = (0, 1)d. Let zε(x) ⊂ L2(X) be a uniformly bounded family of
functions such that

‖zε‖L2(X) ≤ C
where the constant C is independent of ε. Then, there exists a subsequence extracted from zε (still denoted zε)
such that zε two-scale converges to some limit z0(x, y) ∈ L2(X × Y ).

Another important property of the two-scale limit is given by the following proposition.

Proposition 3. Let X be a domain of Rd and Y = (0, 1)d. Let zε ⊂ L2(X) a family of functions which
two-scale converges to a limit z0 ∈ L2(X × Y ). Then zε(x) converges to

〈z〉(x) =
∫
Y

z0(x, y) dy

weakly in L2(X), that is

lim
ε→0

∫
X

zε(x)ϕ(x) dx =
∫
X

ϕ(x)
∫
Y

z0(x, y) dy dx for all ϕ ∈ L2(X).

Hence, the two-scale convergence, which is given in terms of test functions (see Definition 1), is a form of
weak convergence which implies the standard weak convergence, here in L2. However, the following result gives
a sufficient condition for improving this weak-type convergence.

Proposition 4. Let X be a domain of Rd and Y = (0, 1)d. Let zε(x) be a family such that it two-scale
converges to z0(x, y). Then

lim
ε→0
‖zε‖L2(X) ≥

∥∥z0∥∥
L2(X×Y )

≥ ‖z‖L2(X)

where z(x) is the weak L2-limit of the family zε(x). Moreover, if

lim
ε→0
‖zε‖L2(X) =

∥∥z0∥∥
L2(X×Y )

(3.1)

and if the two-scale limit z0(x, y) ∈ L2(X;Cper(Y )), then the following strong two-scale convergence holds

lim
ε→0

∥∥∥zε(·)− z0
(
·, ·
ε

)∥∥∥
L2(X)

= 0.

4. Two-scale homogenization of the renewal equation

We reformulate here the initial-value problem 2.1–2.2–2.3 by introducing a scale parameter ε ∈ R∗+. The
parameter ε > 0 represents the heterogeneity length scale of the problem. The smaller the value of the parameter
ε, the smaller the period of the spatial oscillations in σε and uεin.

4.1. The initial-boundary value problem. Our goal is to study the two-scale limit, as ε → 0+, of the
following problem:
(4.1) ∂tu

ε(a, t, x) + ∂au
ε(a, t, x) = −σεd(a, x)uε(a, t, x), (a, t, x) ∈ R∗+ × (0, τ)×X

with boundary conditions

(4.2) uε (t, 0, x) =
∫ +∞

0
σεb(α, x)uε(α, t, x) dα, (t, x) ∈ (0, τ)×X

and initial conditions
(4.3) uε (0, a, x) = uεin(a, x), (a, x) ∈ R∗+ ×X.

The coefficients and data in 4.1 are of the form

σεd(a, x) := σd

(
a, x,

x

ε

)
, σεb(a, x) := σb

(
a, x,

x

ε

)
and

uεin(a, x) := uin

(
a, x,

x

ε

)
.
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In the asymptotics as ε → 0, we derive the corresponding homogenized equation. In this setting, the variable
x is a parameter. Note that the regularity of the birth rate σb and of the death rate σd, as well as the
composition with continuous functions like the exponential, makes them suitable as test functions in the two-
scale convergence (see Definition 1).

4.2. Hypotheses on the birth and death rates. Let Y = (0, 1) and denote with Cper(Y ) the space of
continuous functions on Y which are Y -periodic.

We suppose that σd and σb are locally periodic with respect to the fast oscillations in the space variable and
that

(4.4) σd(a, x, y) and σb(a, x, y) ∈ L2(R∗+;C(X;Cper(Y ))) ∩ L∞((0, τ)×X;L2(R∗+)).

Moreover, we suppose that there exist two strictly positive constants σmin and σmax such that

(4.5) σmax ≥ σd(a, x, y) ≥ σmin for all (x, y) ∈ X × Y and for a.e. a ∈ R∗+
and

(4.6) σmax ≥ σb(a, x, y) ≥ σmin for all (x, y) ∈ X × Y and for a.e. a ∈ R∗+.

Remark 1. Let ϕ ∈ L2(R∗+;C(X;Cper(Y ))). The hypotheses on σd and σb guarantee that σdϕ ∈ L2(R∗+;C(X;Cper(Y )))
and σbϕ ∈ L2(R∗+;C(X;Cper(Y ))).

4.3. The homogenization procedure. Clearly, Theorem 1 guarantees the existence and the uniqueness
of the solution of 4.1-4.2-4.3 for all ε > 0. Because of the boundedness of (0, τ) × X, we can deduce that
uε ∈ L2((0, τ)× R∗+ ×X) for all ε > 0.

Consider now the family (uε)ε>0 of solutions to the initial-boundary value problem 4.1-4.2-4.3 and study
the limit of the family as ε→ 0+. By analogy with a remark by Tartar [16, 15], we can expect, for this system,
the existence of memory effects induced by the two-scale homogenization procedure.

Denote with L2
per(Y ) the set of L2 functions on Y which are periodic in Y . For any g ∈ L∞(Y ), we introduce,

as in [6], the linear operator
Lg h := gh− 〈gh〉 ∀h ∈ L2

per(Y ),
We underline that the operator Lg is bounded in L2

per(Y ) because

‖Lgh‖2L2
per(Y ) =

∫
Y

|g(y)h(y)− 〈gh〉|2 dy =
∫
Y

|g(y)h(y)|2 dy − 〈gh〉2

and, by applying the Cauchy-Schwarz inequality,

|〈gh〉| =
∣∣∣∣∫
Y

g(y)h(y) dy
∣∣∣∣ ≤ (∫

Y

|g(y)h(y)|2 dy
)1/2

.

We are now ready to prove our homogenization result for the evolution 4.1-4.2-4.3 in the framework of the
two-scale convergence theory.

Theorem 5. Let uε(t, x) be the solution of the evolution problem 4.1-4.2-4.3, with a ε-dependent initial condi-
tion uεin ∈ L∞(X;L2(R∗+)) which two-scale converges to uin(a, x, y) ∈ L2(R∗+ ×X × Y ). Suppose moreover that
the birth and death rates satisfy the hypotheses of Subsection 4.2. Then, up to a subsequence,

uε ⇀ uhom weakly in L2(R∗+ × (0, τ)×X)

and uhom(t, x) solves the following integro-differential equation

(4.7)



∂tuhom(a, t, x) + ∂auhom(a, t, x) =

−〈σd〉(a, x)uhom(a, t, x)− 〈σd
+∞∑
n=0

SnQ(uin, σd)〉(a, t, x)

uhom (t, 0, x) =
∫ +∞

0

[
〈σb〉(α, x)uhom(α, t, x) + 〈σb

+∞∑
n=0

SnQ(uin, σd)〉(α, t, x)
]

dα,

uhom (0, a, x) = 〈uin〉(a, x),

where

Sh :=1t>ae
−
∫ t

t−a
σd(a+θ−t,x,y) dθ

∫ +∞

0

[
σb(α, x, y)h(α, t− a, x, y)

−
∫
Y

σb(α, x, y)h(α, t− a, x, y) dy
]

dα

+
∫ t

(t−a)+

e
−
∫ t

s
σd(a+θ−t,x,y) dθ

∫
Y

σd(a, x, y)h(a+ s− t, s, x, y) dy ds
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for any h ∈ L2(R∗+ × (0, τ)×X × Y ) and

Q(uin, σd) := 1t<ae
−
∫ t

0
σd(a+θ−t,x,y) dθ

[
uin(a− t, x, y)−

∫
Y

uin(a− t, x, y) dy
]
.

Remark 2. Note that the two-scale homogenization limit exhibits two memory terms, both in the equation
and in the boundary conditions at a = 0. Moreover, uεin two-scale converges, up to a subsequence, to 〈uin〉 by
hypothesis (which is coherent with the regularity of the family uεin).

Proof. The proof is based on the integral form of the evolution equation 4.1-4.2-4.3:

(4.8)
uε(a, t, x) = 1t<auin

(
a− t, x, x

ε

)
exp
(
−
∫ t

0
σd

(
s+ a− t, x, x

ε

)
ds
)

+1t>a
[∫ +∞

0
σb

(
α, x,

x

ε

)
uε(α, t− a, x) dα

]
exp
(
−
∫ t

t−a
σd

(
s+ a− t, x, x

ε

)
ds
)
.

We moreover note that the estimate 2.9 is satisfied by all member of the family (uε)ε>0 and that the estimate
is uniform in ε, because all quantities involved in 2.9 are ε-independent and keeping in mind that X = (0, 1) ,
we have indeed that

(4.9)
‖uε‖L2(R∗+×(0,τ)×X) ≤ τ‖uε‖L2(R∗+;L∞((0,τ)×X))

≤ ‖uin‖L2(R∗+;L∞(X))τ exp
(
σ2

max
τ

2

)
=: C < +∞

for all ε > 0. Therefore, by Theorem 2, there exists a subsequence, still denoted uε, which two-scale converges
to a function u0 ∈ L2(R∗+ × (0, τ)×X × Y ), i.e.:

lim
ε→0

∫
R∗+×(0,τ)×X

uε
(
a, t, x,

x

ε

)
ψ
(
a, t, x,

x

ε

)
dadtdx

=
∫
R∗+×(0,τ)×X×Y

u0(a, t, x, y)ψ (a, t, x, y) dadtdxdy,

for any test-function ψ satisfying the regularity hypotheses of Definition 1.
We can hence deduce the following equality, in the sense of the two-scale limit and up to a subsequence :

(4.10)
u0(a, t, x, y) = 1t<auin(a− t, x, y) exp

(
−
∫ t

0
σd(s+ a− t, x, y) ds

)
+1t>a

[∫ +∞

0
σb(α, x, y)u(α, t− a, x) dα

]
exp
(
−
∫ t

t−a
σd(s+ a− t, x, y) ds

)
.

Consequently, the limit u0 solves the two-scale evolution equation
(4.11) ∂tu

0(a, t, x, y) + ∂au
0(a, t, x, y) = −σd(a, x, y)u0(a, t, x, y),

for any (t, a, x, y) ∈ R∗+ × (0, τ)×X × Y with boundary conditions :

(4.12) u0 (t, 0, x, y) =
∫ +∞

0
σb(α, x, y)u0(α, t, x, y) dα, (t, x, y) ∈ (0, τ)×X × Y

and initial conditions
(4.13) u0 (0, a, x, y) = uin(a, x, y), (a, x) ∈ R∗+ ×X × Y.

By Proposition 3, we deduce that the sequence uε converges weakly in L2(R+ × (0, τ)×X × Y ) to

uhom(a, t, x) := 〈u0〉(a, t, x).
We conclude our proof by deducing the equation satisfied by uhom. We decompose the two-scale limit into

a homogeneous part, denoted uhom, and a remainder r, with zero mean over the periodic cell, i.e.
(4.14) u0(a, t, x, y) = uhom(a, t, x) + r(a, t, x, y) and 〈r〉 = 0.
We then replace 4.14 into Equation 4.11, which governs the space-time evolution of the two-scale limit u0. We
obtain

(4.15)
∂tuhom(a, t, x) + ∂auhom(a, t, x) + ∂tr(a, t, x, y) + ∂ar(a, t, x, y)

= −σd(a, x, y)uhom(a, t, x)− σd(a, x, y)r(a, t, x, y)

for (a, t, x, y) ∈ R∗+ × (0, τ)×X × Y . Equations 4.12 and 4.13 become respectively

(4.16) uhom (t, 0, x) + r (t, 0, x, y) =
∫ +∞

0
σb(α, x, y)[uhom(α, t, x) + r(α, t, x, y)] dα

and
(4.17) uhom (0, a, x) + r (0, a, x, y) = uin(a, x, y).
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We integrate Equation 4.15 over the periodicity cell Y , thus obtaining

(4.18) ∂tuhom(a, t, x) + ∂auhom(a, t, x) = −〈σd〉(a, x)uhom(a, t, x)− 〈σdr〉(a, t, x).

On the other hand, if we integrate Equations 4.12 and 4.13 over the periodicity cell Y , we deduce

(4.19) uhom (t, 0, x) =
∫ +∞

0

[
〈σb〉(α, x)uhom(α, t, x) + 〈σbr〉(α, t, x)

]
dα,

and

(4.20) uhom (0, a, x) = 〈uin〉(a, x).

By inserting 4.18, 4.19 and 4.20 respectively in 4.15, 4.16 and 4.17, we get the initial-boundary value problem
for the remainder term:

(4.21) ∂tr(a, t, x, y) + ∂ar(a, t, x, y) = −
[
σd(a, x, y)r(a, t, x, y)− 〈σdr〉(a, t, x)

]
.

The initial and the boundary conditions become respectively

(4.22)
r (t, 0, x, y) =

∫ +∞

0
[σb(α, x, y)r(α, t, x, y)− 〈σbr〉(α, t, x)] dα

=
∫ +∞

0
Lσbr(α, t, x, y) dα

and initial conditions

(4.23) r (0, a, x, y) = uin(a, x, y)− 〈uin〉(a, x) = L1uin(a, x, y).

We have thus deduced the following coupled initial-boundary problems for the unknowns r and uhom:

(4.24)


∂tr(a, t, x, y) + ∂ar(a, t, x, y) =

∫
Y

σd(a, x, y)r(a, t, x, y) dy − σd(a, x, y)r(a, t, x, y)

r (t, 0, x, y) =
∫ +∞

0

[
σb(α, x, y)r(α, t, x, y)−

∫
Y

σb(α, x, y)r(α, t, x, y) dy
]

dα

r (0, a, x, y) = uin(a, x, y)− 〈uin〉(a, x)

and

(4.25)


∂tuhom(a, t, x) + ∂auhom(a, t, x) = −〈σd〉(a, x)uhom(a, t, x)− 〈σdr〉(a, t, x)

uhom (t, 0, x) =
∫ +∞

0

[
〈σb〉(α, x)uhom(α, t, x) + 〈σbr〉(α, t, x)

]
dα,

uhom (0, a, x) = 〈uin〉(a, x).

Note that no term involving uhom appears in problem 4.24. We write it in integral form, thus obtaining

r(a, t, x, y) = 1t<ae
−
∫ t

0
σd(a+θ−t,x,y) dθ

[
uin(a− t, x, y)−

∫
Y

uin(a− t, x, y) dy
]

+ 1t>ae
−
∫ t

t−a
σd(a+θ−t,x,y) dθ

∫ +∞

0
[σb(α, x, y)r(α, t− a, x, y)

−
∫
Y

σb(α, x, y)r(α, t− a, x, y) dy
]

dα

+
∫ t

(t−a)+

e
−
∫ t

s
σd(a+θ−t,x,y) dθ

∫
Y

σd(a, x, y)r(a+ s− t, s, x, y) dy ds.

We then introduce the quantities

(4.26) Q(uin, σd) := 1t<ae
−
∫ t

0
σd(a+θ−t,x,y) dθ

[
uin(a− t, x, y)−

∫
Y

uin(a− t, x, y) dy
]

and, for any h ∈ L2(R∗+ × (0, τ)×X × Y ),

Sh := 1t>ae
−
∫ t

t−a
σd(a+θ−t,x,y) dθ

∫ +∞

0

[
σb(α, x, y)h(α, t− a, x, y)

−
∫
Y

σb(α, x, y)h(α, t− a, x, y) dy
]

dα

+
∫ t

(t−a)+

e
−
∫ t

s
σd(a+θ−t,x,y) dθ

∫
Y

σd(a, x, y)h(a+ s− t, s, x, y) dy ds.
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By means of an argument similar to the proof of Theorem 1, we look for solutions of the fixed-point problem

(4.27) r = Q(uin, σd) + Sr.

We hence introduce the following ansatz on the structure of the solution:

(4.28) r :=
+∞∑
n=0

SnQ(uin, σd),

and show that it gives the unique solution of 4.27 in L2(R∗+ × R∗+ ×X × Y ).
We first remark that the linear operator S is well defined on L2(R∗+(0, τ)×X×Y ) and that its image belongs

to L2(R∗+ × (0, τ)×X × Y ).
Thanks to the triangular inequality and the standard Cauchy-Schwarz inequality, we indeed have that, for

h ∈ L2(R∗+ × (0, τ)×X × Y ),

‖Sh‖2L2(R∗+×(0,τ)×X×Y )

≤
(

2‖σb‖2L2(R∗+×(0,τ)×X×Y ) + ‖σd‖2L2(R∗+×(0,τ)×X×Y )τ
)
‖h‖2L2(R∗+×(0,τ)×X×Y ).

This allows to deduce that

‖S‖L(L2(R∗+×(0,τ)×X×Y )) ≤
(

2‖σb‖2L2(R∗+×(0,τ)×X×Y ) + ‖σd‖2L2(R∗+×(0,τ)×X×Y )τ
)1/2

,

i.e. S is bounded in L2(R∗+ × (0, τ)×X × Y ) and hence continuous.
By following the same strategy, we obtain an estimate of the L2-norm of the iterated operator Sn. For any

n ∈ N∗ and for any h ∈ L2(R∗+ × (0, τ)×X × Y ), we have that

‖Snh‖2L2(R∗+×(0,τ)×X×Y )

≤
(

2‖σb‖2L2(R∗+×(0,τ)×X×Y )+‖σd‖2L2(R∗+×(0,τ)×X×Y )τ
)∫ t

0
‖Sn−1h(·, t−a, x)‖2L2(R∗+)dt1

≤ 1
n!

(
2‖σb‖2L2(R∗+×(0,τ)×X×Y ) + ‖σd‖2L2(R∗+×(0,τ)×X×Y )τ

)n
‖h‖2L2(R∗+×(0,τ)×X×Y )

i.e.
‖Sn‖L(L2(R∗+×(0,τ)×X×Y ))

≤ τn/2√
n!

(
2‖σb‖2L2(R∗+×(0,τ)×X×Y ) + ‖σd‖2L2(R∗+×(0,τ)×X×Y )τ

)n/2
for all n ∈ N∗.

Equation 4.26 implies that

‖Q(uin, σd)‖2L2(R∗+×(0,τ)×X×Y ) ≤ 4‖uin‖2L2(R∗+×X×Y )τ.

Consequently,

+∞∑
n=0

‖SnQ(uin, σd)‖L2(R∗+×(0,τ)×X×Y )

≤ 2‖uin‖L2(R∗+×X×Y )τ
1/2 exp

(
2τ‖σb‖2L2(R∗+×(0,τ)×X×Y ) + τ2‖σd‖2L2(R∗+×(0,τ)×X×Y )

)
.

Therefore, r exists and its norm is bounded. The same argument used in the existence and uniqueness proof
for the solution of 2.6 shows that r is the unique solution of the integral formulation of 4.24. Hence, 4.25 can
be written in the following form:

(4.29)



∂tuhom(a, t, x) + ∂auhom(a, t, x) =

−〈σd〉(a, x)uhom(a, t, x)− 〈σd
+∞∑
n=0

SnQ(uin, σd)〉(a, t, x)

uhom (t, 0, x) =
∫ +∞

0

[
〈σb〉(α, x)uhom(α, t, x) + 〈σb

+∞∑
n=0

SnQ(uin, σd)〉(α, t, x)
]

dα,

uhom (0, a, x) = 〈uin〉(a, x),
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where

Sh :=1t>ae
−
∫ t

t−a
σd(a+θ−t,x,y) dθ

∫ +∞

0
[σb(α, x, y)r(α, t− a, x, y)

−
∫
Y

σb(α, x, y)r(α, t− a, x, y) dy
]

dα

+
∫ t

(t−a)+

e
−
∫ t

s
σd(a+θ−t,x,y) dθ

∫
Y

σd(a, x, y)r(a+ s− t, s, x, y) dy ds

for any h ∈ L2(R∗+ × (0, τ)×X × Y ) and

Q(uin, σd) := 1t<ae
−
∫ t

0
σd(a+θ−t,x,y) dθ

[
uin(a− t, x, y)−

∫
Y

uin(a− t, x, y) dy
]
.

�

Remark 3. The result of Theorem 5 shows that the limit equation 4.7 has a much more complex structure
than the two-scale limit problem 4.11-4.13. In particular, it contains memory terms. Such memory terms can
be complicated to deal with numerically. Therefore, the two-scale limit problem can be used to numerically study
the solution of the homogenized equation. The price to be paid is the introduction of an additional variable into
the periodic cell, the advantage is that it allows to keep the local in-time character of the equation. In particular,
a numerical strategy based on the two-scale limit does not require the entire time evolution of the solution to be
handled at each time step.
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