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Abstract: In order to measure the extensional rheological properties of yield stress fluids, 
we developed a rheometrical approach based on the analysis of the deformations of a 
fluid extrudate flowing downwards and breaking in successive elongated drops due to 
gravity. Assuming the gradients of longitudinal velocity in radial planes are negligible, the 
local instantaneous strain rate is deduced from the variations of the filament diameter in 
each cross-section, while the normal stress is computed from the acceleration and weight 
of the material below this point. The observation of the filament profile in time allows to 
identify a solid region, in which the deformations tend to saturate, and a liquid region, in 
which the deformations continuously increase. A further analysis allows to distinguish the 
data for which pure elongational stress and strain rate components are effectively 
dominant, so that the elongational flow curve of the material over several decades of 
strain rate can be deduced. For two typical yield stress fluids (emulsion and clay 
suspension) with different internal structures, all the normal stress vs extensional rate 
data obtained under these different flow conditions fall along a single master curve for 
each material. This flow curve in elongation appears to be well represented by the 
standard 3D Herschel-Bulkley model under the condition that a slightly different power 
of the strain rate than in simple shear is used. For both material types, the elongational 
yield stress value found in this way is very close to the simple shear yield stress times the 
square root of three. 

 

1. Introduction 

The extrusion of YSF (yield stress fluids) is a very common industrial process, e.g. for foodstuffs, 
toothpastes, ceramic slips, plasters, mortars. In such processes, a gravity-induced free-surface flow 
may eventually shape the material. For 3D printing of YSF for medical applications [1], ink printing [2], 
construction materials [3-4], metals for applications in electronics [5], the extrusion then free surface 
flow of the filament followed by spreading and stoppage of the yield stress fluid determine the final 
shape of the object, and elongational flow can play a significant role in the different steps of these 
processes [6-8]. In this context a knowledge of the behavior of YSF in more complex flows than simple 
shear is required. 

Here we focus on simple yield stress fluids, which in contrast with thixotropic yield stress fluids do not 
exhibit an apparent viscosity depending on the flow history [9-12]. In particular, these simple YSF 
exhibit identical static and dynamic yield stress, whatever the flow history. The constitutive equation 
of simple YSF was initially identified in simple shear [13-14], and the Herschel-Bulkley model [14] in 
simple shear is now classically shown to very well represent (steady state) flow curve data of various 
yield stress fluids [13]. The basic 3D expressions [15-18] of the constitutive equation of a YSF were built 
on the assumption of (i) an abrupt transition from the solid to the liquid regime, and (ii) a homogeneous 
behavior under any flow type, i.e. a constitutive equation with a yielding criterion and factors 
depending only on the second invariant of the strain rate tensor. The former assumption was then 
questioned, starting with Saramito [19], and various models were proposed in the last ten years, which 
are also associated with more sophisticated descriptions of the possible physical processes during this 







fluid starts flowing in its liquid regime. This flow ultimately leads to the breakage of the filament at 
some point.  

Actually, the transition cannot simply be deduced from the values of the initial filament diameter and 
some elongational yield stress (i.e. c�V ). Indeed, according to the above estimation of the normal stress 
(weight to section area), in a given fluid point the normal stress increases when the filament deforms 
since the section diameter decreases. This is in particular true for the filament parts in the solid regime. 
This implies that the exact position of the transition along the filament depends on the deformations 
undergone in the solid regime.  

Furthermore, the flow at larger distances from the filament bottom starts later (when the material 
appears at the die exit) but is faster since the stress is larger. This implies that the point of breakage 
depends on the detailed fluid behavior and the extrusion rate.  

 

 

 
Figure 1. Successive aspects of the filament (diameter 2 cm) during extrusion from the 
initial time (breakage of the previous drop) to the next breakage for: (a) the kaolin 
suspension at 0.36 mm s-1 and (b) the emulsion at 0.9 mm s-1.   

 

It must also be noticed that, since, before breakage, the stress was larger than the yield stress in some 
region above the breakage point, the fluid has been significantly deformed too (see Figure 1). This 
region will correspond to the bottom of the next drop, i.e. the region around point O in Figure 2. This 
implies that the bottom of each drop is widely deformed along some distance. Above this distance we 
then have a slightly deformed region corresponding to the exit of the filament from the die after the 
previous drop breakage (see Figure 2).  

Finally, this type of flow is particularly interesting as: 

1) The stress results from gravity and is therefore controlled; 
2) The observation of the filament size evolution directly provides information on the 

deformation history.  

The above suggests that some proper approximations and analysis could allow for the extracting of 
some important information concerning the constitutive equation of the material.  





frame moving with this point, is approximately anti-symmetrical with regards to a horizontal plane 
passing through this point; this implies that the longitudinal velocity is zero at any point of the pinch-
off cross-section in a frame moving with this region, and thus is uniform in the laboratory frame.  

It follows from this assumption that the material in a thin horizontal layer progressively undergoes an 
elongational flow under a constant total vertical volume force resulting from the gravity acting on the 
material below this layer. However, the corresponding normal stress increases in time if the section 
area decreases. Moreover, the flow is more complex than a pure elongational flow as each horizontal 
layer is elongated at a different rate (the vertical force acting on it being different), which induces some 
shear in the radial direction. We will discuss further the impact of such effects on the flow 
characteristics. In any event, we will now follow the fluid motion in one such layer, which means that 
our referential frame is attached to it. 

From equation (1) it follows that �H��
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extensional rate. Writing this equation for Rr � , the external radius of the layer under consideration, 
for which  tRvr dd��� , we deduce: 
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In practice, R  is determined as a function of time and of some distance from some fixed reference 
point. This explains that, in (2), we use a material derivative as it is necessary to follow the size 
variations of the layer during its vertical motion.  

As already mentioned, the above flow is not a pure elongational flow since �H��  depends on z. The strain 
rate tensor finally writes: 
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We now focus on the stress tensor �� , of components ,..., �T�V�V rrr  In the absence of flow instability, 
there is no effect tending to induce a rotation of the fluid around its axis, so that the stress components 

z�T�V  and �T�Vr  are equal to zero, and the other components of the stress tensor are independent of �T. 
In consistency with the above assumption for )(zf , we assume that zz�V  is constant in a section, i.e. it 
is independent of r  for a given value of z  and at a given time. We assume this is the same for the 
other diagonal components of the stress tensor, i.e. �T�T�V  and rr�V . At last, in this theoretical approach, 
we will neglect surface tension effects. 

The momentum equation in the z-direction gives: 
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in which tvtzaa z dd),( � �  is the acceleration of the fluid element. This equation may be multiplied 
by r and integrated between 0 and R , to get: 
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Besides, we have the boundary condition 0� � ñ��  along the external surface of the sample, where we 
can write ii zr sincos een ��� , in which i  is the angle between the normal to the surface and the 
horizontal. We deduce:  



0sin)(cos)( � �� iRiR rzrr �V�V  and 0sin)(cos)( � �� iRiR zzrz �V�V      (6) 

The angle i  is defined through zRi �w�w��� tan , so that zRR zzrz �w�w� �V�V )( . Under these conditions, Eq. 
(5) may be rewritten as: 
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In practice, we can measure the shape of the drop in time, from direct observations. This typically gives 
the function ),( tzR  in the laboratory frame. Nevertheless, for the description it is more practical to 
describe the filament geometry in a frame moving with the drop tip, in order to focus on the filament 
deformation in time. Thus, we move from an Eulerian to a Lagrangian approach and describe the height 
along the filament in this moving frame, with the variable Z . The origin of this frame, i.e. the point O 
for which 0� Z , is taken at the drop tip.  

The integration of equation (7) between 0 and Z  then gives: 
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Note that, in contrast with detailed analyses [43, 48], previous works such as [26, 47] aiming at directly 
determining the elongational yield stress, generally neglected inertia effects, so that the normal stress 
is assumed to be given by (8) without the acceleration term q . We will show later (see experimental 
results) that these effects play a critical role in the last times of the flow because the drop strongly 
accelerates just before its separation. This term is therefore needed to get more relevant data from 
image analysis. 

In addition, from (6) we find  

)()(tan)( 2 RiR zzrr �V�V �           (10) 

from which we deduce that the component rr�V  of the stress tensor is negligible as compared to zz�V  
if itan  is sufficiently small.  

At last, we can deduce the expression for rz�V  from equation (4) after integration between 0 and r
using the independence of various terms with regards to r , and using the expression for this stress 
for Rr �  (equation 6). We finally get: 
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2.3 Elongation rheometry from drop shape observation 

As soon as ),( tZR  has been determined, the normal stress ),( tZzz�V  may be deduced from (8) by 
computing m  and q  by integration over the filament. Then ),( tZrz�V  follows from (11), in which we 
can introduce ZRi �w�w��� tan . 

In parallel, the elongational rate �H��  can be computed as a function of the experimental data. In the 
material derivative of (1), we now have to take into account that the position of a given fluid layer 
situated in Z  at some time varies with time. It follows that  
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All the terms in the right hand-side may be directly computed from the ),( tZR  measurements. In 

order to get tZ �w�w , we can take advantage of the mass conservation, which tells us that, if we follow 

a given fluid layer, �[�U�S dR
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Also, the acceleration corresponds to tZvtvtzaa z �w�w� � � ))((dd),( , where tZvZv �w�w��� )()( O . 

Thus a  may be expressed as ),()(0 tzbtaa ����� , in which 0)(0 �!�w�w� tva O  is the acceleration 
amplitude of the drop bottom with regards to the laboratory referential and 022 �!�w�w� tZb , an 
opposite acceleration due to the drop deformation. The expression for q  can now be written as the 

sum of a term associated with 0a and a term associated with b  (integral between 0  and Z ). In 
general, inertia effects become significant in the last time of the flow before breakage. In that case, 

0� b  in the solid region and is very low in most of the liquid region except at the approach of the 
pinch-off region where most of the flow is localized. This implies that, in the integral (equation (9)) 
associated with the component of q  resulting from b , the integrated function is equal to zero or very 
small over most of the range of integration. Thus this component is negligible and we simply have 

0maq ��� . 

Thus, by measuring the shape of the drop in time, i.e. ),( tZR , we can deduce the strain rate tensor 
and the stress tensor, and thus establish the relationship between the two, i.e. the constitutive 
equation under such flow conditions close to simple elongation.  

 

2.4 Limitations 

Elongational vs shear components 

In view of our objective to have a technique for measuring the elongational properties of the fluid we 
are seeking for flow conditions from which we can directly extract a relationship between the normal 
stress and the elongational strain rate. However, the flow under study is in general not a purely 
elongational one, i.e. in which we could readily neglect the stress components other than zz�V  and the 
components of the strain rate tensor other than the diagonal ones. For the stress tensor, the 
discrepancy from these ideal conditions appears to mainly depend on the value of itan , which 
determines the importance of the stress components other than zz�V  with regards to zz�V  for Rr �  (cf. 
equations (10) and (11)). According to equation (11) a value smaller than 0.1 for itan  ensures that the 

rz�V  will be smaller than 10% of zz�V , and would thus appear sufficient for an evaluation of the 
constitutive equation at first order, as usually assumed in rheometry. Remark that in that case our 
assumption of negligible rr�V  value would also be clearly validated (according to (10)), and �T�T�V , which 
can be expected to play a role similar to rr�V  with regards to zz�V , would also be negligible, but the 
latter assumption is not central in our work.  

For the strain rate tensor, the discrepancy from these ideal conditions depends on the value of 
�� ��zR �w�w� �H�H�E ����)4(  which determines the relative importance of the shear and the elongation 

components in the velocity field. A sufficiently low value for beta should ensure the negligibility of the 
non-diagonal components of the strain rate tensor. As a consequence, we could a priori consider again 





negligible. The rheological behavior of this material type is essentially that of a non-thixotropic yield 
stress fluid (see [51]).  

For each material type reproducibility of the fluid behavior was confirmed by comparison of flow curve 
measurements before and after each series of extrusion experiments with a new batch of material. 

 

3.2 Shear rheometry  

We characterized the kaolin paste and the emulsion by shear rheometry, with a stress controlled 
Malvern Kinexus pro+ rheometer equipped with parallel disks geometry of diameter 50 mm with rough 
surfaces and a gap of 1 mm. To assess the behavior in the liquid regime, we imposed increasing then 
decreasing stress ramps over 2 min, after a preshear at 10 s-1 during 20 s. The corresponding stress vs 
shear rate curves rather well superimpose beyond some critical stress; the slight remaining differences 
can be due to some evolution of edge effects. Thus thixotropic effects are negligible, and we retain the 
decreasing curve as representing the behavior in the liquid regime in steady state (see Figure 3). Under 
these conditions, the material yield stress is a unique parameter of the material whose value may be 
estimated from the plateau level in the flow curve. Systematic creep tests at different stress values 
were also carried out starting from rest (see Figure 4). In such tests, the deformation vs time curve 
tends to saturate for a stress below a critical value while it tends to increase at a constant rate for a 
larger stress (see e.g. [52]). Note that in contrast with the other creep curves which rapidly reach a 
deformation plateau, for the last creep flow curve in the saturation regime (i.e. for a stress just below 
the yield stress (see inset of Figure 4)), the deformation slowly increases, but the corresponding 
apparent shear rate continuously decreases in time so that no steady state is reached. This means that 
the liquid regime is not reached yet for this stress value. This critical stress marking the transition 
between the solid and the liquid regime is then associated with a stress just above this value. It is found 
to be very close to the yield stress value identified from the plateau in the flow curve (see Figure 3). 
Finally, in the next steps we directly determined the (simple shear) yield stress value of the material as 
the value of the parameter c�W in the Herschel-Bulkley model fitted to the down ramp flow curve data 
(see Figure 3). The uncertainty on rheometrical tests, and thus on the rheological parameter values 
provided, which may be deduced from a repetition of similar tests, can be considered in our case to be 
about 5%. 
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expect non-elongational effects to be at the origin of some larger uncertainty on the flow curve 
obtained here.  

At last, we can check that taking into account the acceleration term is critical. Without this term the 
last apparent flow curves, i.e. in the last times of flow before filament breakage, significantly depart 
from the rest of the curves (see Appendix 3). They can differ by a stress factor as large as 2 from the 
master flow curve obtained otherwise. Also note that the second term of acceleration (associated to 
b  ) was less than 1% in that case, which confirms its negligibility.  

Such elongation flow curves can be obtained from each drop, so that we can test the reproducibility 
of the results for successive drops of the same test. Typical results for four successive drops are shown 
in Figure 7, in which only a slight scatter may be observed. A similar conclusion is reached from the 
analysis of left and right profiles of the same drop, despite the instability noticed in the pictures (see 
Figure 1). We conclude that the uncertainty on the determination of the elongational flow curve under 
given conditions according to our procedure is about 5%. Finally we choose to fit some average 
elongational flow curve with a best fit procedure on such data obtained from a series of successive 
drops, and consider this as the effective flow curve associated with the test. Thus, we obtain the 
effective flow curve of the material as deduced from a test under given conditions. Note that, since 
this flow curve has a shape typical of a yield stress fluid behavior, i.e. with a plateau at low strain rates, 
the yield stress of the material in elongation is then very close to the lowest normal stress of this flow 
curve. It thus significantly differs from the critical stress value associated with the slope breakage in 
the profiles (see Figure 6), which in fact corresponds to the lowest stress value observed in the 
apparent flow curves. 
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Figure 7. Apparent flow curves in terms of normal stress vs elongation strain rate along the 
sample at different times during filament deformation in the liquid regime for: (a) the kaolin 
suspension for a velocity of 0.36 mm s-1 and a die diameter of 4 cm, (b) the emulsion at a velocity 
of 0.9 mm s-1 and die diameter of 2 cm, at different times from the previous droplet breakage 
(see caption in graph). The large black filled square symbols correspond to the data points the 
closest to a pure elongational flow. The large black open squares correspond to the same 
situation for three other successive drops during the same test.  
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Figure 8. Slope of the sample profile vs ratio of shear to elongational rate components (

itan  vs �� ��zR �w�w� �H�H�E ����)4( ) corresponding to the tests of Figure 7 (same symbols) for the 
kaolin suspension (a) and the emulsion (b). The arrows shows the direction of increase of 
the normal stress for a given time for one set of data (larger symbols) associated with a 
profile at a given time. The last data points, retained for the effective flow curve, are 
represented by larger, filled symbols. 

 

4.3 Discussion 

We can now gather all the flow curve data obtained through this procedure in the same graph, i.e. for 
each experiment we now keep only the data points identified as corresponding to pure elongational 
flow according to the technique described in the previous section, i.e. the effective flow curve data. 
For different diameters and a velocity varied over three decades a master flow curve is obtained for 
the kaolin suspension with an uncertainty of 12%, and a master flow curve is obtained for the emulsion 
with an uncertainty of 8% (see Figure 9). The superimposition of a wide set of data obtained under 
different conditions and at different times during the flow demonstrate that a robust, consistent 
rheological behavior is extracted from these tests.  
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Figure 9: Flow curves in elongational flow for the kaolin suspension (a) and the emulsion 
(b) under different conditions (see legend). The red dotted lines corresponds to the 
expression derived from the standard 3D Herschel-Bulkley model in pure elongational 
flow (i.e. equation (16)) using the rheological parameters determined in simple shear (see 
Figure 3). The thick continuous blue lines correspond to the best fit of a Herschel-Bulkley 
model for the elongation flow (i.e. equation 16), with parameters:  Pa299� c�W , 



ns Pa 105� k  and 4.0� n  for the kaolin, and   Pa4.56� c�W , ns Pa 1.5� k  and 67.0� n . 
For the emulsion this fit was done on the data for a 2 cm diameter; the thin black line is 
this best fit minus 15 Pa on the stress (i.e.   Pa48� c�W , ns Pa 1.5� k  and 67.0� n ). 

 

For the emulsion one may also distinguish two master curves with a smaller uncertainty (3.5%) for 
each of the two diameter tested (see Figure 9b), which suggests that here the diameter has some 
impact on the data. Actually, this difference essentially takes the form of a stress shift, i.e. the master 
curve for a 1 cm diameter is approximately similar to the master curve for a 2 cm diameter by adding 
a constant stress value (15 Pa) to the normal stress (see Figure 9b). This difference could essentially 
come from surface tension effects. Indeed, for all the tests with the kaolin suspension we have 

400 �!�J�VRc , which is consistent with the fact that a single master curve is obtained, i.e. capillary 
effects are negligible and the constitutive equation is independent of the diameter. For the emulsion 
we have 130 �!�J�WRc  for the tests with a 2 cm diameter, and we can consider that capillary effects play 
a minor effect, but for a 1 cm diameter �J�V 0Rc  reaches values as low as 6.4, so that capillary effects 
may affect the results in some extent. We are unable to more precisely quantify these effects, and 
here we will just consider, in consistency with this qualitative analysis, that the data for a 2 cm diameter 
with the emulsion are not affected by capillary effects and thus well reflect the material behavior.  

It is now of interest to compare the results concerning the rheological behavior in elongational flow to 
those observed in simple shear. In the latter case the Herschel-Bulkley model appears to very well 
represent the data (see Figure 3). In simple shear this model expresses as: 

n
cc k�J�W�W�W�W ����� �Ÿ�!             (14) 

where  c�W is the yield stress, k  and n  materials parameters, and �W and �J��  respectively the shear 
stress and shear rate amplitudes. The 3D form of this constitutive equation has been the subject of 
discussions but the simplest form initially proposed by Oldroyd [15] is as follows: 
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in which I  is the identity tensor, 2tr
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It appears that this model very well predicts the elongational yield stress observed in our experiments: 
the stress plateau indeed corresponds to the c�W3  prediction of (17) (see Figure 9). In terms of normal 
stress we get for the kaolin suspension 517 Pa from our filament tests, whereas the prediction from 
simple shear tests and the standard 3D formulation is 535 Pa. For the emulsion we get 97.7 Pa from 
our filament tests with the 2 cm die, and 84 Pa with the 1 cm die, while the theoretical prediction is 90 
Pa. Such differences fall in the possible range of uncertainty. Thus our results confirm the validity of 
the standard model. 



This conclusion is in agreement with results from inspection of capillary forces around filament 
breakage to estimate the elongational yield stress [26-27]. On another side, the present results appear 
to be in contradiction with the estimations from recent measurements under different well-controlled 
conditions, i.e. extension between solid plates with wall slip [31], or cross-flow extensional rheometry 
[33]. It seems difficult to explain the origin of this difference, in particular to distinguish whether it 
comes from the flow conditions under consideration (bulk flow or filament stretching free of other 
constraints?), or some specificity of the rheological behavior of the material, but we can at least remark 
that we have here more straightforward and more precise data over several decades of strain rates, 
and for a range of filament radii. 

Interestingly, here we can look in more details at the form of the flow curve in elongational flow over 
several decades of strain rates, and for example compare it with the prediction (i.e. equation (16)) of 
the standard 3D model. We can see that the qualitative aspect is the same as that expected from a 
Herschel-Bulkley model, i.e. a plateau at low strain rates then a progressive increase of the normal 
stress for increasing strain rates. However, the exact theoretical flow curve (equation 16) does not well 
represent the data, i.e. it underestimates the stress at strain rates larger than a few 1��s  (see Figure 9). 
This means that the stress increases slightly faster with strain rate than expected from this model. The 
best fit procedure gives a parameter a value for n  equal to 0.4 for the kaolin suspension and 0.67 for 
the emulsion (see Figure 9), whereas the simple shear tests gives 0.33. As far as we know no simple 
constitutive equation has been proposed which predicts such a trend.  

 

Conclusion 

We here provide a complete rheometrical approach of the elongational flow of yield stress fluids, with 
simple technical means, which aims at determining the constitutive equation of the material in 
elongation. The transition between the solid and the liquid regime can be properly determined, which 
provides the elongational yield stress of the material. Our detailed analysis of the flow then essentially 
concerns the liquid regime, as the deformations in the solid regime in some region of the material are 
affected by the flow of the drop when it was still in contact with the previous drop. The flow in the 
liquid regime is nevertheless not a pure elongational flow, due to the large gradient of filament 
thickness. From the identification of the pure elongational region at different times during flow for a 
series of tests under different flow rates and filament diameters we were able to extract the 
constitutive equation in elongation in the liquid regime of a yield stress fluid, without a priori 
assumptions on the material behavior, i.e. as for a standard rheometrical approach. 

We finally were able to properly determine the elongational yield stress of two typical yield stress 
materials. It appears that, in contrast with certain previous results under other conditions, but in 
agreement with others (see Introduction), this value is that predicted by the basic Oldroyd model. The 
form of the constitutive equation appears to be close to that expected from the Herschel-Bulkley 
model, except that the exponent might be slightly larger than in simple shear. Thus, our direct 
measurement of the constitutive equation in elongation provides, at least for the two materials tested 
here, relatively simple results by comparison with some more sophisticated or indirect measurements. 

 

Appendix 1: Impact of the shear rate component on the constitutive equation in elongational flow 

Taking into account the shear rate component we now have �> �@341
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Thus, if 4.0���E ,  the shear component affects the stress and the strain rate by less than 10% ( 1.1���D
).  For 5.0� �E  the impact of the shear component is equal to 15%. 

 

Appendix 2: Reproducibility of droplet shape. 

Here we present the shape for a succession of three droplets in the same test, for the different 
materials and compare the profiles observed at different times during the flow then breakage (see 
Figure 10 a,b. For the emulsion we also compare the profiles obtained when measuring the radius from 
the left or right side only. 

 

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

 Droplet 1
 Droplet 2
 Droplet 3

0.01

0.05 0.1
2.1

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

 Droplet 1
 Droplet 2
 Droplet 3

0.01

0.05

0.1
2.1

(b)  
Figure 10: Profiles at different times (lines of different colors; times indicated in seconds 
in the graphs) for three successive droplets (different line characteristics) in the same test 
with kaolin suspension (a) and emulsion (b), and for the right and left side of an emulsion 
droplet, and half its diameter (standard measurement in this paper) (c).  

 

Appendix 3. Impact of the acceleration term on the apparent flow curve. 

Figure 11 shows the difference between the apparent flow curves deduced directly from the profile 
analysis by considering only the gravity term in the stress and the apparent flow curve computed by 
taking into account also the acceleration term. 
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