Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Pré-publication, Document de travail

High order approximations of the Cox-Ingersoll-Ross process semigroup using random grids

Abstract : We present new high order approximations schemes for the Cox-Ingersoll-Ross (CIR) process that are obtained by using a recent technique developed by Alfonsi and Bally (2021) for the approximation of semigroups. The idea consists in using a suitable combination of discretization schemes calculated on different random grids to increase the order of convergence. This technique coupled with the second order scheme proposed by Alfonsi (2010) for the CIR leads to weak approximations of order $2k$, for all $k\in\mathbb{N}^*$. Despite the singularity of the square-root volatility coefficient, we show rigorously this order of convergence under some restrictions on the volatility parameters. We illustrate numerically the convergence of these approximations for the CIR process and for the Heston stochastic volatility model and show the computational time gain they give.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-03791594
Contributeur : Aurélien Alfonsi Connectez-vous pour contacter le contributeur
Soumis le : jeudi 29 septembre 2022 - 12:53:26
Dernière modification le : mardi 25 octobre 2022 - 16:22:45

Lien texte intégral

Identifiants

  • HAL Id : hal-03791594, version 1
  • ARXIV : 2209.13334

Collections

Citation

Aurélien Alfonsi, Edoardo Lombardo. High order approximations of the Cox-Ingersoll-Ross process semigroup using random grids. {date}. ⟨hal-03791594⟩

Partager

Métriques

Consultations de la notice

14