Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année :

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions

Maël Forcier
  • Fonction : Auteur
  • PersonId : 1129375
Vincent Leclère
  • Fonction : Auteur
  • PersonId : 1008753

Résumé

We introduce a class of algorithms, called Trajectory Following Dynamic Programming (TFDP) algorithms, that iteratively refines approximation of cost-to-go functions of multistage stochastic problems with independent random variables. This framework encompasses most variants of the Stochastic Dual Dynamic Programming algorithm. Leveraging a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence and complexity proof that allows random variables with non-finitely supported distributions. In particular, this leads to new complexity results for numerous known algorithms. Further, we detail how TFDP algorithms can be implemented without the finite support assumption, either through approximations or exact computations.
Fichier principal
Vignette du fichier
SDDP_gen_cost.pdf (675.87 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03683697 , version 1 (31-05-2022)

Identifiants

  • HAL Id : hal-03683697 , version 1

Citer

Maël Forcier, Vincent Leclère. Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions. 2022. ⟨hal-03683697⟩
46 Consultations
127 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More