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EQUILIBRIUM IN A LARGE LOTKA-VOLTERRA SYSTEM

WITH PAIRWISE CORRELATED INTERACTIONS

MAXIME CLENET, HAFEDH EL FERCHICHI, JAMAL NAJIM

Abstract. Consider a Lotka-Volterra (LV) system of coupled differential equa-
tions:

9xk “ xkprk ´ xk ` pBxqkq , x “ pxkq , 1 ď k ď n ,

where r “ prkq is a n ˆ 1 vector and B a n ˆ n matrix. Assume that the

interaction matrix B is random and follows the elliptic model:

B “
1

α
?
n
A`

µ

n
1n1

T
n ,

where A “ pAijq is a nˆn matrix with N p0, 1q entries satisfying the following
dependence structure piq the entries Aij on and above the diagonal are i.i.d.,

piiq for i ă j each vector pAij , Ajiq is standard gaussian with covariance ρ,

and independent from the other entries; vector 1n stands for the nˆ 1 vector
of ones. Parameters α, µ are deterministic and may depend on n.

Leveraging on Random Matrix Theory, we analyse this LV system as nÑ8

and study the existence of a positive equilibrium. This question boils down
to study the existence of a (componentwise) positive solution to the linear

equation:

xn “ rn `Bnxn ,

depending on B’s parameters pα, µ, ρq, a problem of independent interest in
linear algebra.

In the case where no positive equilibrium exists, we provide sufficient con-

ditions for the existence of a unique stable equilibrium (with vanishing com-
ponents), and following Bunin [9], present a heuristics estimating the number

of positive components of the equilibrium and their distribution.

The existence of positive equilibria for large Lotka-Volterra systems has
been raised in Dougoud et al. [14], and addressed in various contexts by

Najim et al. [1, 7].

Such LV systems are widely used in mathematical biology to model popu-
lations with interactions, and the existence of a positive equilibrium known as
a feasible equilibrium corresponds to the survival of all the species xk within
the system.

1. Introduction

Lotka-Volterra system of coupled differential equations. Lotka-Volterra
(LV) systems are widely used in mathematical biology, ecology, chemistry to model
populations with interactions or chemical reactions [20, 22, 24, 21]. In the context
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of theoretical ecology (that we shall adopt hereafter without loss of generality), con-
sider a given foodweb and denote by xtn “ pxkptqq1ďkďn the vector of abundances1

of the various species at time t ě 0. In a LV system, the abundances are connected
via the following coupled equations:

dxkptq

dt
“ xkptq

˜

rk ´ xkptq `
n
ÿ

`“1

Bk`x`ptq

¸

for k P rns :“ t1, ¨ ¨ ¨ , nu ,

where Bn “ pBk`q stands for the interaction matrix, and rk stands for the intrinsic
growth of species k. Notice that standard results yield that if the initial condition
x0
n “ xn|t“0 is componentwise positive, then xtn remains positive for every t ą 0.
At the equilibrium dxn

dt “ 0, the abundance vector xn “ pxkqkPrns is solution of
the system:

xk

¨

˝rk ´ xk `
ÿ

`Prns

Bk`x`

˛

‚“ 0 for xk ě 0 and k P rns . (1)

An important question, which motivated recent developments [14, 7], is the ex-
istence of a feasible solution xn to (1), that is a solution where all the xk’s are
positive, corresponding to a scenario where no species disappears. Notice that in
this latter case, the system (1) takes the much simpler form:

xn “ rn `Bnxn , rn “ prkqkPrns .

In this article, we will investigate the existence of an equilibrium, potentially fea-
sible, for a large foodweb (nÑ8) whenever the interaction matrix Bn is random.
In various models of interest for Bn, Random Matrix Theory (RMT) provides an
accurate description of the asymptotic properties of a large random matrix (its
spectrum, spectral norm, etc.). We will leverage on RMT to infer the existence of
an equilibrium in the case where Bn follows a random elliptic model, to be described
hereafter.

To simplify the analysis, we will consider the case where rn “ 1n.

Random elliptic model for the interaction matrix. In the spirit of May2, we
model the interaction matrix Bn as a non-centered random matrix with pairwise
correlated entries:

Bn “
An

αn
?
n
`
µ

n
1n1T

n , (2)

where An “ pAijqi,jPrns is a random matrix satisfying the two conditions piq
pAij , i ď jq are standard Gaussian N p0, 1q independent and identically distributed
(i.i.d.) random variables piiq for i ă j the vector pAij , Ajiq is a standard bivariate
Gaussian vector, independent from the remaining random variables, with covari-
ance covpAij , Ajiq “ ρ with |ρ| ď 1. The sequence of positive numbers pαnq is either
fixed or goes to infinity. Parameter µ is a fixed real number. As a consequence, the
Gaussian entries of the interaction matrix Bn admit the following moments:

EpBijq “
µ

n
, varpBijq “

1

α2n
, covpBij , Bjiq “

ρ

α2n
pi ‰ jq .

1A species abundance is a quantity proportional to the number of individuals for this species.
2Beware that May did not consider LV systems but rather used a random matrix model for

the Jacobian at equilibrium of a generic system of coupled differential equations.
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Such a matrix model is often called a random elliptic model for |ρ| ă 1 since the
spectrum of matrix An{

?
n is asymptotically an ellipse, see Fig.1, in the sense

that the empirical distribution of the eigenvalues of An{
?
n converges towards the

uniform distribution on the ellipsoid

Eρ “
"

z P C,
Re2

pzq

p1` ρq2
`

Im2
pzq

p1´ ρq2
ď 1

*

.

Originally introduced by Girko [18], this model has since been widely studied [19,
28, 29, 31].

(a) ρ “ 0 (b) ρ “ ´0.5 (c) ρ “ 0.5

Figure 1. Spectrum of non-Hermitian matrix Bn (n “ 500) in the
centered case (µ = 0) with distinct parameter ρ P t´0.5, 0, 0.5u.

The solid line represents the ellipse tz “ x ` iy P C, x2

p1`ρq2 `

y2

p1´ρq2 “ 1u which is the boundary of the support of the limiting

spectral distribution for an elliptic model.

The spectral norms of An and 1n1T
n satisfy

›

›

›

›

An
?
n

›

›

›

›

“ O p1q and

›

›

›

›

1

n
1n1T

n

›

›

›

›

“ 1

hence both the random and deterministic parts of the interaction matrix Bn may
have an impact as nÑ8.

Presentation of the main results. In this article, we address the following
issues.

Feasibility. We first describe the conditions over parameters pρ, αn, µq for which
system (1) admits a unique feasible equilibrium. We prove that feasibility is reached

whenever αn "
a

2 logpnq and µ ă 1, and that there is no feasibility otherwise,
see Theorem 2.1. Notice that the correlation parameter ρ has no influence since
the phase transition threshold is the same as in the i.i.d. case [7]: the induced
correlations between components xk’s of solution xn are too weak. Pushing this
remark further, we prove that the same phase transition holds if we consider a
covariance profile pρij , i ă jq where ρij “ covpAij , Ajiq instead of a fixed covariance
parameter ρ.

In [7], Bizeul and Najim established the conditions for feasibility in the centered
(µ “ 0) model with i.i.d interactions pAijq. In [1], Akjouj and Najim studied a
sparse model of interactions where only dn ě logpnq interactions are non-null in
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each row and column of An. The study of the feasibility for an elliptic model
completes this picture.

Stability without feasibility. If α is fixed, Dougoud et al. [14] showed that no feasible
solution can arise. Under this assumption, we establish in Proposition 2.3 sufficient
conditions for the existence of a unique stable equilibrium to system (1). In this
case, some species will vanish (some of the components xk’s of solution xn are equal
to zero). In order to proceed we combine results by Takeuchi [33] on stability of
LV systems with Random Matrix Theory (RMT) results.

Estimating the number of surviving species. We finally conclude with an impor-
tant question: given a set of parameters pρ, α, µq which yields to a unique stable
equilibrium, is it possible to estimate the proportion of surviving species? From a
mathematical point of view, this is an open question. At a physical level of rigor,
Bunin [9] (relying on the cavity method) and Galla [15] (relying on generating
functionals techniques) provide a closed-form system of equations to compute the
proportion of surviving species. We state the open problem, recall Bunin’s and
Galla’s equations and provide simulations.

In [12], equations and simulations are provided in the simpler case where ρ “ 0,
together with heuristics supporting these equations.

Organisation of the article. Feasibility and stability results together with the
open question on the estimation of the number of surviving species are presented in
Section 2. Section 3 is devoted to the proof of the feasibility result, Theorem 2.1.
Proof of the stability result, Proposition 2.3, is provided in Section 4. Simulations
were performed in Python. All the figures and the code are available on Github
[11].

Notations. If A is a matrix AT stands for its transpose. We denote by logpxq the
natural logarithm. If x “ pxiqiPrns is a vector, we denote by x ą 0 (resp. x ě 0)
the componentwise positivity (resp. non-negativity), that is the fact that xi ą 0
(resp. xi ě 0) for every i P rns.

2. Main results: Feasibility, stability and surviving species

2.1. Feasibility. To simplify the analysis, we consider the case where rk “ 1 pk P
rnsq. Hence, the LV system takes the following form in the sequel:

dxkptq

dt
“ xkptq

¨

˝1´ xkptq `
ÿ

`Prns

Bk`x`ptq

˛

‚ for k P rns . (3)

In the next theorem, we describe the conditions to reach a feasible equilibrium. We
either assume that matrix B is given by the elliptic model or has a more general
covariance profile.

Theorem 2.1 (Feasibility for the elliptic model). Assume that matrix Bn is given
by the elliptic model (2), or that Bn has a covariance profile, i.e.

Bn “
Ãn

αn
?
n
`
µ

n
1n1T

n , (4)

where Ãn is a n ˆ n matrix with entries pÃij , i ď jq i.i.d. N p0, 1q and where

pÃij , Ãjiq is a standard bivariate gaussian vector for i ă j, independent from the
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remaining random variables, with covariance covpÃij , Ãjiq “ ρ
pnq
ij , where pρ

pnq
ij ; i ă

j;n ě 1q is a collection of deterministic real numbers in r´1, 1s.
Let αn ÝÝÝÑ

nÑ8
8 and denote by α˚n “

?
2 log n. If µ ‰ 1 then the following

equation
xn “ 1n `Bnxn

almost surely admits a unique solution xn “ pxkqkPrns.

(1) (feasibility) If µ ă 1 and there exists ε ą 0 such that, for n large enough,
αn ě p1` εqα

˚
n then

P
"

min
kPrns

xk ą 0

*

ÝÝÝÑ
nÑ8

1 .

(2) If µ ą 1 or there exists ε ą 0 such that, for n large enough, αn ď p1´ εqα
˚
n

then

P
"

min
kPrns

xk ą 0

*

ÝÝÝÑ
nÑ8

0 .

Figure 2. Transition towards feasibility for the elliptic model (2).
For each κ on the x-axis, we simulate 1000 matrices Bn of size
n “ 1000 and compute the solution xn of Theorem 2.1 at the
scaling αnpκq “ κ

a

logpnq. Each curve represents the propor-
tion of feasible solutions xn obtained for the 1000 simulations.
Three distinct values ρ P t´0.5, 0, 0.5u are used. The dot-
dashed vertical line corresponds to κ “

?
2 i.e. the critical scaling

α˚n “
?

2
a

logpnq.

Proof of Theorem 2.1 is established in Section 3 under the assumption that Bn
follows the elliptic model. The adaptations needed to cover the covariance profile
case are provided in Appendix A.

2.2. No feasibility but a unique stable equilibrium. Aside from the question
of feasibility arises the question of stability : for a complex system, how likely a per-
turbation of the solution xn at equilibrium will return to the equilibrium? Gardner
and Ashby [16] considered stability issues of complex systems connected at random.
Based on the circular law for large random matrices with i.i.d. entries, May [27]
provided a complexity/stability criterion and motivated the systematic use of large
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random matrix theory in the study of foodwebs, see for instance Allesina et al. [3].
Recently, Stone [32] and Gibbs et al. [17] revisited the relation between feasibility
and stability.

For a generic LV system

d ykptq

dt
“ ykprk ` pCyqkq , k P rns , (5)

Takeuchi and Adachi provide a criterion for the existence of a unique equilibrium
y˚ and the global stability of LV systems, see Theorem 3.2.1 in [33].

Theorem 2.2 (Takeuchi and Adachi 1980). If there exists a positive diagonal
matrix ∆ such that ∆C ` CT∆ is negative definite, there is a unique non-negative
equilibrium y˚ to (5), which is globally stable:

@y0 ą 0 ,

#

yp0q “ y0

yptq satisfies (5)
, yptq ÝÝÝÑ

tÑ8
y˚ .

Combining this result (setting I ´ B “ ´C) with results from Random Matrix
Theory, we can guarantee the existence of a globally stable equilibrium x˚ of (3)
for a wide range of parameters pρ, α, µq. Denote by

A “
"

pρ, α, µq P p´1, 1q ˆ p0,8q ˆ R ,

α ą
a

2p1` ρq, µ ă
1

2
`

1

2

c

1´
2p1` ρq

α2

*

(6)

the set of admissible parameters.

Figure 3. Representation of the set of admissible parameters A
by a heat map. The set A given by (6) yields the existence of a
unique (random) globally stable equilibrium x˚. The x-axis corre-
sponds to ρ, the y-axis to σ and the intensity of the color µ.

Proposition 2.3. Let pρ, α, µq P A, then almost surely, matrix

pI ´Bq ` pI ´BqT
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is eventually positive definite: with probability one, for a given realization ω, there
exists Npωq such that for n ě Npωq, pI ´ Bωq ` pI ´ BωqT is positive definite. In
particular, there exists a unique globally stable non-negative equilibrium x˚.

Proof of Proposition 2.3 is provided in Section 4.

(a) Initial conditions drawn in p0, 2q, (b) Initial conditions equal to 1.

Figure 4. Representation of the dynamics of a ten-species sys-
tem. For a fixed matrix of interactions B10 with parameters
pρ “ 0, α “ 2, µ “ 0q P A, we consider two distinct initial con-
ditions. Simulations show that the abundances converge in both
cases toward the unique globally stable equilibrium x˚ predicted
by Proposition 2.3. Notice that since α ă

a

2 logp10q » 2.14, we
witness vanishing species.

2.3. Estimating the number of surviving species: Towards Bunin and
Galla’s equations. After giving conditions for the realization of a feasible equi-
librium and investigating the existence and uniqueness of a stable sub-population
(i.e some species vanish), we address the question of estimating the proportion of
surviving species as a function of the model paramaters pρ, α, µq.

To our knowledge, this question has not received yet an answer at a mathematical
level of rigor and remains open. However theoretical physicists/ecologists provided
a solution to this problem supported by simulations. Tools from physics to study
population dynamics in the context of Lotka-Volterra equations were first intro-
duced by Opper et al. [13, 30]. In 2017, Bunin [9] precisely answers the question
of estimating the proportion of surviving species for the model under investigation
(non-centered elliptic model B). He uses the dynamical cavity method (a review
of which can be found in [6]). The key concept consists of assuming that a unique
fixed point exists and introducing a new species with new interactions in the ex-
isting system. Provided the coherence of the assumption, an analogy between the
properties of the solutions with n and n ` 1 species yields closed-form equations
that we present hereafter.

Notice that recently, similar equations were obtained by Galla [15] using gener-
ating functional techniques.

The system of equations presented hereafter is a version of Bunin’s equations
without the carrying capacity. It is similar to the equations obtained by the repli-
cator equations [13, 30]. Notice that we mention but do not discuss the many
implicit assumptions yielding the system of equations.
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Let pρ, α, µq P A and x˚ given by Proposition 2.3. We first introduce the follow-
ing quantities:

φ “
Cardtx˚i ą 0, i P rnsu

n
, xxy “

1

n

n
ÿ

j“1

x˚j ,
@

x2
D

“
1

n

n
ÿ

j“1

px˚j q
2 . (7)

Denote by Z „ N p0, 1q and set

∆ “ p1` xxyµq
α

a

xx2y
.

The following system of 4 equations has 4 unknowns, among which the (supposedly
existing) asymptotic limits of φ, xxy ,

@

x2
D

, denoted (by abuse of notations) by the
same notations. The fourth unknown v is a parameter essentially related to the
dynamical cavity method. This system is supposed to admit a unique solution:

φ “
1
?

2π

ż `8

´∆

e
´z2

2 dz (8)

xxy “
φ

1´ ρv
α

˜

p1` xxyµq `

a

xx2y

α
EpZ|Z ą ´∆q

¸

(9)

@

x2
D

“

ˆ ?
φ

1´ ρv
α

˙2 ˆ

p1` xxyµq
2
` 2p1` xxyµq

a

xx2y

α
EpZ|Z ą ´∆q

`

@

x2
D

α2
EpZ2|Z ą ´∆q

˙

(10)

v “ φ

ˆ

1

α´ ρv

˙

(11)

The theoretical solutions of system (8)-(11) are compared with the empirical val-
ues obtained by Monte-Carlo experiments. As shown in Fig. 5, the matching is
remarkable.

(a) φ versus α, (b) xxy versus α, (c)
@

x2
D

versus α.

Figure 5. Theoretical values of φ, xxy and xx2y (solid line)
obtained by solving the system (8)-(11) given the parameters
(µ “ 0.2, ρ “ 0.5), compared to the empirical values (dots) ob-
tained by Monte-Carlo simulations (size of matrix n “ 500, num-
ber of random samples P “ 200). The x-axis corresponds to the
interaction strength α.

The impact of the correlation ρ on the proportion of the surviving species is
shown in Figure 6.
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Remark 2.4. From a theoretical ecology point of view, notice that a negative cor-
relation (prey-predator) seems to slow down the decline of the surviving species,
whereas a positive correlation (mutualism and competition) reverses the trend. These
types of results are similar to Allesina and Tang [2] where they notice that prey-
predator interactions seem to stabilize the system.

Figure 6. Effect of the correlation ρ and the interaction strength
α on the proportion of surviving species φ. Each curve is plotted
by resolving the system (8)-(11) in the centered case µ “ 0.

3. Feasibility: Proof of Theorem 2.1

We assume that matrix Bn is given by (2) (elliptic model). The case where
matrix Bn is given by (4) (covariance profile model) needs extra arguments which
are provided in Appendix A.

3.1. Preliminary results.

Extreme Value Theory (EVT) and the Normal Comparison Lemma. Let pZkqkPN
be a sequence of i.i.d. N p0, 1q random variables and denote:
#

Mn “ maxkPrns Zk
|Mn “ minkPrns Zk

, α˚n “
a

2 log n , β˚n “ α˚n ´
1

2α˚n
logp4π log nq . (12)

Let Gpxq “ e´e
´x

be the Gumbel cumulative distribution function, then classical
EVT results (see for instance [26, Theorem 1.5.3]) yield that for every x P R,

P tα˚npMn ´ β
˚
nq ď xu ÝÝÝÑ

nÑ8
Gpxq , P

!

α˚np
|Mn ` β

˚
nq ě ´x

)

ÝÝÝÑ
nÑ8

Gpxq . (13)

We consider the following dependent framework: Let pZk,nqkPrns be a Gaussian
vector whose components are N p0, 1q with covariance

cov pZk,n;Z`,nq “
ρ

n
, |ρ| ď 1 , k ‰ ` .

We are interested in the behaviour of Mn “ maxkPrnsZk,n and |Mn “ minkPrnsZk,n ,
and shall prove the counterpart of (13) with the help of the Normal Comparison
Lemma (NCL):
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Theorem 3.1 (Theorem 4.2.1, [26]). Suppose that pξi, i P rnsq is a gaussian vector
where the ξi’s are standard normal variables, with covariance matrix Λ1 “

`

Λ1
ij

˘

.
Similarly, let pηi, i P rnsq be a gaussian vector where the ηi’s are standard normal,
with covariance matrix Λ0 “

`

Λ0
ij

˘

. Denote by ρij “ max
 

|Λ0
ij |, |Λ

1
ij |
(

and let
pui, i P rnsq be real numbers. Then:

|P tξj ď uj , j P rnsu ´ P tηj ď uj , j P rnsu|

ď
1

2π

ÿ

1ďiăjďn

ˇ

ˇΛ1
ij ´ Λ0

ij

ˇ

ˇ

`

1´ ρ2
ij

˘´1{2
exp

˜

´

1
2 pu

2
i ` u

2
j q

1` ρij

¸

. (14)

Corollary 3.2. Recall the definition of pZk,`qkPrns, Mn and |Mn above, then

P tα˚npMn ´ β
˚
nq ď xu ÝÝÝÑ

nÑ8
Gpxq , P

!

α˚np
|Mn ` β

˚
nq ě ´x

)

ÝÝÝÑ
nÑ8

Gpxq . (15)

Proof. We apply the NCL to pZkqkPrns and pZk,nqkPrns. Let ρij “
|ρ|
n and unpxq “

x
α˚n
` β˚n , then

|Ptα˚npMn ´ β
˚
nq ď xu ´ Ptα˚npMn ´ β

˚
nq ď xu|

“ |PtZj ď unpxq , j P rnsu ´ PtZj,n ď unpxq , j P rnsu| ,

ď
1

2π

npn´ 1q

2

|ρ|

n

ˆ

1´
ρ2

n2

˙´ 1
2

exp

˜

´
u2
npxq

1` |ρ|
n

¸

ď K n exp

ˆ

´
u2
npxq

1` 1
n

˙

.

Now eventually unpxq “ αnp1` op1qq ě καn for any κ ă 1 and eventually

n exp

ˆ

´
u2
npxq

1` 1
n

˙

ď n exp

ˆ

´
2κ2 logpnq

1` 1
n

˙

“ n
´

´

2κ2

1`ρ{n´1
¯

.

This last term goes to zero as n Ñ 8 for a well-chosen κ sufficiently close to one.

This concludes the proof for Mn. The proof for |Mn can be handled similarly with
minor modifications. �

Random Matrix Theory. Let Bn be given by model (2).

Lemma 3.3. Let An a n ˆ n matrix with i.i.d. N p0, 1q entries for i ď j and
pAij , Ajiq a standard bivariate Gaussian vector with covariance ρ for i ă j, then
the following estimate holds true: almost surely,

lim sup
nÑ8

›

›

›

›

An
?
n

›

›

›

›

ď
?

2
´

a

1` ρ`
a

1´ ρ
¯

ď 2
?

2 .

Proof. The proof relies on two arguments: the classical estimate of the asymptotic
spectral norm of a Wigner matrix [4, Th. 5.1] and the following decomposition of
matrix An{

?
n as linear combination of Hermitian Wigner matrices:

An
?
n
“
An `A

T
n

2
?
n

´ i

“

i
`

An ´A
T
n

˘‰

2
?
n

, pi2 “ ´1q . (16)



EQUILIBRIUM IN A LARGE LOTKA-VOLTERRA SYSTEM 11

Notice that both matrices W 1
n “

An`A
T
n

2
?
n

and W 2
n “

ripAn´AT
nqs

2
?
n

are Wigner matri-

ces, with off-diagonal variances pi ă jq:

var

˜

„

An `A
T
n

2



ij

¸

“
1` ρ

2
and var

¨

˝

«

i
`

An ´A
T
n

˘

2

ff

ij

˛

‚“
1´ ρ

2
.

Hence,

lim sup
n

›

›

›

›

An
?
n

›

›

›

›

ď lim sup
n

}W 1
n} ` lim sup

n
}W 2

n} “ 2

˜

c

1` ρ

2
`

c

1´ ρ

2

¸

An elementary analysis yields
?

2p
?

1` ρ`
?

1´ ρq ď 2
?

2 for |ρ| ď 1. �

3.2. Proof of Theorem 2.1 - the centered case µ “ 0.

Some preparation and strategy of proof. We first prove Theorem 2.1 in the case
where µ “ 0 and focus on the equation

xn “ 1n `
An

αn
?
n
xn . (17)

By Lemma 3.3, lim supn }An{
?
n} is a.s. bounded hence
›

›

›

›

An
αn
?
n

›

›

›

›

a.s.
ÝÝÝÑ
nÑ8

0 .

As a consequence, the resolvent Qn “ pIn ´An{pαn
?
nqq

´1
is a.s. eventually well-

defined and the solution xn “ pxkqkPrns of (17) writes xn “ Qn1n. Denote by ek
the kth canonical vector of Rn. The following representation holds true (we shall
often drop index n in the following)

xk “ eTkx “ ekQ1 “
8
ÿ

`“0

eTk

ˆ

A

α
?
n

˙`

1 ,

“ 1`
1

α
eTk

ˆ

A
?
n

˙

1`
1

α2
eTk

ˆ

A
?
n

˙2

Q1 . (18)

Denote by

Zk,n “ eTk

ˆ

A
?
n

˙

1 “
1
?
n

ÿ

i

Aki and Rk,npAq “ eTk

ˆ

A
?
n

˙2

Q1 . (19)

Notice that the Zk,n’s are standard N p0, 1q however they are not independent as

covpZk,n, Z`,nq “
1

n
covpAk`, A`kq “

ρ

n
, k ‰ ` .

Introducing Mn “ maxkPrns Zk,n and |Mn “ minkPrns Zk,n, we proved in Corollary
3.2 that

P tα˚npMn ´ β
˚
nq ď xu , P

!

α˚np
|Mn ` β

˚
nq ě ´x

)

ÝÝÝÑ
nÑ8

Gpxq . (20)

In the sequel, we often drop n and simply write RkpAq instead of Rk,npAq. Following
the same strategy as in [7], we notice that (18) yields

#

minkPrns xk ě 1` 1
α
|M ` 1

α2 minkPrnsRkpAq

minkPrns xk ď 1` 1
α
|M ` 1

α2 maxkPrnsRkpAq
,
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which we can rewrite

min
kPrns

xk ě 1`
α˚n
αn

´

|M`β˚n
α˚n

´
β˚n
α˚n
`

minkPrns RkpAq

α˚nαn

¯

“ 1`
α˚n
αn

´

´1` oP p1q `
minkPrns RkpAq

α˚nαn

¯

,

where we have use the fact that M̌`βn
α˚n

“ op1q, cf. (20). Similarly, we have:

min
kPrns

xk ď 1`
α˚n
αn

ˆ

´1` oP p1q `
maxkPrnsRkpAq

α˚nαn

˙

(21)

The proof in the centered case follows then from the following lemma:

Lemma 3.4. Let Rk,npAq be defined as in (19) and recall that αn ÝÝÝÝÝÑ
nÑ`8

`8,

then:

maxkPrnsRk,npAq

αn
?

2 log n

P
ÝÝÝÑ
nÑ8

0 and
minkPrnsRk,npAq

αn
?

2 log n

P
ÝÝÝÑ
nÑ8

0 .

The remaining of the section is devoted to the proof of Lemma 3.4.

Lipschitziannity and Gaussian concentration. We first introduce a truncated ver-
sion of Rk,npAq. Let η P p0, 1q and ϕ : R` Ñ r0, 1s a smooth function satisfying:

ϕpxq “

#

1 if x P r0, 2
?

2` ηs

0 if x ě 4
, (22)

decreasing from 1 to 0 gradually as x goes from 2
?

2` η to 4. Let

rRk,npAq “ ϕnRk,npAq where ϕn “ ϕ

ˆ
›

›

›

›

An
?
n

›

›

›

›

˙

. (23)

Notice that rRkpAq differs from RkpAq if ϕn ă 1 which happens with vanishing prob-
ability as P tϕn ă 1u “ P

 

sn ą 2
?

2` η
(

ÝÝÝÑ
nÑ8

0 by Lemma 3.3. The following

lemma is a first step towards Gaussian concentration.

Lemma 3.5. Let rRk defined by (23) and M an nˆ n matrix. Then the function

M ÞÑ rRkpMq “ eTk

ˆ

M
?
n

˙2 ˆ

I ´
M

α
?
n

˙´1

1

is K-Lipschitz, i.e.
ˇ

ˇ

ˇ

rRkpMq ´ rRkpNq
ˇ

ˇ

ˇ
ď K }M ´N}F (24)

where M,N are n ˆ n matrices, }M}F “
b

ř

ij |Mij |
2 is the Frobenius norm and

K a constant independent from k and n.

The second step is to notice that rRkpAq (where A has Gaussian entries but with
off-diagonal pairwise correlations) can be in fact expressed as a Lipschitz function
of i.i.d. N p0, 1q entries.

Lemma 3.6. Consider the linear function Γ : Rnˆn Ñ Rnˆn defined by

ΓiipXq “ Xii and

$

&

%

ΓijpXq “
b

1`ρ
2 Xij `

b

1´ρ
2 Xji pi ă jq ,

ΓjipXq “
b

1`ρ
2 Xij ´

b

1´ρ
2 Xji pi ă jq .

Then
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(1) We have }ΓpXq}F ď Kρ}X}F where Kρ “ 2
a

1` |ρ| hence Γ is Kρ-
Lipschitz.

(2) If matrix Xn “ pXijq has i.i.d. N p0, 1q entries, then An “ ΓpXnq has i.i.d.
N p0, 1q entries on and above the diagonal (i ď j) and each vector pAij , Ajiq
is a standard bivariate Gaussian vector with covariance ρ for i ă j.

The proof is straightforward and is thus omitted.

A consequence of this lemma is that rRkpAq “ rRkpΓpXqq is K ˆ Kρ-Lipschitz.
Applying Tsirelson-Ibragimov-Sudakov inequality [8, Theorem 5.5] finally yields:

Proposition 3.7. Let K the Lipschitz constant of Lemma 3.5 and Kρ “ 2
a

1` |ρ|.
Then

Emax
kPrns

´

rRkpAq ´ E rRkpAq
¯

ď 2KρK
a

log n .

Details of the proof are similar to those in [7] and are thus omitted.

Remark 3.8. Notice that ϕn ď 1 and that ϕn “ 0 if }A{
?
n} ě 4. In particular,

ϕn

›

›

›

›

A
?
n

›

›

›

›

ď 4 and ϕn }Q} ď
1

1´ 4α´1
ď 2

for n large enough. For the latter estimate, write Q “

´

I ´ A
α
?
n

¯´1

, Q´1Q “ I

and Q “ I ` A
α
?
n
Q, then apply the triangular inequality.

Proposition 3.9. The following estimate E rRk pAnq “ Op1q holds true, uniformly
for k P rns.

Proof. We shall prove that the variables rRk have a common distribution for k P rns,
which in particular implies that

E rRk “ E rRi , @k, i P rns and E rRk “
1

n

ÿ

iPrns

E rRi . (25)

Once this fact is established, the proof is straightforward:

ˇ

ˇ

ˇ
E rRk

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

iPrns

E rRi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

n
Eϕn1T

ˆ

A
?
n

˙2

Q1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

1
?
n

›

›

›

›

2

Eϕn
›

›

›

›

A
?
n

›

›

›

›

2

}Q} “ Op1q ,

where the last equality follows from the arguments developed in Remark 3.8.
Let us now establish (25).
Denote by ∆σ the matrix associated to the permutation σ : rns ÞÑ rns and

defined by

r∆σsij “

#

1 if i “ σpjq

0 else
.

Notice in particular that ∆σei “ eσpiq, ∆σ∆τ “ ∆στ for σ, τ two permutations

and ∆σ´1 “ ∆T
σ . Denote by pijq the transposition swapping i and j, i.e. pijqi “ j,

pijqj “ i and pijq` “ ` otherwise. We consider qA “ ∆pijqA∆pijq, that is qA is
obtained by swapping A’s ith and jth column, then the ith and jth row. Observe

that A and qA have the same distribution and so is the case for RkpAq and Rkp qAq.
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We have ∆2
pijq “ In, implying that qAk “ ∆pijqA

k∆pijq and then

Rip qAq “ eTi
ÿ

kě2

˜

qA

α
?
n

¸k

1 “ eTi ∆pijq
ÿ

kě2

ˆ

A

α
?
n

˙k

∆pijq1 “ eTj
ÿ

kě2

ˆ

A

α
?
n

˙k

1

“ RjpAq .

This proves that RipAq, Rip qAq, RjpAq have the same law, hence the same expecta-
tion. Eq.(25) is established, which concludes the proof. �

We are now in position to prove Lemma 3.4.

Proof of lemma 3.4. Recall that E rRkpAq “ E rR1. Since maxkPrns rRkpAq ´ rR1pAq ě
0, Markov inequality yields:

P

#

maxkPrns rRkpAq ´ rR1pAq

α
?

2 log n
ě ε

+

ď
E
´

maxkPrns rRkpAq ´ rR1pAq
¯

εα
?

2 log n
,

“

E
´

maxkPrns rRk pAq ´ E rRkpAq
¯

εα
?

2 log n
,

“
E
´

maxkPrns

´

rRk pAq ´ E rRkpAq
¯¯

εα
?

2 log n
,

ď

?
2K ˆKρ

εα
,

where the last inequality follows from Proposition 3.7.
This implies that

maxkPrns rRk pAq ´ rR1 pAq

α
?

2 log n

P
ÝÝÝÑ
nÑ8

0 .

It remains to prove that

rR1 pAq

α
?

2 log n

P
ÝÝÝÑ
nÑ8

0 and
maxkPrnsRk pAq

α
?

2 log n

P
ÝÝÝÑ
nÑ8

0 .

The arguments are similar to those in [7, Section 2.3]. Proof of the second assertion
of Lemma 3.4 can be done similarly. This concludes the proof. �

3.3. Proof of Theorem 2.1 - the non centered case. Recall that α Ñ 8 as
n Ñ 8. Denote by un “

1?
n
1n and notice that the spectrum of In ´ µunu

T
n is

t1´µ, 1u, the eigenvalue 1 with multiplicity n´1. Notice in particular that if µ ‰ 1,
then I ´µuuT is invertible. So is (eventually) I ´ A

α
?
n
´µuuT as }A{pα

?
nq} Ñ 0

a.s. We shall also rely on the fact that }Q´ I} ÝÝÝÑ
nÑ8

0 a.s. As a consequence,

uTQu
a.s.
ÝÝÝÑ
nÑ8

1 .

Denote by x̃ and x the vectors solutions of the equations:

x̃ “ 1`Bx̃ “ 1`

ˆ

A

α
?
n
` µuuT

˙

x̃ and x “ 1`
A

α
?
n
x .
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The following representations hold:

x̃ “ pI ´Bq
´1

1 and x “

ˆ

I ´
A

α
?
n

˙´1

1 .

Recall that Q “ pI ´A{pα
?
nqq

´1
. By rank one perturbation identity (Woodbury),

we have:

pI ´Bq´1 “ Q`
QuuTQ

1´ µuTQu

and

x̃ “
Q1p1´ µuTQuq ` µQuuTQ1

1´ µuTQu
“

x

1´ µuTQu
.

If µ ă 1 and α ě p1` εqα˚ then eventually, x̃ has positive components. This is no
longer the case if µ ą 1 or α ď p1´ εqα˚. This concludes the proof of Theorem 2.1.

4. Stability: Proof of Proposition 2.3

Proof. We have

I ´B ` I ´BT “ 2I ´ pB `BTq “ 2I ´

ˆ

A`AT

α
?
n
`

2µ

n
11T

˙

.

We will rely on the following condition:

2I ´ pB `BTq is positive definite ô λmaxpB `B
Tq ă 2 . (26)

Notice that pA`ATq{α is a symmetric matrix with independent N p0, 2p1` ρq{α2q

entries above the diagonal (the diagonal entries have a different distribution from
the off-diagonal entries, with no asymptotic effect). In this case, it is well known
that the largest eigenvalue of the normalized matrix (or equivalently its spectral
norm since the matrix is symmetric) almost surely converges to the right edge of
the support of the semi-circle law (see [5, Theorem 5.2]):

λmax

ˆ

A`AT

α
?
n

˙

a.s.
ÝÝÝÑ
nÑ8

2
a

2p1` ρq

α
. (27)

Suppose that pρ, α, µq P A. Notice that in this case,
?

1` ρ

α
?

2
ă

1

2
ă

1

2
`

1

2

c

1´
2p1` ρq

α2
.

We consider three subcases

(i) µ “ 0,

(ii) µ ď
?

1`ρ

α
?

2
,

(iii) µ P

ˆ

?
1`ρ

α
?

2
, 1

2 `
1
2

b

1´ 2p1`ρq
α2

˙

.

In the centered case (i), condition (26) asymptotically occurs whenever α ą
a

2p1` ρq.
Before studying subcases (ii) and (iii), we recall a result on small rank pertur-

bations of large random matrices.
Notice that the rank-one perturbation matrix P “ 2µ

n 11T admits a unique non

zero eigenvalue 2µ. Denote by Ǎ “ A`AT

α
?
n

. We are concerned with the top eigenvalue
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of the symmetric matrix Ǎ`P . Based on a result by Capitaine et al. [10, Theorem
2.1], we have:

λmaxpǍ` P q
a.s
ÝÝÝÑ
nÑ8

#

2µ` 1`ρ
α2µ if µ ą

?
1`ρ
?

2α
,

2
?

2p1`ρq

α else.

Consider now subcase (ii), then λmaxpǍ ` P q
a.s.
ÝÝÝÑ
nÑ8

2
?

2p1`ρq

α , which is strictly

lower than 2 since pρ, α, µq P A. Hence λmaxpǍ ` P q is eventually strictly lower
than 2 in this case.

We finally consider subcase (iii). In this case,

λmaxpǍ` P q
a.s.
ÝÝÝÑ
nÑ8

2µ`
1` ρ

α2µ
.

We shall prove that 2µ` 1`ρ
α2µ ă 2 or equivalently

2α2µ2 ´ 2α2µ` 1` ρ ă 0 . (28)

An elementary study of the polynomial ΩpXq “ 2α2X2 ´ 2α2X ` 1` ρ yields that

Ω’s discriminant is positive if α ą
a

2p1` ρq and Ω’s roots are given by

Ωpµ˘q “ 0 ô µ˘ “
1

2
˘

1

2

c

1´
2p1` ρq

α2
.

Also remark that Ω
´?

1`ρ

α
?

2

¯

ă 0, so that
?

1`ρ

α
?

2
P pµ´, µ`q. In particular condition

(28) is fulfilled for µ P
´?

1`ρ

α
?

2
, µ`

¯

, which is precisely subcase (iii). Hence a.s.

lim supnÑ8 λmaxpǍ` P q ă 2. We can then rely on Theorem 2.2 to conclude.
�
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Appendix A. Proof of Theorem 2.1: adaptations to the case of a
covariance profile

In this section, we provide the arguments to prove Theorem 2.1 in the case where
matrix B follows the model (4), i.e.

B “
Ãn

αn
?
n
`
µ

n
1n1T

n ,

where Ãn’s entries are i.i.d. N p0, 1q on and above the diagonal (i ď j), and

pÃij , Ãjiq is a standard bivariate Gaussian vector pi ă j) with covariance covpÃij , Ãjiq “
ρij , and independent from the remaining random variables.

There are essentially 3 issues to resolve, to fully adapt the proof developed in
Section 3 to the covariance profile case:

(1) The decomposition (16) yields Ãn?
n
“ W 1

n ` iW 2
n , where W 1

n ,W
2
n are Her-

mitian matrices with

var
`

rW 1
nsij

˘

“
1` ρij

2n
and var

`

rW 2
nsij

˘

“
1´ ρij

2n
.

Since W 1
n ,W

2
n are no longer Wigner matrices, but rather matrices with

a variance profile, an extra argument is needed to obtain an almost-sure
upper bound for lim supn }W

1
n} ` lim supn }W

2
n}.

(2) The Lipschitz property for rRk,npÃnq. Essentially, we need the counterpart
of Lemma 3.6 to the context of a covariance profile.

(3) The control of the term E rRk,npÃq.

A.1. Proof of issue 1: Control of the spectral norm of a Hermitian matrix
with a variance profile. Applying Lata la’s theorem [25], we easily show that

E}W 1
n} ` E}W 2

n} ď C

where C is a constant independent from n.
Now write

W 1
n “

Υn ˝Xn
?
n

where Υn “ pΥijq , Υij “

c

1` ρij
2

,

matrix Xn “ pXijq is a Wigner matrix with i.i.d. N p0, 1q entries on and above the
diagonal, and ˝ stands for the Hadamard product, i.e. Υn ˝Xn “ pΥijXijq. Notice
that

?
nW 1

n is 1-Lipschitz with respect to the Frobenius norm

}Xn}Frob “

d

ÿ

ij

|Xij |
2 .

Hence by Gaussian concentration, we have

P
 
ˇ

ˇ

?
n}W 1

n} ´
?
nE}W 1

n}
ˇ

ˇ ą δ
(

ď 2e´
δ2

2 .

Taking δ “ ε
?
n, we obtain

P
 
ˇ

ˇ}W 1
n} ´ E}W 1

n}
ˇ

ˇ ą ε
(

ď 2e´
nε2

2 .
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The same holds for W 2
n , hence the upper control:

lim sup
n

`

}W 1
n} ` }W

2
n}
˘

ď lim sup
n

`

E}W 1
n} ` E}W 2

n}
˘

ď C

almost surely. It remains to replace the truncation function ϕ in (22) by the smooth
function

ψpxq “

#

1 if x ď C ` η,

0 else.

to proceed.

A.2. Proof of issue 2: rRkpÃq is a Lipschitz function of Gaussian i.i.d.
random variables. It suffices to replace function Γ in Lemma 3.6 by

rΓ : Rnˆn Ñ Rnˆn

where

rΓiipXq “ Xii and

$

&

%

rΓijpXq “
b

1`ρij
2 Xij `

b

1´ρij
2 Xji pi ă jq ,

rΓjipXq “
b

1`ρij
2 Xij ´

b

1´ρij
2 Xji pi ă jq .

and to modify accordingly the Lipschitz constant by rK “ 2
?

2 ě 2
a

1`maxij |ρij |.

A.3. Proof of issue 3: Magnitude of E rRk,npÃnq. To address this issue, we
provide a quick argument which relies on Isserlis’ theorem also called Wick’s formula
(see [23, Th. 1.28]), highly dependent on the Gaussiannity of the entries.

Theorem A.1 (Isserlis Theorem). if pX1, ¨ ¨ ¨ , Xnq is a centered normal vector,
then

EpX1X2 ¨ ¨ ¨Xnq “
ÿ

Π

ź

ti,juPΠ

EpXiXjq (29)

where the sum is over all the partitions Π of rns into pairs ti, ju, and the product
over all the pairs contained in Π.

Recall that:

E rRkpÃnq “
ÿ

`ě2

E

»

–

eTk
α`´2

˜

Ã
?
n

¸`

1

fi

fl “
ÿ

`ě2

EeTk Ã`1
α`´2n

`
2

“:
ÿ

`ě2

C`

α`´2n
`
2

.

Consider a matrix An where the pairwise covariance covpAij , Ajiq “ 1. Denote by

C` “ EeTk A
`
1. We will show that each quantity |C`| is bounded by C`. Notice

that:
C` “

ÿ

i1,...,i``1

EpÃi1i2Ãi2i3 ...Ãi`,i``1
q . (30)

by Isserlis’ theorem, we have:

ˇ

ˇ

ˇ
EpÃi1,i2Ãi2,i3 ...Ãi`,i``1

q

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

Π

ź

tj,kuPΠ

EpAijij`1
Aikik`1

q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

Π

ź

tj,kuPΠ

EpAijij`1
Aikik`1

q “ E
`

Ai1i2 ¨ ¨ ¨Ai`i``1

˘

.

From this, we deduce that |C`| ď C`, hence |E rRkpÃq| ď E rRkpAq. This gives the

desired bound since E rRkpAq “ Op1q.
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