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Abstract

We propose strike mechanisms as a solution to the classical problem of Hur-

wicz and Schmeidler [1978] and Maskin [1999] according to which, in two-

person societies, no Pareto efficient rule is Nash-implementable. A strike mech-

anism specifies the number of alternatives that each player vetoes. Each player

simultaneously casts these vetoes and the mechanism selects randomly one al-

ternative among the non-vetoed ones. For strict preferences over alternatives

and under a very weak condition for extending preferences over lotteries, these

mechanisms are deterministic-in-equilibrium. They Nash implement a class of

Pareto efficient social choice rules called Pareto-and-veto rules. Moreover, un-

der mild richness conditions on the domain of preferences over lotteries, any

Pareto efficient Nash-implementable rule is a Pareto-and-veto rule and hence is

implementable through a strike mechanism.
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1 Introduction

Can one design some protocol that ensures that two players reach a Pareto efficient

agreement in equilibrium? The theorems of Hurwicz and Schmeidler [1978] and

Maskin [1999], at the outset of implementation theory, provide a negative answer to

this question: no deterministic mechanism, except dictatorship, can guarantee that

every Nash equilibrium is Pareto efficient. In fact, there is a tension between the

conditions for the existence of an equilibrium at every preference profile and those

which ensure that each outcome is Pareto efficient. We refer to this impossibility as

the two-person implementation problem.

We propose a solution to this problem based on “strike” mechanisms1. A strike

mechanism endows each player i with vi vetoes to be distributed among the alterna-

tives, with v1+v2 being equal to the number of alternatives minus one, so that at least

one alternative remains non-vetoed. The game is simultaneous and the outcome is

the uniform lottery over the non-vetoed alternatives.

By allowing lotteries, we introduce a modification of the mechanisms used in

general for implementation but, as we shall prove, lotteries do not materialize at

equilibrium; they only act as off-equilibrium threats. From a mechanism design

perspective, we therefore consider Nash implementation through deterministic-in-

equilibrium mechanisms or simply DE mechanisms.

The idea of introducing off-equilibrium threats is already present in the im-

plementation literature.2 More precisely, Sanver [2006] allows for off-equilibrium

awards, Bochet [2007] considers lotteries whereas Benoît and Ok [2008] consider

mechanisms with awards and mechanisms with lotteries off-equilibrium. But these

papers consider three players or more while we consider the two-person case. This

aspect is important since the characterizations of Moore and Repullo [1990] and

Dutta and Sen [1991] jointly with the mentioned impossibility results suggest that,

with two players, "exact implementation is very demanding, at least in the absence of

1The word "strike" comes from legal American vocabulary. See for instance the rules of the Amer-
ican Arbitration Association for arbitrator selection: https://www.adr.org/ArbitratorSelection

2Randomization off-equilibrium is used in other branches of economic theory. See for instance
Ederer et al. [2018] for recent work in the theory of incentives where similar techniques are used as a
strategy to combat gaming by better informed agents.
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domain restrictions" as Abreu and Sen [1991] puts it, whereas Nash-implementable

rules of interest exist with three or more players. Another difference is that our

work, rather than relying on integer games,3 builds games –the strike mechanisms–

whose rules are simple and explicitly based on vetoes.

Since we deal with lotteries, the notion of Pareto efficiency needs some qualifica-

tion (see Bogomolnaia and Moulin [2001] for a discussion). Two classical definitions

are ex-ante and ex-post Pareto efficiency. A lottery is ex-ante Pareto efficient if no

other lottery Pareto dominates it, whereas it is ex-post Pareto efficient if no alterna-

tive that can be selected by the lottery is Pareto dominated by some other alternative.

While we show that the possibility of ex-ante Pareto efficient implementation cannot

be hoped for, we establish that ex-post Pareto efficient implementation is possible,

by DE mechanisms, as soon as preferences over alternatives are strict.4

Our main result is that a SCR is Pareto efficient and Nash-implementable by a

DE mechanism if and only if it is a Pareto-and-veto rule: for some pair of integers

v = (v1,v2), with v1 + v2 + 1 being the number of alternatives, it selects all Pareto

efficient alternatives that are not among the vi worst alternatives for each player i.

The Pareto-and-veto rule with vector v is denoted pvv .5 We show that the strike

mechanism with vetoes v1 and v2 Nash implements pvv .

The study of the strike mechanism is facilitated by the fact that the best-response

reasoning is straightforward in this game. Given the vetoes cast by her opponent, a

player can induce any non-vetoed alternative as the outcome by adequately casting

her vetoes. Thus, her best response amounts to select her best element among the

non-vetoed alternatives.

We prove that, when preferences are strict, the equilibria of this game are pure

3Jackson [2001] summarizes some views on the limits of these games.
4The current results do not extend to the setting where the players are indifferent among several

alternatives. Indeed, as proved by Sanver [2006], no selection of the Pareto set is (Maskin) monotonic
and hence can be implemented.

5It is not the first time that Pareto-and-veto rules are found to be of interest in the literature.
Moulin [1983] defines pv under the name "veto core" (Chapter 6.5). Abreu and Sen [1991] (pp. 1016-
17) present this class of rules as the main example that is virtually implementable but fails to be
Nash-implementable. In a setting where monetary transfers are allowed, Sanver [2018] designs a
direct veto mechanism that implements alternatives which are Pareto efficient and preferable to some
disagreement outcome by both players.
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and strict. Then, the nice feature of best responses has three consequences for equi-

librium behavior. First, each veto mechanism is DE, with a unique alternative that

remains non-vetoed in equilibrium. Second, any equilibrium outcome is Pareto effi-

cient. Third, the equilibrium strategies have a natural shape: if x is the implemented

alternative and vi is the number of vetoes, player i vetoes all alternatives preferred

to x by her opponent (say k alternatives) and she vetoes also vi − k among the alter-

natives less preferred than x by her opponent. If both strategies veto disjoint sets of

alternatives, this forces each player to accept her opponent’s strategy. In any equi-

librium, this is the case: the players veto disjoint sets of alternatives and only one

alternative, the implemented one, remains non-vetoed.

All these results hold under the standard von Neumann and Morgenstern ex-

pected utility framework but are even more general than that. Indeed, they remain

true under a mild condition that we term “best-element bias”: for any set of alter-

natives, a player prefers the sure lottery that consists of her most preferred element

in the set to any lottery with support in the same set. As a matter of fact, we could

define the output of the mechanism as an irresolute set of alternatives rather than a

lottery and obtain equivalent results, under very mild hypotheses to extend prefer-

ences over alternatives to sets.

At this point, we have described a solution to the two-person implementation

problem: a mechanism that implements a Paretian SCR. We then show that, in some

sense, there cannot be a different solution. This necessity part is more involved.

Here, the key concept is the veto power generated by a mechanism: a mechanism

µ endows player i with veto power over some set X of alternatives if and only if

player i has some strategy that prevents any alternative in X to be selected with pos-

itive probability whatever her opponent plays. As we show, any mechanism µ that

ensures Pareto efficient outcomes must endow each player i with veto power over

every set of alternatives whose cardinality does not exceed some integer v
µ
i with

v
µ
1 + v

µ
2 + 1 being the number of alternatives. This is a strong result which almost

directly entails that only sub-correspondences of pvv are Nash-implementable. The

necessity is established on a domain of preference extensions over lotteries that is

rich enough to include specific extended preferences that we label “priority” exten-

4



sions. In words, a “priority” extended preference is defined by the property that

whenever all the elements of a set X are preferred to all elements outside X, any

lottery that put some weight (however small) on some element of X is preferred to

any lottery that puts no weight on X. For instance, the domain of vNM preferences

satisfies this requirement.

We also identify a set of conditions that characterize the class of Pareto-and-veto

rules which, thus, turn to be necessary and sufficient for two-person Nash imple-

mentability with DE mechanisms. As such, our conditions are weaker than the nec-

essary and sufficient conditions identified by Moore and Repullo [1990] and Dutta

and Sen [1991] for two-person Nash implementability without DE mechanisms, as

their conditions coincided with dictatorship over the full domain of preferences.

These conditions are Pareto efficiency, Maskin monotonicity, neutrality-on-its-vetoes

(a weakening of neutrality) and the intersection property which is the key distinc-

tion between two-player and many-player implementation models. The conditions

are independent, as shown in Appendix C.

The structure of the paper is as follows: Section 2 introduces the basic notions

and Section 3 presents the strike mechanisms. Section 4 presents the outcomes of

these mechanisms and tackles the necessity issue. Section 5 shows how the cur-

rent results are related to the classical characterization of Nash-implementable so-

cial choice rules with two players. Section 6 presents a review of the various other

ideas that have emerged in the literature to bypass the Hurwicz-Schmeildler impos-

sibility of Paretian implementation and makes some concluding remarks.

2 Basic notions and notation

A set N = {1, 2} of two players faces a finite set A of n+ 1 ≥ 3 alternatives. We write

A = 2A for the power set of A. The set of probability distributions (or “lotteries”)

over A is denoted ∆ = {p : A→ [0,1] |
∑
x∈Ap(x) = 1}. For each lottery p ∈ ∆, we let

supp(p) = {x ∈ A | p(x) > 0} denote the support of p. For each X ∈ A, p[X] =
∑
x∈X p(x)

stands for the probability that p selects an alternative in X. Let ∆uni denote the set
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of all uniform probability distributions over the non-empty subsets of A. Slightly

abusing notation, we let {x} denote both the singleton set consisting of alternative x

and the lottery that selects x with probability one.

The set of linear orders over A is denoted by LA and its generic element �i is the

preference of i ∈ N .6 The set of (strict) preference profiles over A is L2
A = LA × LA

with � = (�1, �2) denoting a generic preference profile. We write

po(�) = {x ∈ A | @ y ∈ A : ∀i ∈N,y �i x}

for the set of Pareto optimal alternatives at � ∈ L2
A.

Let L(x,�i) = {y ∈ A : x �i y} and U (x,�i) = {y ∈ A : y �i x} respectively denote

the (strict) lower contour set and the (strict) upper contour set of x ∈ A at �i∈ LA.

A social choice rule (SCR) is a mapping f : L2
A→A\{∅ }. A SCR is Pareto efficient

iff f (�) ⊆ po(�) for all � ∈ L2
A. We say that f is a sub-correspondence of g and write

f ⊆ g whenever f (�) ⊆ g(�) for all � ∈ L2
A.

A mechanism is a function µ :M→ ∆ withM =M1 ×M2 whereMi , ∅ is the

message space of i ∈ N . In order to properly define the game associated to µ, we do

not need to extend preferences over the whole ∆ but simply over µ(M) := {p ∈ ∆ |
p = µ(m) for some m ∈M}, the range of µ. We only consider mechanisms with finite

ranges.7 For example, the set of uniform lotteries over A, denoted ∆uni, is finite. The

strike mechanisms, which play the central role in this work, have ∆uni as their range.

We let Pµ(M) stand for the set of complete and transitive binary relations over

µ(M). A typical element of Pµ(M) is denoted �∗i with �∗i being its strict part. We say

that �∗i is an extension of �i when x �i y =⇒ {x} �∗i {y}, ∀x,y ∈ A with {x}, {y} ∈ µ(M).

For a mechanism µ :M→ ∆ and a preference profile over lotteries �∗= (�∗1,�
∗
2), a

Nash equilibrium is a pair of messages (m1,m2) ∈M such that, for all m′1 ∈M1 and

all m′2 ∈ M2, µ(m1,m2) �∗1 µ(m′1,m2) and µ(m1,m2) �∗2 µ(m1,m
′
2). Let N µ(�∗) denote

the set of Nash equilibria of the mechanism µ at the preference profile �∗.
6More precisely, one of x �i y and y �i x holds for any distinct x,y ∈ A while x �i x fails for all

x ∈ A. Moreover, x �i y and y �i z implies x �i z for all x,y,z ∈ A.
7While our results still hold extending over the whole simplex, the richness condition PREX be-

comes harder to satisfy. We would like to thank Bhaskar Dutta for pointing this out.
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We now turn to the question of the domain of preferences to be considered. As

already mentioned we work under the assumption that preferences over alternatives

are strict, but we are flexible as to the way preferences are extended from alterna-

tives to lotteries. Since there are many ways to do so, we use a notion of admissible

extended preferences. Let κ(�i) ⊆ P∆ be a set of admissible preferences over lot-

teries of player i associated with �i∈ LA. Abusing notation, let κ(�) ⊆ P 2
∆

be the

set of admissible preference profiles over ∆ associated with the preference profile

�= (�1,�2). Such a correspondence κ that associates to each preference a set of ex-

tended preferences (and to each profile of preference a set of profiles of extended

preferences) is called a domain of preference extensions.

Given a domain κ, a mechanism µ is admissible iff for all �∈ L2
A and all �∗∈ κ(�),

N µ(�∗) , ∅. It is deterministic-in-equilibrium (DE) iff for all �∈ L2
A, all �∗∈ κ(�),

and all m ∈ N µ(�∗), #supp(µ(m)) = 1. It Nash-implements the SCR f : L2
A → A

iff for all �∈ L2
A and all �∗∈ κ(�), f (�) =

⋃
m∈N µ(�∗)

supp(µ(m)). Note that if µ Nash-

implements some SCR f , then µ is admissible.

Throughout the paper we use two properties of preference extensions. The first

one, best-element bias, can be stated as follows: a player with a best-element bias

prefers the sure lottery that selects her best element in X to any lottery with support

in X.

Best-element bias: Let �i∈ LA be a preference on A, and let ∆̄ ⊆ ∆ be a set of lotter-

ies. An extension �∗i of �i exhibits the best-element bias in ∆̄ when for any X ∈ A
with #X > 1 and any x ∈ X, if x �i y for any y ∈ X \ {x}, then {x} �∗i p for all p ∈ ∆̄ with

supp(p) ⊆ X and p , {x}.

A domain κ is said to satisfy the best-element bias (in short: κ satisfies BEB) in

∆̄ if, for any strict preference �i ∈ LA, any extension �∗i ∈ κ(�i) exhibits the best-

element bias in ∆̄. Note that BEB is satisfied by virtually all domains of preference

extensions that are considered in the literature8, including the von Neumann and

8In fact, BEB is satisfied if one considers the well-known preference extension axioms of the lit-
erature (such as Gärdenfors [1976] or Kelly [1977]) and deduces preferences over lotteries through
the preferences over their supports. If κ satisfies BEB (which is universally quantified), every sub-
correspondence of κ satisfies BEB as well.
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Morgenstern domain.

The second condition, priority extension, deals with the richness of the domain

of preference extensions. For any lottery p ∈ ∆, we write p[U (x,�i)] =
∑
y:y�ix p(y) to

refer to the probability, according to p, of obtaining an alternative as least as good as

x according to �i .

Priority extension: Let �∗i extend �i and let x ∈ A. The extension �∗i is a priority

extension (PREX) of �i for x in ∆̄ iff given any two lotteries p,q ∈ ∆̄, if p[U (x,�i)] > 0

and q[U (x,�i)] = 0, then p �∗i q.

The interpretation of this property is clear: under a priority extension, some

alternative x is used as a grading benchmark: The individual prefers to reach the

benchmark x, even with a tiny probability, than not reaching it.9

While PREX may seem related to lexicographic preferences, we now show by

example that PREX is compatible with expected utilities while, as is well known,

lexicographic preferences fail to be so. Consider a domain of extension that satisfies

the condition in the set ∆uni of uniform lotteries. Similar examples can be found

for any finite set of lotteries. Consider the correspondence κvNM : LA → P∆uni that

allows any von Neumann and Morgenstern extension of �i . In other words, for

�i ∈ LA, κvNM(�i) is the set of all �∗i ∈ P∆uni such that there exists a vector u ∈ RA

with a �i b ⇐⇒ ua > ub for all a,b ∈ A and:

∀p,q ∈ ∆uni, p �∗i q ⇐⇒
∑
a∈A

p(a)ua >
∑
a∈A

q(a)ua.

The domain κvNM(>) contains priority extensions of � to ∆uni. To see this, label

the alternatives in A according to the preference: an+1 �i an �i . . . �i a1 and let uak =

(n+1)k for any ak ∈ A. Take any pair p,q ∈ ∆uni with p[U (ak ,�i)] > 0 and q[U (ak ,�i)] =

0 for some ak. The expected value of p, that is
∑
a∈Ap(a)ua, reaches its minimum

when the lottery contains in its support ak but no better alternative according to �i
(and hence has k alternatives in its support). The expected value

∑
a∈Ap(a)ua is at

9Note that if x is bottom-ranked in �, there is no lottery q with q[U (x,�)] = 0, so that any extension
is (vacuously) a priority extension for x.
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least
uak
k
>
uak
k + 1

=
(n+ 1)k

k + 1
≥ (n+ 1)k−1.

The expected value of q,
∑
a∈A q(a)ua, reaches its maximum when q = {ak−1} and

hence its value is at most (n + 1)k−1. Therefore, for any ak ∈ A, p[U (ak ,�i)] > 0 and

q[U (ak ,�i)] = 0 implies that p �∗i q. Thus, uniform lotteries are ordered following the

priority rule.

We say that a domain κ satisfies PREX in ∆̄ iff for all �i∈ L2
A and for all x ∈ A,

there is some �∗i∈ κ(�i) that is a priority extension of �i in ∆̄ for x.

3 The strike mechanism

3.1 Definition

A strike mechanism endows each player i ∈N with a non-negative number vi of ve-

toes, with v1+v2 = n. The setMi = {X ⊆ A | #X = vi} represents the sets of alternatives

i can veto, andM =M1 ×M2 is the joint message space.

Definition 1. The strike mechanism µv :M→ ∆uni associates to each pair of messages

m = (m1,m2), the lottery µv(m) that is uniform over the set supp(µv(m)) = A \ (m1 ∪m2).

In other words, an alternative is uniformly drawn from the non-vetoed alterna-

tives. Note that, as v1 + v2 = n, the set m1 ∪m2 contains at most n elements, so that

supp(µv(m)) is always non-empty. Our results would remain unaffected under an al-

ternative specification of the strike mechanism in which the mechanism selects one

among the non-vetoed alternatives according to any probability distribution with

full support over these alternatives.

In order to study the mechanism µv , we introduce the following notation. Let

gv(Mi ,mj) = {X ∈ A | supp(µv(mi ,mj)) = X for some mi ∈Mi}

denote the attainable set for player i at mj under µv . This set contains the different

supports of the uniform lotteries that player i can induce when player j selects mj
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under the strike mechanism µv . Because of the number of vetoes at her disposal,

player i can choose the support of the outcome by adequately casting her vetoes as

described by the following result:

Lemma 1. For each player i and each strategy mj ∈ Mj , the attainable set of the strike

mechanism µv equals:

gv(Mi ,mj) = {X ⊆ A \mj | 1 ≤ #X ≤min{n+ 1− vi ,n+ 1− vj}}.

Proof. Take some player i and some strategy mj ∈Mj . Take first the case with vi < vj

so that n+ 1 − vj < n + 1 − vi . We want to prove that for each non-empty X ⊆ A \mj
(hence with #X ≤ n+ 1 − vj), there is some mi ∈ Mi with supp(µv(mi ,mj)) = X. Note

that each non-empty subset of A \mj is of the form A \ (mj ∪ C) with 0 ≤ #C ≤ vi .
Thus, it suffices to pickmi such thatmi\mj = C which ensures that supp(µv(mi ,mj)) =

A \ (mi ∪mj) = A \ (mj ∪C), as required. In the case vi ≥ vj , take mi with mi \mj = C.

Since vi ≥ vj , it follows that #C ≥ vi−vj and hence for each non-emptyX ⊆ A\mj with

#X ≤ n+1−vj−(vi−vj) = n+1−vi , there is somemi ∈Mi with supp(µv(mi ,mj)) = X.

3.2 Best responses

Lemma 1’s main implication is that player i can induce any singleton in A\mj as the

support of the outcome: formally, for any player i and any alternative x ∈ A:

x ∈ A \mj =⇒ {x} ∈ gv(Mi ,mj).

Best responses can thus be easily described, as done in the following statement. For

each strategy mj of player j, let xi(mj) be i’s preferred non-vetoed alternative so that

{xi(mj)} = argmaxX\mj �i .

Proposition 1. Let the domain κ satisfies BEB in the range of µv . For each strategy mj of

her opponent, player i has a unique best response to mj , denoted m∗i (mj), with

m∗i (mj) = X \ (mj ∪ {xi(mj)}) and µv(m∗i (mj),mj) = {xi(mj)}.
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Proof. The assumption that preferences over alternatives are strict implies that xi(mj)

is well-defined, and the assumption that the preferences over lotteries satisfy BEB

implies that xi(mj) is preferred to any other possible outcome. Lemma 1 indicates

that xi(mj) belongs to the attainable set gv(Mi ,mj) for any mj ∈ Mj . It is thus the

unique best possible outcome, and it is obtained by eliminating all other non-vetoed

alternatives, as indicated.

3.3 Equilibrium

The first consequence of Proposition 1 is that strike mechanisms are deterministic

in equilibrium as long as the domain satisfies BEB.

Proposition 2. For any strike mechanism µv , if the domain κ satisfies BEB in the range

of µv , then µv is DE.

Proof. Assume that there is some equilibrium m = (m1,m2) with #supp (µv(m)) > 1.

Consider some player i and some alternative x ∈ supp(µv(m)) with x �i y for all y ∈
supp(µv(m)). Since x ∈ A \mj , Lemma 1 shows that {x} ∈ gv(Mi ,mj). Thus, there is

some m′i ∈ Mi with µv(m′i ,mj) = {x}. Furthermore, {x} �∗i µv(m) due to BEB, which

contradicts that m is an equilibrium.

Since a strike mechanism is DE, no uncertainty remains in equilibrium: players

veto disjoint sets of alternatives and a unique alternative is selected.

4 Pareto efficient implementation

The previous section has studied the game-theoretical properties of the proposed

mechanism. We now study its outcomes.

4.1 The Pareto-and-veto correspondence pvv

Definition 2. For any v = (v1,v2) ∈ {0,1, ..., n}2 with v1 + v2 = n, the Pareto-and-veto

rule pvv : L2
A→A is the SCR:

11



pvv(�) =

Pareto︷︸︸︷
po(�)∩

Veto︷                                                       ︸︸                                                       ︷
{x ∈ A | #L(x,�1) ≥ v1}︸                      ︷︷                      ︸
Best n− v1 alternatives for 1

∩{x ∈ A | #L(x,�2) ≥ v2}︸                      ︷︷                      ︸
Best n− v2 alternatives for 2

.

The Pareto-and-veto rule pvv picks all Pareto efficient alternatives with a lower-

contour set at least as large as vi for every player i. As an illustration, Table 1 fully

describes the outcome of pv(1,1) in the case of three alternatives. In the table, lines

represent the preferences of player 1 and the columns the preferences of player 2,

where for short abc stands for a �i b �i c and so on.

abc acb bac bca cab cba

abc a a {a,b} b a b

acb a a a c {a,c} c

bac {a,b} a b b a b

bca b c b b c {b,c}
cab a {a,c} a c c c

cba b c b {b,c} c c

Table 1: The Pareto-and-veto rule pv(1,1).

Our first observation is that pvv is non empty when v1 + v2 ≤ n. To see this, just

observe that eliminating n alternatives at most, out of n+1, leaves at least one, say a.

If a is Pareto efficient, we are done. If not, a is Pareto-dominated by some a′ ∈ pov , but

since a′ is at least as good as a for player i, a is still among her n−vi best alternatives.

As soon as v1 + v2 is at least n + 1 , the example of completely opposed preferences

shows that pvv can be empty.

4.2 Implementation of pvv

We now turn to the implementation of pvv : the strike mechanism with veto vector v

Nash-implements the Pareto-and-veto rule with the same veto vector.

Theorem 1. Let the domain κ satisfy BEB in ∆uni, the range of the strike mechanisms.

For any v ∈ {0, ..., n}2 with v1 + v2 = n, the SCR pvv is Nash-implementable by a DE-

mechanism. In particular pvv is Nash-implementable by the strike mechanism µv .

12



Proof. (i) In order to check the inclusion pvv(�) ⊇
⋃

m∈N µv (�∗)
supp(µv(m)), consider any

equilibrium m. By Proposition 2 the support of µv(m) is a singleton {x}. Because

player i can always veto her worst vi alternatives in the mechanism µv any best

response outcome, and thus any equilibrium outcome x is such that #L(x,�i) ≥ vi
∀i ∈ N . So x satisfies the veto conditions in the definition of pv. It remains to show

that x ∈ po(�). Suppose not, i.e., there exists y ∈ A with y �i x for all i ∈ N . Since

µv(m) = {x}, we have m1 ∩m2 = ∅. Thus, y ∈ mi for some i ∈ N , say i = 1, without

loss of generality. It follows that y ∈ A \m2 and thus {y} ∈ gv(M1,m2). Therefore,

µv(m′1,m2) = {y} for some m′1 and as {y} �∗1 µv(m) = {x}, we contradict m ∈ N µv (�∗).
(ii) For the reverse inclusion, take x ∈ pvv(�). Because x is Pareto-optimal, any of

the n other alternatives is either strictly better than x for one and only one player or

strictly worse for both. So counting these n = v1 + v2 alternatives we obtain:

v1 + v2 = #U (x,�1) + #U (x,�2) + #(L(x,�1)∩L(x,�2)) . (1)

By definition of pvv , v1 ≤ #L(x,�1) = n − #U (x,�1). Therefore v2 ≥ #U (x,�1), which

means that player 2 has enough vetoes to block all the alternatives that player 1

strictly prefer to x. The same holds for player 1 with respect to player 2. Writing

Equation 1 as:

[v1 −#U (x,�2)] + [v2 −#U (x,�1)] = #(L(x,�1)∩L(x,�2)) ,

one can see that it is possible to have players 1 and 2 respectively veto v1 −#U (x,�2)

and v2−#U (x,�1) different alternatives in L(x,�1)∩L(x,�2), so that all n alternatives

are vetoed by one player or the other.

Let m1 and m2 be such strategies. We now prove that, under BEB, m1 is a strict

best response to m2. To this end, recall that U (x,�1) ⊆ m2: any alternative strictly

preferred by player 1 to x is vetoed by player 2. So when player 1 deviates to

m′1 ∈M1, the support A \ (m′1 ∪m2) of the outcome lottery excludes U (x,�1). Be-

cause of the constraints on the number of vetoes, µ(m′1,m2) = {x} is impossible for

m′1 ,m1. Therefore, for player 1, the support of µ(m′1,m2) either contains only alter-
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natives that are strictly worse than x, or contains x and some other alternatives that

all are worse than x. By BEB, player 1 strictly prefers {x} to such outcomes, so m1

is the unique best response to m2. The same holds for the other player, so that we

proved that x is an equilibrium outcome.

Remark that in Theorem 1 the domain is ∆uni since the strike mechanisms break

ties through uniform lotteries. However, as discussed right after Definition 1, the

uniformity can be replaced by any probability distribution.

4.3 On the necessity of vetoes

This section presents a counterpart to Theorem 1 by showing that, under a mild

richness condition of the domain of preference extensions over lotteries, any Pareto

efficient SCR that is Nash-implementable through a DE mechanism is a Pareto-and-

veto rule.

Theorem 2. Let f be a Pareto efficient SCR that is Nash-implementable by a DE mecha-

nism µ on a domain κ. Let the domain κ satisfy BEB and PREX in the range of µ. Then

f = pvv for some v ∈ {0, ..., n}2 with v1 + v2 = n.

To prepare for the proof we let, for each player i,

veto(µ, i) = {X ∈ A | ∃mi ∈Mi s.t. supp(µ(mi ,mj))∩X = ∅ for all mj ∈Mj},

denote the veto set for player i. When X ∈ veto(µ, i), we say that player i has veto

power over the set X of alternatives, i.e., she has a strategy that ensures that no

alternative in this set belongs to the support of the outcome independently of the

strategy of her opponent.

The next lemma, whose proof is included in Appendix A, shows that we can

restrict attention to mechanisms that are “neutral on their vetoes”. A mechanism µ

is neutral on its vetoes for player i iff for any X ∈ A and any permutation ρ : A→ A,

X ∈ veto(µ, i)⇐⇒ ρ(X) ∈ veto(µ, i). This does not mean that any player has any veto

power (veto(µ, i) can be empty) nor does it mean that the mechanism µ is neutral (µ
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does not have to treat alternatives in a symmetric way), it just means that if a set with

a given cardinality belongs to veto(µ, i) then any other set with the same cardinality

belongs to veto(µ, i) as well. Note that a player with veto power over X has also veto

power over any X ′ ⊂ X. Hence, the veto set for player i can be written as:

veto(µ, i) = {X ∈ A | #X ≤ vi},

where the integer vi stands for the cardinality of the highest cardinality set over

which i has veto power.

Lemma 2. Under the hypothesis of Theorem 2, µ is neutral on its vetoes for both players.

We can now proceed to a complete proof of the Theorem.

Proof of Theorem 2.

(1) We first establish the existence of v such that f ⊆ pvv . Let M be the joint

message space of µ that DE-implements f . By assumption, the domain satisfies

PREX and BEB. Take any preference profile �= (�1,�2) and any x ∈ f (�). Let �∗=
(�∗1,�

∗
2) be a priority extension of � for x that exists due to PREX. Thus, for all p,q ∈

µ(M) and for i = 1,2, if p[U (x,�i)] > 0 and q[U (x,�i)] = 0 then p �∗i q. By assumption,

µ admits a Nash equilibrium (m1,m2) at �∗ with µ(m1,m2) = {x}. By the definition of

an equilibrium, player 2 has no better response to m1 than m2. However, under �∗2,

a deviation m′2 is profitable for player 2 iff supp(µ(m1,m
′
2))∩U (�2,x) , ∅. Therefore:

∀m2 ∈M2, supp(µ(m1,m2))∩U (�2,x) = ∅

and likewise for player 1. In other words, m1 makes the set U (�2,x) unattainable for

player 2 under µ. Thusm1 gives player 1 veto power on the setU (�2,x), and likewise

for player 2. Hence,

U (�2,x) ∈ veto(µ,1), U (�1,x) ∈ veto(µ,2).

From Lemma 2, if a player has veto power on some set, she has also veto power

on any set of the same cardinality. Let vi be the largest number of outcomes that i
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can veto. For the mechanism to be well-defined, one needs v1 +v2 ≤ n, so that not all

the n+ 1 alternatives can be vetoed simultaneously. Now consider the case when the

preference profile consists of opposed preferences: we have thatU (�1,x)∩U (�2,x) =

∅. The existence of a deterministic equilibrium (an equilibrium with a singleton

outcome) in that case shows that v1 + v2 ≥ n. Hence v1 + v2 = n.

Now, we claim that at �∗, an equilibrium outcome is not among the vi worse alter-

natives for any player i. The claim implies that f ⊆ pvv , since equilibrium outcomes

depend only on �.

To prove the claim, let m ∈ N µ(�∗) be an equilibrium and x its outcome. Assume

that x is among the v1 worst alternatives of player 1. As previously argued, player 1

has a veto power of v1. Let m′1 denote the strategy of player 1 that vetoes his worst

v1 alternatives. For any m2 ∈ M2, the support of µ(m′1,m2) is included in player 1’s

top n+ 1− v1 alternatives. However, due to PREX, player 1 prefers any such lottery

to x, which proves that player 1 has a profitable deviation and thus m is not an

equilibrium.

(2) For this v, we now prove the reverse inclusion. Given �= (�1,�2), let x ∈
pvv(�). Consider the profile �′ defined as follows.

Label the n+ 1 alternatives in two ways: an+1 �1 an �1 . . . �1 a1 and bn+1 �2 bn �2

. . . �2 b1. Write aw1
= bw2

= x. The veto conditions in the definition of pvv are that

w1 > v1 and w2 > v2, which implies that:

an+1 �1 . . . �1 aw1
= x �1 . . . �1 av1

�1 . . . �1 a1,

bn+1 �2 . . . �2 bw2
= x �2 . . . �2 bv2

�2 . . . �2 b1.

The preference �′1 is obtained by lowering the ranks of all those, among the alter-

natives av1+1, ..., aw1−1, which are preferred to x by the other player, player 2. If

w1 = v1 + 1 we simply let �′1 = �1. If w1 ≥ v1 + 2, consider the set

H1 =
{
av1+1, . . . , aw1−1

}
∩ {bw2+1, . . . , bn+1}
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and observe that

#H1 ≤ n−w2 ≤ n− v2 = v1.

Starting from �1, we define �′1 by switching in the ranking the first elements a1,...

a#H1
with the elements of H1, where a1 is switched with the most preferred element

of H1 of player 1, a2 is switched with the second most preferred element of H1 of

player 1 and so on...

We now claim that if x ∈ f (�′1,�2) then x ∈ f (�). Let µ DE-implement f . If

x ∈ f (�′1,�2), there exists a pure strategy equilibrium (m′1,m
′
2) for the game with

preferences (�′1,�2) with {x} = µ(m′1,m
′
2). With the initial preferences (�1,�2), m2 is

also a best response since player 2 does not change her preference, and m′1 is also a

best response for player 1 because her preferences differ only below x. As previously

argued,m2 gives player 2 veto power on the setU (�1,x). SinceU (�′1,x) =U (�1,x) by

construction, it follows that the support of any lottery that player 1 can attain given

m2 is included in A \U (�1,x). Hence, due to BEB, m1 is a best response for player

1 since µ(m1,m2) = {x}. Therefore this equilibrium for (�′1,�2) is also an equilibrium

for (�1,�2), that is: x ∈ f (�′) =⇒ x ∈ f (�).

The same construction for player 2 yields the preference profile �′′= (�′1,�
′
2) with

the property:

x ∈ f (�′′) =⇒ x ∈ f (�). (2)

But notice that, by construction of �′1, all the alternatives y such that y �2 x are now

among the v1 worse alternatives according to �′1. Therefore x is the preferred alter-

native, according to �′2, among the alternatives in the intersection of the top n − v1

alternatives for player 1 and n − v2 alternatives for player 2 in �′. Since the same is

true for the other player, we find that x is the unique Pareto optimum in the alter-

natives among the top n− v1 alternatives for player 1 and the top n− v2 alternatives

for player 2 in � ”. Since f itself is assumed to be efficient and is selecting in pvv , we

obtain that f (�′′) = {x}. From (2) it follows that x ∈ f (v) as requested. �

Theorem 2 shows the existence of a strong link between implementation through

DE mechanisms and veto power. Indeed, it shows that under the conditions BEB and

PREX, a SCR has to admit some veto structure in order to be both Pareto efficient and
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Nash-implementable. For the sake of clarity, the following corollary summarizes the

main message of Theorems 1 and 2.

Corollary 1. Suppose that a domain κ satisfies BEB and PREX in ∆uni . The following

are equivalent:

1. f is a Pareto efficient SCR that is Nash-implementable by a DE mechanism on κ.

2. f = P Vv for some v ∈ {0, . . . ,n}2 with v1 + v2 = n.

Theorem 2 is related to the impossibility result by Hurwicz and Schmeidler [1978]

in the following sense. Hurwicz and Schmeidler [1978] show that the only SCRs

which are both Pareto efficient and Nash-implementable (through a deterministic

mechanism) are the dictatorial ones. Note that a dictatorial SCR corresponds to pvv

with v = (n,0) (if player 1 is the dictator) or v = (0,n) (if player 2 is the dictator).

Our theorem shows that by allowing lotteries as off-equilibrium punishments, the

Pareto-and-veto rules appear as a class of intermediate and, interestingly, non dicta-

torial SCRs.

Note that pvv is neutral for any v ∈ {0...,n}2 and that it is anonymous if and only if

v1 = v2. Thus, under the assumptions of Theorem 2, the following observations triv-

ially follow. With an odd number of alternatives, an anonymous, neutral and Pareto

efficient SCR f is Nash-implementable by a DE mechanism iff f is a Pareto-and-veto

rule with v1 = v2. On the contrary, with an even number of alternatives, there exist

no anonymous, neutral and Pareto efficient SCR that is Nash-implementable by a

DE mechanism.

We complete this section by providing three examples in Appendix B. The first

one illustrates the necessity of PREX in Theorem 2: On a domain that satisfies all

our assumptions except PREX, we build a Pareto efficient SCR that is implemented

by a DE mechanism but is not a P Vv with v1 + v2 = n. The second and third exam-

ples clarify the role of Pareto efficiency: the domain satisfies BEB and PREX; the

mechanism is DE but the implemented SCR is not Pareto efficient.
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5 Connections with two-player Nash implementation

theory

A complete characterization of Nash-implementable SCRs with two players was in-

dependently achieved by both Moore and Repullo [1990] and Dutta and Sen [1991].

In order to clarify the connection between our results and these characterizations,

we quote condition β of Dutta and Sen [1991] (whose equivalent version is called

condition µ2 in Moore and Repullo [1990]) which is necessary and sufficient for a

SCR to be Nash-implementable with two players.

For any i ∈N , let L̃(x, �i) = L(x,�i)∪{x} be the weak lower contour set of x ∈ A at

�i∈ LA and M(C, �i) = {a ∈ C | a �i c ∀c ∈ C� {a}} be the singleton set containing the

maximal elements of C ⊆ A with respect to �i∈ LA.

Definition 3. A SCR f satisfies condition β iff there exists a set A∗ which contains the

range of f , and for each i ∈ N, � ∈ L2
A and a ∈ f (�), there exists a set Ci(a,�) ⊆ A∗, with

x ∈ Ci(a,�) ⊆ L̃(a,�i) such that for all �′∈ L2
A, we have:

(i) (a) for all b ∈ f (�′), C1(a,�)∩C2(b,�′) , ∅.
(b) Moreover, there exists x ∈ C1(a,�) ∩ C2(b,�′) such that if for some �′′∈ L2

A,

x ∈M(C1(a,�),�′′1 )∩M(C2(b,�′),�′′2 ), then x ∈ f (�′′).

(ii) if a < f (�′), then there exist j ∈N and b ∈ Cj(a,�) such that b < L̃(a,�′).

(iii) Mi (Ci(a,�) \ {a},�′)∩Mj(A∗,�′) ⊆ f (�′) ∀i ∈N and j , i.

(iv) M(A∗,�′1)∩M(A∗,�′2) ⊆ f (�′).

Without restrictions on the domain of preferences, only dictatorial SCRs satisfy

condition β (in line with the impossibility results of Hurwicz and Schmeidler [1978]

and Maskin [1999]). As Moore and Repullo [1990] notes, parts (ii), (iii) and (iv)

of condition β are necessary and sufficient for Nash implementation with three or

more players. Among these, part (ii) corresponds to Maskin monotonicity; part (iv)

is a unanimity condition while part (iii) is a relaxation of the no-veto power condi-

tion. On the other hand, condition (i) is central for the situation with two players.
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However, (i)(a), which has been referred to as a self-selection constraint or simply

intersection property (see Abreu and Sen [1991] for a discussion) turns out to be a crit-

ical condition for different implementation concepts such as virtual implementation

(Abreu and Sen [1991]) or implementation with partially honest players (Dutta and

Sen [2012]). Busetto and Codognato [2009] has shown that the different parts of

condition β exhibit problems of logical dependence.

For the sake of precision, we introduce the definitions of the intersection prop-

erty and Maskin monotonicity formally, respectively implied by conditions β(i)(a)

and β(ii).

Definition 4. A SCR f satisfies the intersection property (IP) iff for all �,�′∈ L2
A and

x,y ∈ A with x ∈ f (�) and y ∈ f (�′), we have L̃(x,�i)∩ L̃(y,�′j) , ∅ for any i ∈N� {j} .

Definition 5. A SCR f satisfies Maskin monotonicity (MM) iff for all �,�′∈ L2
A and

x ∈ A with L̃(x,�i) ⊆ L̃(x,�′i) ∀i ∈N , we have x ∈ f (�) =⇒ f (�′).

We first observe that the necessity of MM and IP prevails when DE mechanisms

are used. Theorem 2 has shown that when the domain satisfies BEB and PREX, a

Pareto efficient SCR that is Nash-implementable by a DE mechanism is a Pareto-

and-veto rule. Thus, the necessity of MM and IP for DE mechanisms can be seen by

establishing that Pareto-and-veto rules satisfy both conditions:

Proposition 3. For any veto vector v, the Pareto-and-veto rule pvv satisfies IP and MM.

Proof. In order to check IP , for any veto vector v, take any pair �,�′∈ L2
A and any

x ∈ pvv(�) and y ∈ pvv(�′). By definition of pvv , #L̃(x,�i) ≥ vi+1 and #L̃(y,�j) ≥ vj +1

for j , i. Yet, since v1 + v2 = n, it follows that #L̃(x,�i) + #L̃(y,�j) ≥ n + 2 and hence

L̃(x,�i)∩ L̃(y,�′j) , ∅, which shows that IP holds.

In order to check MM, for any veto vector v, take any �∈ L2
A and any x ∈ pvv(�).

Let �′∈ L2
A be some profile with L(x,�i) ⊆ L(x,�′i) ∀i ∈N . Note that x ∈ po(�) implies

that x ∈ po(�′). Moreover, #L(x,�′i) ≥ #L(x,�i) for each i ∈ N (by construction of �′)
and #L(x,�i) ≥ vi ∀i ∈N (by the definition of pvv). Thus x ∈ pvv(�′), as desired.

Interestingly, MM and IP pave the way towards a full characterization of the

class of Pareto-and-veto rules.
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Definition 6. Under a SCR f , player i has veto power over the set X ⊂ A at the profile

�∈ L2
A iff for any Y ⊆ X, if z �i y ∀z ∈ A�Y ,∀y ∈ Y then f (�)∩Y = ∅. When i has veto

power over X for any � ∈ L2
A, we say that i has veto power over X under f .

Remark that if player i can veto X under f , she can also veto any subset Y of X

whenever Y consists of her least preferred alternatives. When player i does not have

veto power over X under f , this means that there exists a profile � in which X are

the least preferred alternatives of player i in �i and such that f (�)∩X , ∅.

Definition 7. We say that a SCR f is neutral-on-its-vetoes iff whenever f gives veto

power to player i over a set X, f gives veto power to i over every set Y with #Y = #X.

Note that when f is neutral-on-its-vetoes, the veto power of player i can be ex-

pressed by an integer vi ∈ {0, ..., n} which is the cardinality of the largest set that i

can veto.

Proposition 4. If f satisfies IP and is Pareto efficient and neutral-on-its-vetoes, then

f ⊆ pvv .

Proof. Take some f which is neutral-on-its-vetoes, satisfies IP and is Pareto efficient.

Assume that at some profile �, x ∈ f (�) with #L(x,�1) = k for k = 0, . . . ,n. IP implies

that any profile �′, f (�′) ⊆ A\L(x,�′2). Therefore, if player 1 cannot prevent x at f (�),

then player 2 can ensure at any profile that L(x,�′2) ≥ n − k. Again, this observation

can be generalized since f neutral-on-its-vetoes: v1 = k implies that v2 = n− k.

Since f is Pareto-efficient and only selects alternatives such that v1 + v2 = n, it

follows that f ⊆ pvv as required.

Proposition 5. For any veto vector v, f ⊆ pvv satisfies MM if and only if f = pvv

Proof. Note that the proof is immediate if either v1 = n or v2 = n since, in both cases,

pvv is singleton valued for each preference profile �. Thus, f ⊆ pvv directly implies

that f = pvv and hence is MM. We assume that 0 < v1,v2 < n in the sequel of the

proof.

We show first that for any f ⊆ pvv , any � ∈ L2
A and any x ∈ po(�), if #L(x,�i) = vi

∀i ∈ N , then f (�) = {x}. Take any f ⊆ pvv , any � ∈ L2
A and any x ∈ po(�) with
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#L(x,�i) = vi ∀i ∈ N . Assume by contradiction that there is some y ∈ f (�) with

y ∈ A \ {x}. Since f ⊆ pvv , #L(y,�i) ≥ vi ∀i ∈N , and as #L(x,�i) = vi ∀i ∈N , it follows

that #L(y,�i) > vi ∀i ∈N . But this implies that y �i x ∀i ∈N , contradicting x ∈ po(�).

Hence, since f (�) is non-empty, f (�) = {x} as wanted.

We now show that for any �∈ L2
A and any x ∈ pvv(�), if f is MM and f ⊆ pvv , then

x ∈ f (�). For each x ∈ A and each veto vector v, let Bxv = {�∈ L2
A | x ∈ po(�) with #L(x,�i) =

vi∀i ∈ N }. Since the preferences are unrestricted, for any partition (X,Y ) of A \ {x}
with #X = vi and #Y = vj , there is some �∈ Bxv such that L(x,�i) = X and L(x,�j) = Y .

As shown before, we know that for any f ⊆ pvv and any �∈ Bxv , f (�) = {x} with

L̃(x,�1)∪ L̃(x,�2) = A since x ∈ po(�) with #L(x,�1) + #L(x,�2) = n (since v1 +v2 = n) .

Consider now any profile �′ with x ∈ pvv(�′). Assume by contradiction that x <

f (�′). Since x ∈ pvv(�′), it follows that x ∈ po(�′) and #L(x,�′i) ≥ vi for all i ∈N . Note

that there is at least some strict inequality since otherwise�′∈ Bxv and hence x ∈ f (�′),
a contradiction. Since x ∈ po(�′), L(x,�′1) ∪ L(x,�′2) ∪ {x} = A whereas #L(x,�′1) +

#L(x,�′2) > n. Since L(x,�′1)∪L(x,�′2)∪ {x} = A, it follows that:

#
(
L(x,�′1) \L(x,�′2)

)
+ #

(
L(x,�′2) \L(x,�′1)

)
+ #

(
L(x,�′1)∩L(x,�′2)

)
= n = v1 + v2, (3)

where L(x,�′1)∩L(x,�′2) denote the set of alternatives that x Pareto dominates. Since

#L(x,�′1) + #L(x,�′2) > n, note that L(x,�′1)∩L(x,�′2) , ∅.
Since #

(
L(x,�′1) \ L(x,�′2)

)
≤ v1

10 and #
(
L(x,�′2) \ L(x,�′1)

)
≤ v2, we can find a

partition (X,Y ) of A \ {x} with

X ⊆ L(x,�′1) and Y ⊆ L(x,�′2) with X ∩Y = ∅,#X = v1 and #Y = v2.

It follows that there is some �∗∈ Bxv with L̃(x,�∗i ) ⊆ L̃(x,�′i) since L̃(x,�∗i ) = vi + 1 and

L̃(x,�′i) ≥ vi + 1 ∀i ∈ N . Moreover, x ∈ f (�∗) since �∗∈ Bxv . Hence MM implies that

x ∈ f (�′), as desired.

We have shown that any alternative that could be selected by a Pareto-and-veto

rule is selected by any MM sub-correspondence which shows the desired result.

10Note that L(x,�′1) ≤ n and L(x,�′2) ≥ v2. Hence, L(x,�′1)−L(x,�′2) ≤ n− v2 = v1 + v2 − v2 = v1.
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We are now in the position to characterize the class of Pareto-and-veto rules by

the conditions of IP , MM, Pareto efficiency and neutrality-on-its vetoes. These con-

ditions are independent as shown in the appendix.

Theorem 3. A SCR f satisfies IP and is neutral-on-its vetoes, MM and Pareto efficient if

and only if f is a Pareto-and-veto rule.

Proof. Take some f that satisfies IP and is neutral-on-its vetoes, MM and Pareto ef-

ficient. Proposition 4 implies that f is a sub-correspondence of a Pareto-a-veto rule.

Moreover, Proposition 5 shows that the only MM subcorrespondence of a Pareto-

a-veto rule is the Pareto-and-veto rule itself, proving the if claim. The converse

implication follows directly from Proposition 3.

To conclude our comments on the classical Moore-Repullo-Dutta-Sen character-

ization we point precisely which condition, in this result, is not satisfied by the

Pareto-and-veto rules.

Proposition 6. For any veto vector v, the Pareto-and-veto rule pvv fails condition β(i)(b)

Proof. We provide a proof for three alternatives and for the Pareto-and-veto rule

with veto vector v = (1,1). It can be easily generalized to any Pareto-and-veto rule

and any number of alternatives. Let �= (�1,�2) and �′= (�′1,�
′
2) be two preference

profiles such that: (1) c �1 a �1 b and a �1 b �1 c and (2) b �′1 a �
′
1 c and c �′1 b �

′
1 a.

For these profiles, PVv(�) = {a} and PVv(�′) = {b}. Since L̃(a,�1) = {a,b} and L̃(b,�′2)

= {a,b} as well, we are going to find a violation of condition β(i)(b) for profiles �′′

that are unanimous (�′′1 = �′′2 ) and in favor of c (c �′′i a and c �′′i b for i = 1,2), so that

PVv(�′′) = {c}
Since C1(a,�) and C2(b,�′) are subsets of {a,b} with a non-empty intersection, as

stated by condition β(i)(a), the following cases have to be considered:

Case 1: C1(a,�) = C2(b,�).

In this case, since �′′ is unanimous, M(C1(a,�),�′′1 ) =M(C2(b,�′),�′′2 ) ⊆ {a,b}. There-

fore c does not belong to the intersection M(C1(a,�),�′′1 )∩M(C2(b,�′),�′′2 ), in con-

tradiction with β(i)(b).
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Case 2: C1(a,�) = {a} and C2(b,�′) = {a,b}, or C1(a,�) = {a,b} and C2(b,�′) = {a}. Take

then c �′′i a �
′′
i b for i = 1,2; for this �′′: M(C1(a,�),�′′1 )∩M(C2(b,�′),�′′2 ) = {a}, again

a contradiction.

Case 3: C1(a,�) = {b} and C2(b,�′) = {a,b}, or C1(a,�) = {a,b} and C2(b,�′) = {b}. The

same contradiction appears for the unanimous profile such that c �′′i b �
′′
i a.

As a final remark regarding the connections with the literature, we would like

to note that Dutta and Sen [1991] show the possibility of two-person implementa-

tion through an example (Example 1) with (i) a finite set of alternatives, (ii) players

having vNM utilities, (iii) lotteries being allowed. Their example is related to our

setting but their possibility for implementation builds on a condition, called As-

sumption 5.5, which rules out that "individual 2’s utility function is the inverse (up

to an affine transformation) of 1’s utility function". In our framework, the set of

preference profiles is the product space L2
A and we impose only restrictions on the

preference extensions over lotteries for each player, meaning that individual prefer-

ences are independent from each other.

6 Concluding comments

This section provides a short review of the two-player implementation problem (see

Dutta [2019] for a recent and complete survey) and some concluding comments on

the strike mechanisms.

As argued in the introduction, the pioneering works (Hurwicz and Schmeidler

[1978] and Maskin [1999]) provide a provocative result: dictatorships are the only

Pareto efficient rules that can be Nash implemented. Their proof builds on three

key assumptions: (i) the preference domain is universal (any preference profile is

allowed) while implementing mechanisms are (ii) simultaneous and (iii) determin-

istic.

The literature has explored the consequences of weakening each of these assump-

tion.11 The first strand relaxes condition (i), Dutta and Sen [1991] and Moore and

11Other approaches have modified the rationality notion, using “partial honesty”; see Dutta and
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Repullo [1990] are the key papers in this direction. They identify the domain re-

strictions under which one can design Pareto efficient and non-dictatorial Nash-

implementable rules. While the full characterization is rather complex, the suffi-

cient domain conditions for implementation often rely in the Euclidean space (see

Section 5 in Dutta and Sen [1991] for instance); in the current work, we do not im-

pose any structure on the alternatives or the preferences, beyond the assumption

that preferences over alternatives are strict.

A second strand is concerned with (ii), that is, replacing simultaneous with dy-

namic mechanisms. This literature, in which Moore and Repullo [1988], Abreu and

Sen [1991] and Herrero and Srivastava [1992] play a key role, shows that introducing

an order of play expands the set of implementable rules with more than two players.

No characterization of implementable rules via subgame-perfect or via backward

induction is available. By altering the notion of implementation (role-robust imple-

mentation), De Clippel et al. [2014]12 show that a possibility arises with dynamic

vetoes and randomized order of play (see also Barberà and Coelho [2019] who con-

sider the implementation of the fallback-bargaining solution). However, while ex-

ante fairness is achieved by randomizing the order of play, ex-post fairness fails. The

order of play matters for determining the outcome, creating first, or second, mover

advantages. As Moulin [1981] puts it, "voting by veto procedures introduce a strong

asymmetry among agents: ... the ordering of the agents has a strong influence on the

outcome".

The third and final strand of the literature deals with assumption (iii), as does

the current work: it explores the consequences of modifying the type of mecha-

nisms.13 As mentioned in the introduction, Sanver [2006], Bochet [2007] and Benoît

and Ok [2008] exploit the idea of allowing lotteries/awards off-equilibrium. The

Sen [2012] among others.
12A classic literature considers sequential voting by veto with many players (see Mueller [1978],

Moulin [1981], Bloom and Cavanagh [1986], Felsenthal and Machover [1992] and Anbarci [2006])
where each player is assigned a certain number of vetoes to be distributed freely among the alterna-
tives. See also the rules of k-names in Barberà and Coelho [2010].

13See also the papers on approval voting with two players as Núñez and Laslier [2015] and Laslier
et al. [2017]. See also Jackson and Sonnenschein [2007] who show that linking decisions (that is, a
common decision on several independent problems) can help overcoming incentive constraints in
Bayesian collective decision problems.
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main idea of these works is that, with at least three players, monotonicity fully char-

acterizes the class of Nash-implementable rules under a domain restriction so that

the no-veto power condition is dispensable. This is in line with the results present

in this paper in which DE mechanisms expand the set of Nash-implementable rules.

Yet, this paper is the first one to consider this idea with two players. This strand

of literature is related to the one on virtual implementation, a reformulation of the

original implementation problem. A social choice rule is virtually implementable if

there exists a game form G, such that for all preference profiles G admits a unique

equilibrium outcome (a lottery) which is ε-close to the outcome prescribed by the

rule at this preference profile and this holds for every ε > 0. Following this ap-

proach, Matsushima [1988] and Abreu and Sen [1991] provide a strong possibility

result: with at least three players, any rule is implementable. With two players, the

result is more nuanced but some SCRs are virtually implementable, among which

the Pareto-and-veto rule described in the current work. However, under the virtual

implementation approach, "any alternative can be the outcome of the game as it re-

ceives positive probability in the equilibrium lottery" (Bochet and Maniquet [2010]).

In other words, in order to virtually implement a social choice rule, one constructs

game forms whose equilibrium outcome at every preference profile is a full-support

lottery, arbitrarily close to the outcome prescribed by the social choice rule. This

represents a threat to the relevance of these solutions since it involves that socially

undesirable alternatives, even with a small probability, can be selected.

Strike mechanisms arise as a solution to the two-person implementation prob-

lem. This solution is obtained by altering two key elements of the classic frame-

work: (i) considering mechanisms that allow in equilibrium pure alternatives and

off equilibrium lotteries and (ii) restricting efficiency to the ex-post Pareto notion.

Our class of DE mechanisms is a simultaneous version of the dynamic veto mech-

anisms (see Moulin [1981] and De Clippel et al. [2014]) which, by allowing off-

equilibrium set-valued outcomes, resolve the unfairness generated by dynamic mech-

anisms. To see the difference between our solution and the one based on dynamic

veto mechanisms, consider a dynamic game that allows player 1 to veto n + 1 − k
alternatives and player 2 to veto k − 1 of the remaining k alternatives, where k ∈
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{1, . . . ,n + 1}14. At each preference profile �, the subgame perfect equilibrium out-

come of this game is the most preferred alternative of player 1 among pvv(�) where

v1 = n + 1 − k and v2 = k − 1. In other words, this dynamic veto mechanism sub-

game perfect implements a sub-correspondence of pvv by refining it with respect to

the true preference of the first mover. One could argue that fairness here could be

achieved by selecting randomly the first-mover. Yet, this needs qualification since

this randomization prevents some alternatives to arise as the following example

shows. When A = {a,b,c,d,e}, at the preference profile a �1 b �1 c �1 d �1 e and

c �2 b �2 a �2 d �2 e, the dynamic veto mechanism which gives 2 vetoes to each

voter implements, by alternating first movers, either a or c but excludes b. However,

pvv picks all three of a, b and c. Thus, our simultaneous direct veto mechanisms al-

low for the implementation of the compromise alternative b whereas their dynamic

counterparts fail to do so. This constitutes a strong argument in favor of using si-

multaneous mechanisms.

We close by noting three limitations of our analysis. First, it is restricted to Nash

implementation in pure strategies. Allowing for mixed strategies and exploring the

existence of interesting DE mechanisms for settings with two or more players seems

to be a promising research avenue (see Mezzetti and Renou [2012]). Second, the

set of Nash-implementable SCRs expands if one considers implementation through

non-DE mechanisms. Indeed, as long as BEB holds, the game-form associated to

plurality rule Nash implements the union of tops15 which selects at each prefer-

ence profile all alternatives that are top-ranked by at least one player.16 Third, we

have considered implementation through ex-post Pareto efficient DE mechanisms.

Other notions of efficiency are present in the literature such as stochastic dominance.

14De Clippel et al. [2014] highlight that dynamic deterministic veto mechanisms (that they call
shortlisting mechanisms) can also be helpful for implementation with two agents. In their mecha-
nism, one agent starts the game by selecting n+1

2 alternatives and his opponent selects one alternative
from the list. Two important differences exist between their approach and the current one : their
implementation notion is dynamic and hence more permissive than the one used here (i.e. full Nash)
and their focus is on deterministic mechanisms.

15See Yeh [2008] for an axiomatization of this rule.
16In this game form, each player announces a single alternative and one of them is selected ran-

domly. Since it is a dominant strategy to announce one’s best alternative, this mechanism is not DE
as we may have two alternatives selected with positive probability in equilibrium.
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Whether other SCRs can be Nash implemented through DE mechanisms by consid-

ering different notions of efficiency remains to be explored.

A possible extension of this work consists in exploring domain restrictions (such

as single-peakedness). If our possibility result obviously remains valid, it is possible

that other mechanisms arise as well, so that understanding the set of SCRs Nash-

implementable through DE-mechanisms on a restricted domain becomes a relevant

question.

Likewise, with an infinite set of alternatives, the idea that players strike alterna-

tives in such a way that some must remain can be implemented if the set of alter-

natives is a measurable space, has full measure 1 and players and players veto sets

of measures v1 and v2, with v1 + v2 ≤ 1 seems to be a relevant extension. Additional

conditions must be imposed to make sure that some alternatives remain non-vetoed.

These questions are another avenue of research that the present paper leaves open.

References

D. Abreu and A. Sen. Virtual implementation in Nash equilibrium. Econometrica,

59(4):997–1021, 1991.

N. Anbarci. Finite alternating-move arbitration schemes and the equal area solution.

Theory and Decision, 61(1):21–50, 2006.

S. Barberà and D. Coelho. On the rule of k-names. Games and Economic Behavior, 70:

44–61, 2010.

S. Barberà and D. Coelho. On the Selection of Compromise Arbitrators. mimeo,

UAB, 2019.

J.-P. Benoît and E.A. Ok. Nash implementation without no-veto power. Games and

Economic Behavior, 64(1):51–67, 2008.

D. Bloom and C. Cavanagh. An analysis of the selection of arbitrators. American

Economic Review, 76(3):408–22, 1986.

28



O. Bochet. Nash implementation with lottery mechanisms. Social Choice and Welfare,

28(1):111–125, 2007.

O. Bochet and F. Maniquet. Virtual Nash implementation with admissible support.

Journal of Mathematical Economics, 46(1):99–108, 2010.

A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem.

Journal of Economic Theory, 100(2):295–328, 2001.

J. Busetto and R. Codognato. Reconsidering Two-Agent Nash Implementation. Social

Choice and Welfare, 32:171–179, 2009.

G. De Clippel, K. Eliaz, and B. Knight. On the selection of arbitrators. American

Economic Review, 104:3434–58, 2014.

B. Dutta. Recent results on implementation with complete information. In Social

Design: Essays in Memory of Leonid Hurwicz. Springer, 2019.

B. Dutta and A. Sen. A Necessary and sufficient condition for two-person Nash

implementation. Review of Economic Studies, 58:121–128, 1991.

B. Dutta and A. Sen. Nash Implementation with Partially Honest Individuals. Games

and Economic Behavior, 74:154–169, 2012.

F. Ederer, R. Holden, and M. Meyer. Gaming and strategic opacity in incentive pro-

vision. RAND Journal of Economics, 49(4):819–854, 2018.

S.D. Felsenthal and M. Machover. Sequential voting by veto: making the Mueller-

Moulin algorithm more versatile. Theory and Decision, 33(3):223–240, 1992.

P. Gärdenfors. Manipulation of social choice functions. Journal of Economic Theory,

13(2):217–228, 1976.

M.J. Herrero and S. Srivastava. Implementation via backward induction. Journal of

Economic Theory, 56(1):70–88, 1992.

29



L. Hurwicz and D. Schmeidler. Construction of outcome functions guaranteeing

existence and Pareto optimality of Nash equilibria. Econometrica, 46:1447–1474,

1978.

M.O. Jackson. A Crash Course in Implementation Theory. Social Choice and Welfare,,

18:655–708, 2001.

M.O. Jackson and H.F. Sonnenschein. Overcoming incentive constraints by linking

decisions. Econometrica, 75(1):241–257, 2007.

J.S Kelly. Strategy-proofness and social choice functions without singlevaluedness.

Econometrica, 45(2):439–446, 1977.

J.-F. Laslier, M. Núñez, and C. Pimienta. Reaching consensus through approval bar-

gaining. Games and Economic Behavior, 104:241–251, 2017.

E. Maskin. Nash equilibrium and welfare optimality. Review of Economic Studies, 66:

23–38, 1999.

H. Matsushima. A new approach to the implementation problem. Journal of Eco-

nomic Theory, 45(1):128–144, 1988.

C. Mezzetti and L. Renou. Implementation in mixed Nash equilibrium. Journal of

Economic Theory, 147(6):2357–2375, 2012.

J. Moore and R. Repullo. Subgame perfect implementation. Econometrica, 96(5):

1191–1220, 1988.

J. Moore and R. Repullo. Nash implementation: A full characterization. Economet-

rica, 58:1083–1099, 1990.

H. Moulin. Prudence versus sophistication in voting strategy. Journal of Economic

theory, 24(3):398–412, 1981.

H. Moulin. The Strategy of Social Choice. Advanced Textbooks in Economics. North-

Holland, 1983.

30



D.C. Mueller. Voting by veto. Journal of Public Economics, 10(1):57–75, 1978.

M. Núñez and J.-F. Laslier. Bargaining through approval. Journal of Mathematical

Economics, 60:63–73, 2015.

M. R. Sanver. Nash implementing non-monotonic social choice rules by awards.

Economic Theory, 28(2):453–460, 2006.

M. R. Sanver. Implementing Pareto optimal and individually rational outcomes by

veto. Group Decision and Negotiation, 27(2):223–233, 2018.

C.-H. Yeh. An efficiency characterization of plurality rule in collective choice prob-

lems. Economic Theory, 34(3):575–583, 2008.

A Proof of Lemma 2

We first state a result on the structure of the veto power that DE mechanisms gener-

ate.

Lemma A.1. Under the hypothesis of Theorem 2, for any partition {X,Y } of A with X ∈
A\ {∅,A}, either Y ∈ veto(µ,1) or X ∈ veto(µ,2) but not both.

Proof. Let µ : M → ∆ be admissible and DE and let X ∈ A \ {∅,A}. Write Y = A \
X. Pick some �∈ L2

A such that ∀x ∈ X, ∀y ∈ Y , x �1 y and y �2 x. Let x∗ and

y∗ respectively denote the worst alternative for player 1 in X and for player 2 in

Y : x �1 x
∗ for any x ∈ X \ {x∗} and y �2 y

∗ for any y ∈ Y \ {y∗}. The existence of

such preference � is ensured by our assumption that the domain contains all strict

preferences on alternatives. Take also �∗∈ κ(�) such that p �∗1 q for all p,q ∈ µ(M)

with p[X] > 0 and q[X] = 0, and such that p �∗2 q for all p,q ∈ µ(M) with p[Y ] > 0 and

q[Y ] = 0. The existence of such extended preference �∗ is ensured by PREX; namely

�∗1 stands for the PREX extension of �1 for x∗ and �∗2 stands for the PREX extension

of �2 for y∗. Now suppose, for a contradiction, that Y < veto(µ,1) and X < veto(µ,2).

Because µ is admissible and DE, there exists an equilibrium m = (m1,m2) ∈ N µ(�∗)
with µ(m) = {a} for some a ∈ A. Two cases are possible:
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• Let a ∈ X. As Y < veto(µ,1), ∃m′2 ∈M2 such that supp
(
µ(m1,m

′
2)
)
∩Y ,∅, hence

µ(m1,m
′
2) �∗2 {a} due to the construction of �∗2, contradicting m ∈Nµ(�∗).

• Let a ∈ Y . As X < veto(µ,2), ∃m′1 ∈M1 such that supp
(
µ(m′1,m2)

)
∩X ,∅, hence

µ(m′1,m2) �∗1 {a}, again due to the construction of �∗1, contradictingm ∈ N µ(�∗).

Thus, Y ∈ veto(µ,1) or X ∈ veto(µ,2). Because the mechanism is well-defined, it is

impossible that a set belongs to veto(µ,1) and its complement belongs to veto(µ,2).

Therefore either Y ∈ veto(µ,1) or X ∈ veto(µ,2) but not both.

Proof of Lemma 2.

Proof. Let X ∈ veto(µ,1), x ∈ X and x′ ∈ A \ X.17 Thus, there exists m1 ∈ M1 that

vetoes X. The set X ′ = (X \ {x}) ∪ {x′} has the same cardinality as X. Write Y =

A \ (X ∪ {x′}), so that we have a partition

A = (X \ {x})∪ {x} ∪ {x′} ∪Y .

Suppose, for a contradiction, that X ′ < veto(µ,1). Lemma A.1 then implies that Y ∪
{x} ∈ veto(µ,2). Therefore there exists m2 ∈M2 that vetoes Y ∪{x}. Since x′ is neither

vetoed by m1 nor by m2, µ(m1,m2) = {x′}. Now consider a unanimous preference

profile �= (�1,�2) such that x �i x′ �i y for all y , x,x′and for i = 1,2. For this

preference profile, the second-best alternative x′ is Pareto-dominated by x but, at

(m1,m2), both players veto x. Thus, no unilateral deviation can obtain, with any

probability, a better outcome than x′. Thanks to BEB, that implies that (m1,m2) is a

Nash equilibrium, in contradiction with the Pareto efficiency assumption.

The proof of the proposition is established by noting that given any X,X ′ ∈
A \ {∅,A} with #X = #X ′, there is a finite sequence of sets X = X1, ...,Xs = X ′ with

#(Xi ∩Xi+1) = #X − 1 for each i ∈ {1, ..., s − 1} and applying repeatedly the argument

above.
17The two extreme cases veto(µ,1) = {{∅}} and A ∈ veto(µ,1) are trivial.
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B The role of PREX and Pareto efficiency in Theorem 2

Example 1: Let A = {a,b,c,d}. For any player i ∈ N and any strict preference �i ,
only one extended preference is allowed: κ(�i) = {�∗i }, defined as follows: For any

p ∈ ∆(A) with #supp(p) > 1, p ∼∗i x where x is the worst alternative in the support of

p, that is the unique x ∈ supp(p) such that for all y ∈ supp(p), x �i y. Notice that the

domain κ does not satisfy PREX but satisfies BEB.

Consider the mechanism µ in which each player can cast one or two vetoes. If

both cast two vetoes, then the outcome is the uniform lottery on A, independently

of what these vetoes are. If not, that is if at least one player casts only one veto, then

the outcome is the uniform lottery over the set of non-vetoed alternatives. Formally,

let A[1] and A[2] respectively denote the sets of one and two element subsets of A,

thenM1 =M2 = A[1] ∪A[2]. The outcome of the mechanism µ is a uniform lottery

with support:

µ(m1,m2) =

 A if m1 ∈ A[2] andm2 ∈ A[2],

A \ (m1 ∪m2) otherwise.

We now prove that, on the domain κ this mechanism is admissible and DE in the

domain κ. Moreover, µ Nash implements the SCR pv(1,1) = pv(2,1) ∪ pv(1,2) that is not

pvv for v1 +v2 = 3. This implies that any equilibrium outcome of µ is Pareto-efficient

The sub-game where player 1 plays in A[1] and player 2 plays in A[2] coincides

with the one induced by the strike mechanism µ(1,2) ( that implements pv(1,2)). Con-

sider an equilibrium of this sub-game: (m1,m2) ∈ A[1] ×A[2]. Player 1 has no prof-

itable deviation in A[1], and a deviation to any strategy in A[2] yields the uniform

lottery on A, which is the worst outcome and thus cannot be a profitable deviation.

Player 2 has no profitable deviation in A[2]; to see that player 2 has also no profitable

deviation in A[1], write A = {a,b,c,d}, m1 = {a} and m2 = {b,c}. Because pv(1,2) is DE,

these alternatives are distinct and µ(m1,m2) = d. A deviation of player 2 to a, b or c

leaves d in the support of the outcome, and is therefore not a profitable deviation.

The deviation of player 2 to d yields the outcome {b,c}. For the lottery on {b,c} to
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be strictly better than d for player 2, it must be that d is ranked third or fourth in

2’s preference. But this is not possible because we supposed d is an equilibrium out-

come in the veto mechanism where 2 has two vetoes. It follows that player 2 has no

profitable deviation. We thus proved that the equilibria of the sub-game A[1] ×A[2]

are equilibria in the game-form associated to the mechanism µ. Of course the same

observation holds for the other sub-game A[2] ×A[1]. We will now show that there

are no other equilibria.

If both players cast two vetoes µ(m1,m2) = A and one player deviating to vetoing

(for instance) her worst alternative is a profitable response, so there is no equilibrium

in the sub-game A[2] × A[2]. If both players cast only one veto then the outcome

is a lottery on two or three alternatives and a player can strictly improve by also

vetoing his worst element among those non-vetoed by his opponent, so there is no

equilibrium in the sub-game A[1] ×A[1].

It follows that the mechanism µ is DE on this domain of extended preferences

and implements the SCR pv(1,1) which coincides with pv(2,1) ∪ pv(1,2).

Example 2: The following provides an example of a domain that satisfies BEB and

PREX and there is a DE mechanism that is not Pareto efficient.

For this counter-example we consider the two-stage game such that player 1 at

the first stage picks two and only two alternatives and player 2 chooses one of these

at the second stage. The associated normal form game is as follows: Let M1 be

the set A[2] of all two element subsets of A and letM2 be the set of mappings m2 :

A[2]→ A such that µ2(x,y) ∈ {x,y}. Define µ(m1,m2) as the (degenerated) lottery that

assigns probability 1 to µ(m1,m2) = m2(m1) ∈ X. Because the range of µ contains

only degenerated lotteries, the properties BEB and PREX are trivially satisfied for

any domain κ.

To prove that µ is admissible it is sufficient to note that the backward-induction

equilibrium of the sequential game is a Nash equilibrium of µ. Since all its outcomes

are deterministic, µ is DE. To show that the SCR implemented by µ is not Pareto-

efficient, we prove the existence of Pareto-dominated equilibrum. Let A = {a,b,c} be

the set of alternatives and let the two players agree on the ranking a � b � c. Let
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m∗1 = {b,c} and let m∗2 be the following:

m∗2 :


{a,b} → b

{a,c} → c

{b,c} → b

Then µ(m∗1,m
∗
2) = b, which is Pareto dominated by a, and the reader will easily check

that this is a Nash equilibrium. (Note that this equilibrium does not coincide with a

subgame perfect equilibrium of the extensive form.)

Example 3: The following provides an example of a domain that satisfies BEB and

PREX and there is a DE mechanism that Nash implements a SCR which is not Pareto

efficient. The implemented SCR is not neutral.

Fix an alternative a. Each player can veto any subset of A. The outcome is a

uniform lottery over non-vetoed alternatives and in case all alternatives are vetoed,

the outcome is a. This mechanism is admissible: at every preference profile, both

players vetoing all alternatives is an equilibrium that gives a since no unilateral de-

viation alters the outcome. The mechanism is not deterministic but it is DE under

BEB since whenever there is more than one alternative non-vetoed, it always a best

response to veto the worst alternatives among the left non-vetoed by the opponent.

It is not Pareto efficient since a can be Pareto dominated and it is always an equilib-

rium outcome.

C Independence of MM, IP , N and P

We discuss in this section the independence of the four conditions, namely MM, IP ,

neutral-on-its-vetoes (N ) and Pareto (P ) used to characterize Pareto-and-veto rules.

Lemma C.1. N , P and MM do not imply IP .

Proof. Take f = PVv with 0 vetoes and consider the profiles � with a �1 b �1 c and

b �2 c �2 a and �′ with a �′1 b �
′
1 c and b �′2 a �

′
2 c. It follows that f (�) = {a,b,c} and

f (�′) = {a,b}. Yet, L(a,�2) = a and L(b,�′1) = {b,c}, contradicting IP .
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Lemma C.2. N , MM, IP do not imply P .

Proof. Take f that selects all alternatives not ranked last by some player. In the

profile � with a �1 b �1 c and a �2 b �2 c, f (�) = {a,b} while only a is Pareto efficient.

Lemma C.3. N , P , IP do not imply MM.

Proof. This is a direct consequence of Proposition 5.

Lemma C.4. MM, P and IP do not imply N .

Proof. Let A = {a,b,c}. Let f be the SCR depicted in Table 2. In the table, the lines

represent the preferences of player 1 and the columns the preferences of player 2.

For short, abc stands for a �i b �i c and so on. The rule f is constructed as fol-

lows. For each i if {a}, {c} or {a,c} are ranked last for i, a, c or both are eliminated.

The non-vetoed alternatives are shown in the Table in parenthesis next to the pref-

erences. Then f (�) contains all remaining Pareto efficient alternatives. The selected

alternative(s) is indicated in the corresponding cell of the Table.

For instance f (bac,acb) = {b} since player 1 has veto power over {a,c} whereas 2

can’t veto {b}. Similarly, f (cab,acb) = {a,c} since b is Pareto dominated by both a and

c and no player has veto power over {b}, the common least preferred alternative.

abc acb bac bca cab cba

(ab) (acb) (b) (b) (cab) (cb)

abc (ab) a a b b a b

acb (acb) a a b b {a,c} c

bac (b) b b b b b b

bca (b) b b b b b b

cab (cab) a {a,c} b b c c

cba (cb) b c b b c c

Table 2: f that satisfies MM, P and IP but fails N .

This SCR is well-defined since a non-empty set is associated to each preference

profile. By construction each player has veto power over {a} and {c} under f . For
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each player it maybe the case that b is chosen when b is her worst alternative; thus

no player has veto power over {b}. Consequently f does not satisfy N .

The rule f satisfies P by definition.

The condition MM also holds since an alternative not going down in the voter’s

rankings is not harmed with the rule f . Indeed, if x ∈ f (�), then x is Pareto efficient

and neither of the players can veto {x} in �. For any �′ with L̃(x,�i) ⊆ L̃(x,�′i) ∀i ∈N ,

x remains Pareto efficient and neither of the players can veto {x} in �′i , which implies

that x ∈ f (�′) which implies that MM holds.

We now prove that f satisfies IP . Take x ∈ f (�) and y ∈ f (�′). We wish to prove

that L̃(x,�i)∩ L̃(y,�′j) , ∅ and this is obvious if x = y; so let x , y.

Consider first the case where neither x nor y equals b. Let, without loss of gen-

erality, x = a and y = c. Take some player i. By definition of f , if a = f (�), then a is

ranked last by no player at �, so L̃(a,�i) contains some z other than a. In case a �i c,
the condition for IP is satisfied as c = f (�′) and L̃(c,�′j) contains c. In case c �i a, z
must be b, so L̃(a,�i) = {a,b}. Again by definition of f , L̃(c,�′j) contains some z other

than c and the condition for IP holds whether z is a or b.

Consider second the remaining case where, without loss of generality, x = b and

y ∈ {a,c}. Say y = a without loss of generality. Take player i. There are two subcases.

In the first one L̃(b,�i) = {b}. Note that at �′j , b cannot be ranked at top, as j has

veto power over {a,c} which would contradict that a ∈ f (�′). If �′j ranks b the second

best, then a must be ranked top at �′j , as otherwise a will be last in �′j and hence

a < f (�′) by the veto power of j on a. Thus, L̃(a,�′j) contains b which was in L̃(b,�i),
ensuring the IP condition. Now consider the second subcase where L̃(b,�i) contains

some z other than b. In case z = a, the condition for IP is satisfied. Now let z be c. So

a �i b �i c. For the condition to fail, a must be ranked last by �′j which contradicts

that a ∈ f (�′). We therefore conclude that f satisfies IP .
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