
HAL Id: hal-03424257
https://enpc.hal.science/hal-03424257

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximate multifractal correlation and products of
universal multifractal fields, with application to rainfall

data
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer

To cite this version:
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer. Approximate multifractal correlation and
products of universal multifractal fields, with application to rainfall data. Nonlinear Processes in
Geophysics, 2020, 27 (1), pp.133-145. �10.5194/npg-27-133-2020�. �hal-03424257�

https://enpc.hal.science/hal-03424257
https://hal.archives-ouvertes.fr


Nonlin. Processes Geophys., 27, 133–145, 2020
https://doi.org/10.5194/npg-27-133-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Approximate multifractal correlation and products of universal
multifractal fields, with application to rainfall data
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Hydrologie Météorologie et Complexité, Ecole des Ponts ParisTech, Champs-sur-Marne, France

Correspondence: Auguste Gires (auguste.gires@enpc.fr)

Received: 14 June 2019 – Discussion started: 29 July 2019
Revised: 27 January 2020 – Accepted: 6 February 2020 – Published: 19 March 2020

Abstract. Universal multifractals (UMs) have been widely
used to simulate and characterize, with the help of only two
physically meaningful parameters, geophysical fields that are
extremely variable across a wide range of scales. Such a
framework relies on the assumption that the underlying field
is generated through a multiplicative cascade process. De-
rived analysis techniques have been extended to study corre-
lations between two fields not only at a single scale and for
a single statistical moment as with the covariance, but across
scales and for all moments. Such a framework of joint multi-
fractal analysis is used here as a starting point to develop and
test an approach enabling correlations between UM fields to
be analysed and approximately simulated.

First, the behaviour of two fields consisting of renormal-
ized multiplicative power law combinations of two UM fields
is studied. It appears that in the general case the resulting
fields can be well approximated by UM fields with known pa-
rameters. Limits of this approximation will be quantified and
discussed. Techniques to retrieve the UM parameters of the
underlying fields as well as the exponents of the combination
have been developed and successfully tested on numerical
simulations. In a second step tentative correlation indicators
are suggested.

Finally the suggested approach is implemented to study
correlation across scales of detailed rainfall data collected
with the help of disdrometers of the Fresnel platform of
Ecole des Ponts ParisTech (see available data at https://
hmco.enpc.fr/portfolio-archive/taranis-observatory/, last ac-
cess: 12 March 2020). More precisely, four quantities are
used: the rain rate (R), the liquid water content (LWC)
and the total drop concentration (Nt) along with the mass
weighed diameter (Dm), which are commonly used to char-
acterize the drop size distribution. Correlations across scales

are quantified. Their relative strength (very strong between
R and LWC, strong between DSD features and R or LWC,
almost null between Nt and Dm) is discussed.

1 Introduction

Numerous geophysical fields exhibit intermittent features
with sharp fluctuations across all scales, skewed probability
distribution and long-range correlations. A common frame-
work to analyse and simulate such fields is multifractals. The
underlying idea of this framework is that these fields are the
result of an underlying multiplicative cascade process. It is
physically based in the sense that it is assumed the fields in-
herit the scale-invariant properties of the governing Navier–
Stokes equations and hence should exhibit scale invariant
features as well. The reader is referred to the reviews by
Schertzer and Lovejoy (2011) and Schertzer and Tchiguirin-
skaia (2017) for more details. In the large class of universal
multifractals (UMs), which are the stable and attractive limits
of non-linearly interacting multifractal processes and corre-
spond to a broad, multiplicative generalization of the central
limit theorem (Schertzer and Lovejoy, 1987, 1997), a conser-
vative field is fully described with the help of only two pa-
rameters with a physical interpretation. The UM framework
was initially developed to address wind fluctuations and has
also been implemented on numerous other geophysical fields
ranging from rainfall, discharge, temperature or humidity to
soil properties and phytoplankton concentration, for exam-
ple.

Much less work has been devoted to the analysis of the cor-
relations and couplings between two fields exhibiting multi-
fractal properties. A framework was originally presented by
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134 A. Gires et al.: Approximate multifractal correlation

Meneveau et al. (1990), who suggested studying the proper-
ties of joint moments of two multifractal fields (i.e. the prod-
uct of the two fields raised to two different powers) across
scales. The behaviour of the scaling exponent as a function
of the two moments provides information on the correlations
between the two fields. They tested their framework on ve-
locity and temperature as well as velocity and vorticity. Such
a framework has been implemented in many other contexts.
Bertol et al. (2017) used it to extract information on the
tillage technique by joint analysis of water and soil losses.
Siqueira et al. (2018) studied the correlations between soil
properties (e.g. pH, organic carbon, exchangeable cations
and acidity) and altitude. Wang et al. (2011) focused on joint
properties of soil water retention parameters and soil texture,
while Jiménez-Hornero et al. (2011) focused on the links
between wind patterns and surface temperature. Xie et al.
(2015) used this framework in a non-geophysical domain to
better understand the cross-correlation between stock market
indexes and the index of volatilities.

Seuront and Schmitt (2005a, 2005b) suggested a refine-
ment of this framework and introduced a re-normalization
of these joint moments to define an exponent called “gener-
alized correlation function” and used the properties of this
function to better understand the coupling between fluores-
cence (which is related to phytoplankton concentration) and
temperature for various levels of turbulence. A similar for-
malism is used by Calif and Schmitt (2014) to study the
coupling between wind fluctuations and the aggregate power
output from a wind farm. The generalized correlation func-
tion is found to be symmetrical with regard to the chosen mo-
ments for the two studied fields, suggesting a simple relation
of proportionality between the two quantities.

Actually the previously discussed frameworks have only
been implemented for log-normal cascades, for which com-
putations basically boil down to a single parameter and corre-
lation functions are represented by linear ones. Furthermore
only two specific cases have been primarily studied, either
a proportional or a power law relation between the two stud-
ied fields. In this paper, we suggest relying on this theoreti-
cal framework and extending its use to UMs and to relations
between fields consisting of multiplicative power law combi-
nations.

In Sect. 2, the theoretical framework of UM and joint mul-
tifractal analysis is presented. Its theoretical consequences on
the analysis of multiplicative power law combinations of UM
fields are explored in Sect. 3. Numerical simulations are used
to confirm the validity of the suggested analysis techniques.
A new indicator of correlation is presented in Sect. 4 and its
limitations discussed. Finally the framework is implemented
on rainfall data to study the correlation between rain rate, liq-
uid water content and quantities characterizing the drop size
distribution.

2 Theoretical framework

2.1 Universal multifractals

The goal is to represent the behaviour of a field ελ across
scales. The resolution λ is defined as the ratio between the
outer scale L (i.e. the duration or size of studied event) and
the observation scale l (λ= L/l). In practice, the field at res-
olution λ is computed by averaging over adjacent time steps
or pixels of the field measured or simulated at a maximum
resolution (λmax). Multifractal fields exhibit a power law re-
lation between their statistical moment of order q and the
resolution λ:

〈ε
q
λ 〉 ≈ λ

K(q), (1)

where K(q) is the scaling moment function that fully char-
acterizes the variability across scales of the field. UMs are
a specific case towards which multiplicative cascade pro-
cesses converge (Schertzer and Lovejoy, 1987, 1997). Only
two parameters with physical interpretation are needed to de-
fine K(q) for conservative fields:

– C1, the mean intermittency co-dimension, which mea-
sures the clustering of the (average) intensity at smaller
and smaller scales (C1 = 0 for a homogeneous field);

– α, the multifractality index (0≤ α ≤ 2), which mea-
sures the clustering variability with regard to the inten-
sity level.

For UM, we have

K(q)=
C1

α− 1
(qα − q). (2)

K(q) is computed through trace moment (TM) analysis
which basically consists of plotting Eq. (1) in log–log and
estimating the slope of the retrieved straight line. Double
trace moment (DTM) analysis, specifically designed for UM
fields, is commonly used to estimate UM parameters (Laval-
lée et al., 1993). One can also note that UM parameters char-
acterize the first and second derivatives of K(q) near q = 1:

K ′(1)= C1,

K ′′(1)= C1α. (3)

When doing a multifractal analysis, one should keep in mind
that such fields can be affected by multifractal phase tran-
sitions (Schertzer and Lovejoy, 1992). One is associated
with sampling limitations. It results from the fact that due
to the limited size of studied samples, estimates of statisti-
cal moments greater than a given moment qs are not reliable
(see Hubert et al., 1993, and Douglas and Barros, 2003, for
some examples of implementation). In practice, the empiri-
cal curve of K(q) will become linear from qs and hence de-
part (being below) from the theoretical curve. The second
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one is trickier and associated with the divergence of mo-
ments (Schertzer and Lovejoy, 1987). The issue was also
mentioned in Mandelbrot (1974) and Kahane (1985) but they
did not address the quantification of the spurious statistical
estimates on finite samples and their dependence on their size
(Schertzer and Lovejoy, 1992). This is due to the fact the field
generated by a cascade process can become so concentrated
that its average over a given area can diverge. This results
in K(q)≈+∞ for q > qD . In practice the K(q) will obvi-
ously be computed but its value will be an overestimation of
the theoretical K(q) (hence it will be greater).

2.2 Joint multifractal analysis

Let us consider two fields, φλ and ελ, that exhibit multifrac-
tal properties. In order to study the correlation across scales
Seuront and Schmitt (2005a) refined the initial framework
of Meneveau et al. (1990) and suggested performing a joint
multifractal analysis as follows:〈
ε
q
λφ

h
λ

〉〈
ε
q
λ

〉 〈
φhλ

〉 ≈ λS(q,h)−Kε(q)−Kφ(h) ≈ λr(q,h), (4)

where r(q,h) is a “generalized correlation exponent”. If φλ
and ελ are lognormal multifractal processes (i.e. α = 2), then
r(q,h) is linear with regard to both h and q. r(q,h)= 0 for
independent fields. If they are power law combinations re-
lated with φλ = cεdλ , then r(q,h) is symmetric in the dp–q
plane.

3 Multiplicative combinations of two fields

Let us consider two independent UM fields Xλ and Yλ, with
their respective characteristic parameters αX, C1,X, αY and
C1,Y . The goal of this section is to understand the behaviour
of a field ελ consisting of renormalized multiplicative power
law combinations of Xλ and Yλ. ελ is then defined by

ελ =
Xaλ Y

b
λ〈

Xaλ Y
b
λ

〉 , (5)

where a and b are exponents characterizing the relative
weight of Xλ and Yλ in the combination.

3.1 Intuitive understanding of a and b

Let us first discuss intuitively the influence of the parame-
ters a and b. Figure 1 displays the fields ελ (in red) and
Xλ (in blue) for a realization of Xλ and Yλ with αX = 1.8,
C1,X = 0.3, αY = 0.8 and C1,Y = 0.3 (Eq. 5 is used). Values
of a ranging from 1 to 0 are shown. b was tuned to ensure
the same C1 is retrieved on all the fields. For a = 1 and b = 0
(upper left), the two fields are obviously equal and hence su-
perposed. The opposite case is a = 0 and b = 1 (lower right),

for which ελ is simply equal to Yλ, and hence fully indepen-
dent of Xλ. In the intermediate cases, the progressive decor-
relation between the two fields is visible with decreasing val-
ues of a. In that sense the parameters a and b characterize the
level of correlation between the two fields.

3.2 Theoretical expectations

In order to evaluate the expected multifractal behaviour of ελ,
its statistical moments of order q are computed to evaluate
Kε(q). Given that Xλ and Yλ are independent, it yields

〈ε
q
λ 〉 = λ

Kε(q) =

〈
X
qa
λ

〉 〈
Y
qb
λ

〉
〈
Xaλ

〉q 〈
Y bλ

〉q
= λKX(qa)−qKX(a)+KY (qb)−qKY (b), (6)

which means we have

Kε(q)= a
αXKX(q)+ b

αYKY (q)

= aαX
C1,X

αX − 1
(qαX − q)+ bαY

C1,Y

αY − 1
(qαY − q)

≈
C1,ε

αε − 1
(qαε − q). (7)

The exact computation of Kε(q) is written in the second line
of Eq. (7). The third line is not exact and corresponds the
form Kε(q) would have if ελ was actually a UM. This is
not true in the general case. In order to assess pseudo-UM
parameters C1,ε and αε , we suggest to use the properties of
Eq. (3) and equalize the first and second derivatives of the
two last lines of Eq. (7) for q = 1. This yields

C1,ε = C1,Xa
αX +C1,Y b

αY ,

αε =
C1,Xa

αXαX +C1,Y b
αY αY

C1,XaαX +C1,Y bαY
. (8)

It should be noted that in the specific case of αX = αY , αε is
also equal to this value and ελ is actually an exact UM field.

Figure 2 displays the scaling moment functions of the pre-
viously discussed fields for various sets of parameters. Sim-
ilar results are found for other sets of UM parameters and
combinations of a and b exponents. In Fig. 2a, the same α
is used for both Xλ and Yλ, and the expected exact UM be-
haviour is correctly retrieved. When αX 6= αY , ελ is not ex-
actly a UM. As it is illustrated in Fig. 2b and c, the smaller the
differences, the better the UM approximation for ελ. In the
extreme case when αY = 0 (Fig. 2c), the approximation re-
mains valid only for q ranging from ∼ 0.6 to 1.6. This range
is much wider when the α values are closer. It should be
noted that for great moments, some discrepancies are visible,
with the exact value of Kε(q) always being greater than its
UM approximation. This could wrongly be interpreted sug-
gesting that a multifractal phase transition associated with the
divergence of moments is occurring, whereas it is merely an
illustration of the limits of validity of the approximation of
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136 A. Gires et al.: Approximate multifractal correlation

Figure 1. ελ (in red) and Xλ (in blue) for a realization of Xλ and Yλ with αX = 1.8, C1,X = 0.3, αY = 0.8 and C1,Y = 0.3. Definition of
Eq. (5) is used. Various values of a are shown; b is tuned to ensure the same C1 is retrieved on all the fields.

ελ as a UM field. Indeed, the values of qD are much greater
than the moment for which the discrepancies start to be vis-
ible. In the cases of Fig. 2, we have qD = 5.96 for panel
(a), qD = 4.58 for panel (b) and qD = 119 for panel (c), for
which the approximation as a UM field is less valid. These
values are obtained by looking for the solution> 1 to the
equation K(qD)= (qD − 1)D using the pseudo-UM param-
eters of ελ (D is the dimension of the embedding space and
is equal to 1 for time series). When confronted with such be-
haviour, keeping in mind this sort of interpretation could be
interesting.

3.3 Techniques for retrieving parameters

In this sub-section an empirical technique to estimate the UM
parameters of Yλ and the exponents a and b from a joint mul-
tifractal analysis of Xλ and ελ is presented. The following
steps should be implemented:

– Step 1: performing a UM analysis of each field Xλ and
ελ independently. This enables the quality of the scaling
behaviour to be confirmed and αX, C1,X, αε and C1,ε to
be estimated. Without any loss of generality, we can as-
sume that C1,Y = C1,X. Indeed C1,Y is a rather arbitrary
quantity that can be changed while the one that actually
matters is C1,Y b

αY .

– Step 2: estimating a. This is actually the trickiest portion
of the process and requires a joint multifractal analysis.
More precisely Eq. (4) is implemented with Xλ and ελ.
In that case, it turns out that the ratio does not depend

any more on Yλ but only on Xλ. One obtains

r(q,h)=KX(ha+ q)−K(ha)−K(q)

=
C1,X

αX − 1
((ha+ q)αX − (ha)αX − (q)αX ). (9)

Hence, for a given value of h and q, r(q,h) is an in-
creasing function of a. This property is used to compute
an estimate of a. The simplest approach is to set h and q,
compute an empirical value of remp(q,h), and find the
a that yields this value. When implementing this tech-
nique, one should keep in mind that empirical fields are
subject to multifractal phase transitions affecting their
scaling behaviour. This means that ha+ q, ha and q
should remain within the range of values for which the
estimations of the scaling moment functions remain re-
liable, i.e. smaller that the corresponding qs and qD .

– Step 3: estimating αY . Using Eq. (8), one can easily ob-
tain the following (noting that αεC1,ε = C1,Xa

αXαX +

C1,Y b
αY αY , and that the term C1,Y b

αY is simply equal
to C1,ε−C1,Xa

αX , which enables the non-linear part of
the equation to be removed):

αY =

C1,ε
C1,X

αε − a
αXαX

C1,ε
C1,X
− aαX

. (10)

– Step 4: computing b. Once αY is known, Eq. (8) (top)
can be used to estimate b as follows (noting that
C1,Y b

αY = C1,ε −C1,Xa
αX and that we have C1,Y =

C1,X):

b =

(
C1,ε

C1,X
− aαX

)1/αY
. (11)
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Figure 2. Illustration of the scaling moment functionsK(q) ofXλ, Yλ and ελ, along with the UM approximation for ελ (fitted around q = 1).
Three possible sets of parameters are displayed.

3.4 Implementation on numerical simulations (discrete
UM)

The approach presented above is tested on numerical simula-
tions obtained with discrete in-scale cascades. It consists of
iteratively repeating a cascade step with a non-infinitesimal
scale ratio in which a “parent” structure is divided into
“daughter” structures whose affected value is the one of
the “parent” structure multiplied by a random factor, ensur-
ing that Eqs. (1) and (2) remain valid. Such a simple field
generation process is sufficient for the purposes of this pa-
per. The recent introduction of multifractal operators and
vectors paves the way for physically based, continuous (in-
scale) multivariate analysis of multifractal fields or measures
(Schertzer and Tchiguirinskaia, 2015, 2020).

A set of 10 000 realizations of 512 long 1D discrete cas-
cades is used, and analyses are carried out on ensemble aver-
ages.

Before starting, let us clarify the objective of this section.
Xλ and Yλ are first simulated and then ελ is built with some
values of a and b. The purpose is to retrieve the values of a,
b and αY by simply analysing Xλ and ελ, which are assumed
to be known.

The parameters used for these simulations are αX = 1.8,
C1,X = 0.3, αY = 0.8, C1,Y = 0.3, a = 0.6 and b = 0.2. As
a consequence we expect to find αε = 1.39 and C1,ε = 0.20.
Other sets of parameters have been tested and yield similar
results.

Results of this analysis are displayed in Fig. 3. As ex-
pected, the scaling behaviour observed on both Xλ and ελ
is excellent. TM analysis, i.e. Eq. (1) in a log–log plot, for
ελ is shown in Fig. 3a and all the coefficients of determina-
tion of the straight lines used to compute K(q) are greater
than 0.99. With regard to the estimates of UM parameters
retrieved via the DTM technique, for Xλ they are equal to
1.79 and 0.27 for α and C1 respectively, which is close to the
values input in the simulations. The small discrepancy in C1
has already been noted with such discrete simulations. The

respective estimates for ελ are 1.35 and 0.18, which are in
agreement with the theoretical expectations. These small dif-
ferences are visible in Fig. 3b, which displays the empirical
and theoretical fitting of K(q). For Xλ, it can be noted that
the empirical estimate of K(q) is smaller that its theoretical
value (using UM estimates retrieved from the DTM analysis)
for q greater than ∼ 1.7. This is consistent with a behaviour
affected by the multifractal phase transition associated with
sampling limitations (qs = 1.95 for the input UM parame-
ters). It can be noted that for ελ we have a greater qs equal
to 1.95, while it is even greater for Yλ(= 4.5). The values
of qD are greater in all cases, meaning that the multifractal
phase transition associated with divergence of moment will
not bias our analysis.

In order to estimate a (step 2 of the process described
in the previous sub-section), we consider the two moments
q = h= 0.7. Note that with these values we have ha+ q =
1.12, which is much smaller than the minimum qs for the
chosen values of UM parameters. This means that the esti-
mates should not be affected by expected biases associated
with multifractal phase transitions. Figure 3c shows the out-
put of the joint multifractal (Eq. 4 in log–log plot). It appears
that the scaling is excellent and the slope gives an estimate
of r(0.7,0.7). It is then used to estimate a by adjusting the
value of a so that r(0.7,0.7)(a) equals the computed empiri-
cal value (Fig. 3d). This yields a = 0.59. Finally (Eqs. 10 and
11) we obtain an estimate of b equal to 0.20 and an estimate
of αY equal to 0.77. These values are very close to those input
in the simulations. In summary, there is a very good agree-
ment between theoretical expectations and numerical simula-
tions, which confirms the validity of the framework presented
in this section.

Finally, let us discuss the uncertainties in the estimates of
a. Fig. 4 displays the estimates of a on the simulated fields
(see Fig. 3) as a function of the moment orders q and h used
in the joint multifractal analysis. It appears that as long as
the studied moments remain within the range of reliability
of the multifractal analysis (i.e. ha+ q < qs as previously
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138 A. Gires et al.: Approximate multifractal correlation

Figure 3. Results of numerical analysis with αX = 1.8, C1,X = 0.3, αY = 0.8, C1,Y = 0.3, a = 0.6 and b = 0.2 as input parameters. (a) TM
analysis i.e. Eq. (1) in log–log plot, for ελ. (b) Scaling moment functionsK(q) for ελ andXλ. (c) Joint multifractal analysis (Eq. 4 in log–log
plot) for q = h= 0.7. (d) Illustration of the estimation of a with the values r(0.7,0.7) computed in (c).

discussed), the estimates are rather stable. For greater values,
there is an underestimation of a.

4 Toward an indicator of correlation

Let us consider two fields ελ and φλ. It is assumed that they
both exhibit UM properties, with known UM parameters.
The purpose of this section is to present a framework to study
the correlations across scales between the two fields. This re-
lies on the joint multifractal analysis presented in Sect. 2.1,
with the suggestion of a simplified indicator. It furthermore
opens the path to numerical simulations of one field from the
other.

More precisely, the consequences of describing each field
as a multiplicative power law combination of the other and
an independent one will be explored. The notations are

ελ =
φaλ Y

b
λ〈

φaλ Y
b
λ

〉 ,

Figure 4. Estimate of a on the simulated fields (see Fig. 3) as a func-
tion of the moment orders q and h used in the joint multifractal
analysis. The blue grid at the constant value of 0.6 corresponds to
the value of a inputted in the simulations.
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φλ =
εa
′

λ Z
b′

λ〈
εa
′

λ Z
b′

λ

〉 , (12)

where a, b, a′ and b′ characterize the level of correlation be-
tween the two fields, while Yλ and Zλ are independent ran-
dom UM fields. As shown in the previous section, without
any loss of generality it can be assumed that C1,Y = C1,φ
and C1,Z = C1,ε . This enables the following calculations to
be simplified.

4.1 Limitations of this symmetric framework

If both lines of Eq. (12) were to be correct, then the joint
multifractal correlation of ελ and φλ could be computed in
two equivalent ways:〈
ε
q
λφ

h
λ

〉〈
ε
q
λ

〉 〈
φhλ

〉 =
〈
φ
aq+h
λ Y

bq
λ

〉
〈
φahλ

〉 〈
Y
bq
λ

〉 〈
φ
q
λ

〉 =
〈
φ
aq+h
λ

〉
〈
φ
aq
λ

〉 〈
φhλ

〉
= λrεφ(q,h) = λ

C1,φ
αφ−1 [(aq+h)

αφ−(aq)
αφ−(h)

αφ ]
,〈

ε
q
λφ

h
λ

〉〈
ε
q
λ

〉 〈
φhλ

〉 =
〈
ε
q+a′h
λ Zhb

′

λ

〉
〈
ε
q
λ

〉 〈
εa
′h
λ

〉 〈
Zhb

′

λ

〉 =
〈
ε
q+a′h
λ

〉
〈
ε
q
λ

〉 〈
εa
′h
λ

〉
= λrφε(q,h) = λ

C1,ε
αε−1 [(q+a

′h)αε−(q)αε−(a′h)αε ]
, (13)

leading to

∀ h,q
C1,φ

αφ − 1
[(qa+h)αφ − (qa)αφ − (h)αφ ]

=
C1,ε

αε − 1

[
(q + a′h)αε − (q)αε − (a′h)αε

]
. (14)

In the general case, Eq. (14) is not valid for any q and h. To
better understand this, let us consider a given level of corre-
lation by setting the parameters a and b. The goal is to com-
pute a′ and b′ from the available parameters. The left-hand
side of Eq. (14) is known, and after setting given values of
q and h it is possible to implement the same process as in
Sect. 3.3 to determine a′, b′ and αZ . Figure 5 displays the
outcome of this analysis, according to the values of h and q
used, for a = 0.2 in the case αε = 0.8, C1,ε = 0.4, αφ = 0.8,
C1,φ = 0.2 (meaning that b = 0.30 and αY = 0.68). As can
be seen, the estimates of a′ exhibit a dependency on q and
h. The dependency is stronger on q than on h and esti-
mates remain rather stable as long as q < 0.8. Both sides
of Eq. (14) are plotted in Fig. 6 for this set of UM param-
eters with a = 0.2 and estimates of a′ = 0.19 obtained with
h= q = 0.7. Expected differences are visible for the larger
values of h and q. It should be mentioned that these results
are presented for a bad case with strong differences between
αε and αφ . They are actually much smaller if both values are
closer to 2. For the specific case, αε = αφ = 2, Eq. (14) be-
comes

∀ h,q C1,φahq = C1,εa
′hq, (15)

Figure 5. Estimates of a′ as a function of h and q using Eq. (14)
and the process described in Sect. 3.3. Computations are carried out
with αε = 0.8, C1,ε = 0.4, αφ = 0.8, C1,φ = 0.2 and a = 0.2. The
blue horizontal grid corresponds to the value obtained with Eq. (17).

meaning that once hq has been removed, a′ is determin-
istically obtained once a is set and rεφ(q,h)= rεφ(q,h)=
C1,φahq is linear with regard to h and q.

Figure 7 illustrates the relation between the parameters re-
trieved by setting different values of a in the same case αε =
0.8, C1,ε = 0.4, αφ = 0.8, C1,φ = 0.2. First it should be men-
tioned that for a given set of UM parameters, not all values of
a are possible. Indeed the inequality 0≤ αY ≤ 2 must be re-
spected, leading to a ≤min[( C1,εαε

C1,φαφ
)1/αφ , (

C1,ε(2−αε)
C1,φ(2−αφ)

)1/αφ ].
In this case we must have a ≤ 0.43. We retrieved the ex-
pected behaviour and are able to quantify it: b decreases
with increasing a (Fig. 7a), a′ increases with increasing a
(Fig. 7b), αY decreases with increasing a (Fig. 7c), and sim-
ilar behaviour is found in terms of dependency in a′ for the
symmetric case.

4.2 A simplified indicator

In Sect. 4.1, limitations of this fully symmetric framework
are highlighted. However, it is possible to suggest a rather
intuitive indicator enabling most of the information obtained
from the joint multifractal correlation analysis (i.e. the com-
putation of r(q,h)) to be extracted. This corresponds to the
portion of intermittency C1 of one field explained by the
other:

ICεφ =
C1,φa

αφ

C1,ε
,

ICφε =
C1,εa

′αε

C1,φ
. (16)

Both “indicators of correlation” (ICs) are displayed in Fig. 8
for the data corresponding to Fig. 7. Both curves are close,
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Figure 6. Both sides of Eq. (14) for αε = 0.8, C1,ε = 0.4, αφ = 0.8 and C1,φ = 0.2 in the case a = 0.2 and a′ = 0.19. rεφ(q,h) is in red and
corresponds to the left-hand side of Eq. (14) while rφε(q,h) is the right-hand side and is in blue. Two views of the same figure are provided
to improve visualization.

Figure 7. Illustration of the relations between the various parameters characterizing the correlation across scales between two UM fields in
the case αε = 0.8, C1,ε = 0.4, αφ = 0.8 and C1,φ = 0.2. The dash line in (b) corresponds to the relation obtained by implementing Eq. (17).

and this symmetric behaviour is what is wanted for such an
indicator of correlation. Again, much closer curves are ob-
tained with greater values of α and identical curves are re-
trieved when the α of ε and φ are both equal to 2. Forcing
ICεφ = ICφε can actually be a way to find an estimate of a′

once a is known without having to implement the process
described above. It yields

a′ =

(
C1,φ

C1,ε

)2/αε
aαφ/αε . (17)
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Figure 8. Plot of ICεφ and ICφε as a function of a (Eq. 17) for the
same data that is presented in Fig. 7.

Equation (17) is actually plotted in a dashed line in Fig. 7b
and provides very good estimates. Hence this IC appears to
be a good candidate for characterizing in a simple way the
correlations across scales between two fields. One should
keep in mind that it is mainly relevant in the case where the
studied fields do not exhibit values of α that are too small
(typically< 0.8).

5 Implementation on rainfall data

5.1 Presentation of the data

The rainfall data used in this paper were collected by
a OTT Parsivel2 disdrometer (Battaglia et al., 2010; OTT,
2014) located on the roof of the Carnot building of the
Ecole des Ponts ParisTech campus near Paris between 15
January 2018 and 9 December 2018. It is part of the
TARANIS observatory of the Fresnel Platform of École
des Ponts ParisTech (https://hmco.enpc.fr/portfolio-archive/
fresnel-platform/, last access: 12 March 2020). Data are col-
lected with 30 s time steps. Data will only be briefly pre-
sented in this paper and interested readers are referred to
Gires et al. (2018b), who discusses available database in de-
tail along with some data samples for a similar measurement
campaign.

In this paper four quantities are studied:

– R, the rain rate (mmh−1);

– LWC, the liquid water content (gm−3);

– Nt, the total drop concentration (m−3);

– Dm, the mass weight diameter (mm).

Nt and Dm are used to characterize the drop size distri-
bution (DSD, N(D), m−3 mm−1) of the rainfall. N(D)dD
is the number of drops per unit volume (in m−3) with an
equivolumic diameter between D and D+ dD (in mm).

DSDs are commonly written in the form N(D)=Ntf (Dm),
with Dm being an indicator of the shape of the DSD and
Nt an indicator of the total intensity. They can be computed
from the DSD as follows (Leinonen et al., 2012; Jaffrain and
Berne, 2012):

Nt =

Dmax∫
Dmin

N(D)dD, (18)

Dm =

∫ Dmax
Dmin

N(D)D4dD∫ Dmax
Dmin

N(D)D3dD
. (19)

It should be noted that the disdrometer provides data binned
per class of equivolumic diameter and fall velocity, from
which a discrete DSD is computed and then used to evaluate
the integrals of Eqs. (18) and (19) (see Gires et al., 2018b,
for more details).

Multifractal analyses are carried out on ensemble analy-
ses, i.e. on average over various samples. Once rainfall events
(an event is defined as a rainy period during which more than
1 mm is collected and that is separated by more than 15 min
of dry conditions before and after) have been selected within
the longer time series, a process similar to in Gires et al.
(2016) and Gires et al. (2018a) is implemented to extract the
various samples of data: “for each event (i) a sample size is
chosen (a power of two, if possible); (ii) the maximum num-
ber of samples for this event is computed; (iii) the portion of
the event of length equal to the sample size multiplied by the
number of samples found in (ii) with the greatest cumulative
depth is extracted; (iv) the extracted series is cut into various
samples.” SinceDm is not defined when there is no rain, only
samples with no zeros are used.

Dyadic sample sizes are simpler to use for multifractal
analysis, which results in some data not being used. With the
process described above, 63, 52, 38 and 22 % of the data is
actually not used for sample sizes of 32, 64, 128 and 256 re-
spectively. A size of 32 time steps, corresponding to 16 min,
is used, to maximize the amount of data used while keeping
an acceptable length for the studied time series. An example
of a sample for the four studied quantities during a rainfall
event that occurred on 15 January 2018 is shown in Fig. 9. A
total of 491 such samples are used in the analysis.

5.2 Joint analysis and discussion

Let us first discuss the results of the joint multifractal analysis
carried out between Nt and R. The purpose is to check if the
scale-invariant analysis of correlations is relevant for these
fields and then to quantify their correlations in this frame-
work (i.e. write the fields as in Eq. 12 (top) and estimate a, b
and αY from the two fields only).

The main curves are shown in Fig. 10, with ελ being the
fluctuations of Nt and φλ being the fluctuations of R. The
analysis directly on the field showed that they were non-
conservative, meaning that the TM and DTM analysis would
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Figure 9. Illustration of the four studied rainfall quantities corresponding to a 32 min sample (i.e. 64 time steps) that occurred on 15 January
2018.

Figure 10. Results of joint multifractal analysis for ελ being the fluctuations of Nt and φλ being the fluctuations of R. (a) TM analysis, i.e.
Eq. (1) in log–log plot, for ελ. (b) Same as in (a) for φλ. (c) Scaling moment functions K(q) for ελ and φλ. (d) Joint multifractal analysis
(Eq. 4 in log–log) for q = h= 0.7. (e) Illustration of the estimation of a with the values r(0.7,0.7) computed in (d).

be biased. Hence multifractal analysis was carried out on an
approximation of the underlying conservative fields consist-
ing of their fluctuations (Lavallée et al., 1993). Numerical
values of the various parameters of the analysis are in Ta-
bles 1 and 2. R exhibits a very good scaling behaviour on
the whole range of scales taken into account, as shown by
the TM analysis where the coefficients of correlation r2 of
the linear regressions for q around 1 are all greater than 0.98

(Fig. 10b). Similar scaling behaviour was found on a previ-
ous campaign with the same devices (Gires et al., 2016). The
scaling for Nt is worse, with r2 values only slightly greater
than 0.9, but it remains acceptable (Fig. 10a). We find αR =
1.86 and C1,R = 0.14 and αNt = 1.78 and C1,Nt = 0.10. The
values of UM parameters observed mean that we are in the
domain of highest relevance of the framework developed in
the previous section. For R, and to a lesser extent Nt, there is
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Table 1. UM parameters for the studied fields.

Field α C1 r2 for q = 1.5

R 1.86 0.14 0.99
LWC 1.82 0.12 0.98
Nt 1.78 0.10 0.91
Dm 1.87 0.12 0.97

a clear departure of the fitted K(q) from the empirical K(q),
with much greater values for the fitted curve. Furthermore
the empirical K(q) values exhibit a linear behaviour for q
greater than approximately 1.5 (Fig. 10c). Such behaviour is
consistent with the expected one when a multifractal phase
transition associated with sampling limitations occurs.

The joint multifractal analysis (Eq. 4 in log–log) for q =
h= 0.7 of the two studied fields is displayed in Fig. 10d. The
scaling is good, with a value of r2

= 0.97 for the linear fit. It
enables the exponents a and b to be estimated at 0.33 and
0.75 respectively (Fig. 10e). The corresponding IC is equal
to 0.18. In addition to quantifying the level of correlations
between the two fields, it suggests how to simulate one from
the other. More precisely, once a time series of fluctuations
of R is available, it is possible to simulate a realistic corre-
sponding time series of fluctuations of Nt, by raising to the
power a = 0.33 the R series and multiplying it with an inde-
pendent random field Y with α = 1.76 and C1 = 0.14 raised
to the power b = 0.75, and renormalizing the ensemble. For-
mally it suggests the fluctuations of Nt can be written as

R0.33
fluctuationsY

0.75〈
R0.33

fluctuationsY
0.75

〉 .
Such relations open the path for techniques to simulate fluc-
tuations of Nt knowing only the temporal evolution of the
rain rate.

Similar qualitative results are found for the other combi-
nations, and numerical values are reported in Table 1. Both
LWC andDm exhibit a good scaling behaviour and their UM
parameters are in Table 1. As expected given the observed
values of α, the ICs computed in one way or the other (i.e.
inverting the role of ελ and φλ) are very similar. Furthermore
the values of a′ found using Eq. (17) (not shown) are very
close to those obtained by inverting the role of the two fields.
This confirms the relevancy of the framework of Sect. 4 in
this case. It appears that the correlation found between R and
LWC is much stronger than between R and Nt or Dm. There
is no correlation between Nt orDm which suggests but is not
proof of independence (it would be proof for Gaussian vari-
ables). Note that the very bad scaling for the joint analysis of
these two quantities is partially due to the very small values
found for r(q,h) which are basically equal to zero. R ex-
hibits a slightly greater correlation withDm (IC= 0.26) than
with Nt (IC= 0.18). It is the inverse for LWC with values of
IC equal to 0.15 and 0.27 respectively.

Table 2. Numerical output of the joint multifractal analysis of the
four studied fields. For each box, using the notations of Eq. (12) ελ
corresponds to the field of the column and φλ to the row.

R LWC Nt Dm

R 0.98 0.97 0.97 r2

0.82 0.33 0.45 a

0.38 0.75 0.80 b

0.78 0.18 0.26 IC

LWC 0.98 0.95 0.97 r2

0.93 0.44 0.36 a

0.50 0.75 0.92 b

0.77 0.27 0.15 IC

Nt 0.97 0.95 0.50 r2

0.44 0.53 0.00 a

1.08 0.94 1.11 b

0.17 0.27 0.00 IC

Dm 0.97 0.97 0.50 r2

0.51 0.37 0.00 a

0.91 0.91 0.89 b

0.25 0.16 0.00 IC

6 Conclusions

In this paper, we used the framework of joint multifractal
analysis to characterize the correlation across scales between
two multifractal fields. We extended the existing framework
to universal multifractals and also to analyse the correlations
between two fields consisting of renormalized multiplicative
power law combinations of two known UM fields. In gen-
eral, the resulting fields can be well approximated by UM
fields. Estimates of the corresponding pseudo-UM parame-
ters can be theoretically computed by focusing on the be-
haviour for moments close to one. These estimates remain
valid for a range of moments between ∼ 0.6 and ∼ 1.6 in
the worst case. The closer the two α of the initial fields, the
better the approximation. When both α values are equal, the
approximation is exact. An analysis technique to estimate
the properties of the underlying fields (UM parameters and
power law exponents used in the combination) was devel-
oped and validated with the help of numerical simulations.

In a second step, this analysis was used to develop an in-
novative framework to investigate the correlations between
two UM fields. It basically consists of looking at the best
parameters, enabling one field to be written as a power law
multiplicative combination of the other field and a random
one. In this context, a good candidate for a simple indicator
of the strength of the correlation (called IC) is the propor-
tion of intermittency of a field explained by the other one. In
the general case, this framework is not symmetric, which is
a limitation. However when the α values are typically greater
than ∼ 0.8, it is approximately symmetric, meaning that it is
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relevant to extract some information on the correlations be-
tween two fields.

Finally this was implemented on rainfall data collected
by a disdrometer installed on the roof the Ecole des Ponts
ParisTech. More precisely the correlations between R and
LWC and DSD features (Nt and Dm) are investigated. First
it should be mentioned that the scaling behaviour of both R
and LWC is excellent, while that of the DSD features is only
good. The α values are rather similar and greater than 1.7,
meaning that it is a favourable context in which to use the
newly developed approach. It appears that the correlation be-
tween R and LWC is as expected very strong, the one be-
tween R or LWC and the DSD features is medium, and the
one between Nt and Dm is basically null. Besides quanti-
fying these correlations, the developed framework suggests
a simple technique to simulate one field from the other. In-
deed, it is sufficient to compute a power law multiplicative
combination between one field and a random one to obtain
the other. The characteristic parameters of the random field
as well as the power law exponents of the relation can be ob-
tained through a joint multifractal analysis of the two studied
fields.

Further investigations on other fields in various contexts
should be carried out to confirm the ability of this framework
to both characterize and simulate correlations across scales
between two multifractal fields. In future work, this frame-
work should also be extended to more than two fields.
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