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Abstract. Universal multifractals (UMs) have been widely
used to simulate and characterize, with the help of only two
physically meaningful parameters, geophysical �elds that are
extremely variable across a wide range of scales. Such a
framework relies on the assumption that the underlying �eld
is generated through a multiplicative cascade process. De-
rived analysis techniques have been extended to study corre-
lations between two �elds not only at a single scale and for
a single statistical moment as with the covariance, but across
scales and for all moments. Such a framework of joint multi-
fractal analysis is used here as a starting point to develop and
test an approach enabling correlations between UM �elds to
be analysed and approximately simulated.

First, the behaviour of two �elds consisting of renormal-
ized multiplicative power law combinations of two UM �elds
is studied. It appears that in the general case the resulting
�elds can be well approximated by UM �elds with known pa-
rameters. Limits of this approximation will be quanti�ed and
discussed. Techniques to retrieve the UM parameters of the
underlying �elds as well as the exponents of the combination
have been developed and successfully tested on numerical
simulations. In a second step tentative correlation indicators
are suggested.

Finally the suggested approach is implemented to study
correlation across scales of detailed rainfall data collected
with the help of disdrometers of the Fresnel platform of
Ecole des Ponts ParisTech (see available data at https://
hmco.enpc.fr/portfolio-archive/taranis-observatory/, last ac-
cess: 12 March 2020). More precisely, four quantities are
used: the rain rate (R), the liquid water content (LWC)
and the total drop concentration (Nt) along with the mass
weighed diameter (Dm), which are commonly used to char-
acterize the drop size distribution. Correlations across scales

are quanti�ed. Their relative strength (very strong between
R and LWC, strong between DSD features andR or LWC,
almost null betweenNt andDm) is discussed.

1 Introduction

Numerous geophysical �elds exhibit intermittent features
with sharp �uctuations across all scales, skewed probability
distribution and long-range correlations. A common frame-
work to analyse and simulate such �elds is multifractals. The
underlying idea of this framework is that these �elds are the
result of an underlying multiplicative cascade process. It is
physically based in the sense that it is assumed the �elds in-
herit the scale-invariant properties of the governing Navier–
Stokes equations and hence should exhibit scale invariant
features as well. The reader is referred to the reviews by
Schertzer and Lovejoy (2011) and Schertzer and Tchiguirin-
skaia (2017) for more details. In the large class of universal
multifractals (UMs), which are the stable and attractive limits
of non-linearly interacting multifractal processes and corre-
spond to a broad, multiplicative generalization of the central
limit theorem (Schertzer and Lovejoy, 1987, 1997), a conser-
vative �eld is fully described with the help of only two pa-
rameters with a physical interpretation. The UM framework
was initially developed to address wind �uctuations and has
also been implemented on numerous other geophysical �elds
ranging from rainfall, discharge, temperature or humidity to
soil properties and phytoplankton concentration, for exam-
ple.

Much less work has been devoted to the analysis of the cor-
relations and couplings between two �elds exhibiting multi-
fractal properties. A framework was originally presented by
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Meneveau et al. (1990), who suggested studying the proper-
ties of joint moments of two multifractal �elds (i.e. the prod-
uct of the two �elds raised to two different powers) across
scales. The behaviour of the scaling exponent as a function
of the two moments provides information on the correlations
between the two �elds. They tested their framework on ve-
locity and temperature as well as velocity and vorticity. Such
a framework has been implemented in many other contexts.
Bertol et al. (2017) used it to extract information on the
tillage technique by joint analysis of water and soil losses.
Siqueira et al. (2018) studied the correlations between soil
properties (e.g. pH, organic carbon, exchangeable cations
and acidity) and altitude. Wang et al. (2011) focused on joint
properties of soil water retention parameters and soil texture,
while Jiménez-Hornero et al. (2011) focused on the links
between wind patterns and surface temperature. Xie et al.
(2015) used this framework in a non-geophysical domain to
better understand the cross-correlation between stock market
indexes and the index of volatilities.

Seuront and Schmitt (2005a, 2005b) suggested a re�ne-
ment of this framework and introduced a re-normalization
of these joint moments to de�ne an exponent called “gener-
alized correlation function” and used the properties of this
function to better understand the coupling between �uores-
cence (which is related to phytoplankton concentration) and
temperature for various levels of turbulence. A similar for-
malism is used by Calif and Schmitt (2014) to study the
coupling between wind �uctuations and the aggregate power
output from a wind farm. The generalized correlation func-
tion is found to be symmetrical with regard to the chosen mo-
ments for the two studied �elds, suggesting a simple relation
of proportionality between the two quantities.

Actually the previously discussed frameworks have only
been implemented for log-normal cascades, for which com-
putations basically boil down to a single parameter and corre-
lation functions are represented by linear ones. Furthermore
only two speci�c cases have been primarily studied, either
a proportional or a power law relation between the two stud-
ied �elds. In this paper, we suggest relying on this theoreti-
cal framework and extending its use to UMs and to relations
between �elds consisting of multiplicative power law combi-
nations.

In Sect. 2, the theoretical framework of UM and joint mul-
tifractal analysis is presented. Its theoretical consequences on
the analysis of multiplicative power law combinations of UM
�elds are explored in Sect. 3. Numerical simulations are used
to con�rm the validity of the suggested analysis techniques.
A new indicator of correlation is presented in Sect. 4 and its
limitations discussed. Finally the framework is implemented
on rainfall data to study the correlation between rain rate, liq-
uid water content and quantities characterizing the drop size
distribution.

2 Theoretical framework

2.1 Universal multifractals

The goal is to represent the behaviour of a �eld� � across
scales. The resolution� is de�ned as the ratio between the
outer scaleL (i.e. the duration or size of studied event) and
the observation scalel (� D L=l ). In practice, the �eld at res-
olution � is computed by averaging over adjacent time steps
or pixels of the �eld measured or simulated at a maximum
resolution (� max). Multifractal �elds exhibit a power law re-
lation between their statistical moment of orderq and the
resolution� :

h� q
� i � � K.q/ ; (1)

whereK.q/ is the scaling moment function that fully char-
acterizes the variability across scales of the �eld. UMs are
a speci�c case towards which multiplicative cascade pro-
cesses converge (Schertzer and Lovejoy, 1987, 1997). Only
two parameters with physical interpretation are needed to de-
�ne K.q/ for conservative �elds:

– C1, the mean intermittency co-dimension, which mea-
sures the clustering of the (average) intensity at smaller
and smaller scales (C1 D 0 for a homogeneous �eld);

– � , the multifractality index (0� � � 2), which mea-
sures the clustering variability with regard to the inten-
sity level.

For UM, we have

K.q/ D
C1

� � 1
.q � � q/: (2)

K.q/ is computed through trace moment (TM) analysis
which basically consists of plotting Eq. (1) in log–log and
estimating the slope of the retrieved straight line. Double
trace moment (DTM) analysis, speci�cally designed for UM
�elds, is commonly used to estimate UM parameters (Laval-
lée et al., 1993). One can also note that UM parameters char-
acterize the �rst and second derivatives ofK.q/ nearq D 1:

K 0.1/ D C1;

K 00.1/ D C1�: (3)

When doing a multifractal analysis, one should keep in mind
that such �elds can be affected by multifractal phase tran-
sitions (Schertzer and Lovejoy, 1992). One is associated
with sampling limitations. It results from the fact that due
to the limited size of studied samples, estimates of statisti-
cal moments greater than a given momentqs are not reliable
(see Hubert et al., 1993, and Douglas and Barros, 2003, for
some examples of implementation). In practice, the empiri-
cal curve ofK.q/ will become linear fromqs and hence de-
part (being below) from the theoretical curve. The second
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one is trickier and associated with the divergence of mo-
ments (Schertzer and Lovejoy, 1987). The issue was also
mentioned in Mandelbrot (1974) and Kahane (1985) but they
did not address the quanti�cation of the spurious statistical
estimates on �nite samples and their dependence on their size
(Schertzer and Lovejoy, 1992). This is due to the fact the �eld
generated by a cascade process can become so concentrated
that its average over a given area can diverge. This results
in K.q/ � C1 for q > qD . In practice theK.q/ will obvi-
ously be computed but its value will be an overestimation of
the theoreticalK.q/ (hence it will be greater).

2.2 Joint multifractal analysis

Let us consider two �elds,� � and� � , that exhibit multifrac-
tal properties. In order to study the correlation across scales
Seuront and Schmitt (2005a) re�ned the initial framework
of Meneveau et al. (1990) and suggested performing a joint
multifractal analysis as follows:



� q

� � h
�

�



� q

�

� 

� h

�

� � � S.q;h/� K � .q/ � K � .h/ � � r.q;h/ ; (4)

wherer.q;h/ is a “generalized correlation exponent”. If� �
and� � are lognormal multifractal processes (i.e.� D 2), then
r.q;h/ is linear with regard to bothh andq. r.q;h/ D 0 for
independent �elds. If they are power law combinations re-
lated with� � D c� d

� , thenr.q;h/ is symmetric in thedp–q
plane.

3 Multiplicative combinations of two �elds

Let us consider two independent UM �eldsX � andY� , with
their respective characteristic parameters� X , C1;X , � Y and
C1;Y . The goal of this section is to understand the behaviour
of a �eld � � consisting of renormalized multiplicative power
law combinations ofX � andY� . � � is then de�ned by

� � D
X a

� Yb
�


X a
� Yb

�

� ; (5)

where a and b are exponents characterizing the relative
weight ofX � andY� in the combination.

3.1 Intuitive understanding of a and b

Let us �rst discuss intuitively the in�uence of the parame-
ters a and b. Figure 1 displays the �elds� � (in red) and
X � (in blue) for a realization ofX � andY� with � X D 1:8,
C1;X D 0:3, � Y D 0:8 andC1;Y D 0:3 (Eq. 5 is used). Values
of a ranging from 1 to 0 are shown.b was tuned to ensure
the sameC1 is retrieved on all the �elds. Fora D 1 andb D 0
(upper left), the two �elds are obviously equal and hence su-
perposed. The opposite case isa D 0 andb D 1 (lower right),

for which � � is simply equal toY� , and hence fully indepen-
dent ofX � . In the intermediate cases, the progressive decor-
relation between the two �elds is visible with decreasing val-
ues ofa. In that sense the parametersa andb characterize the
level of correlation between the two �elds.

3.2 Theoretical expectations

In order to evaluate the expected multifractal behaviour of� � ,
its statistical moments of orderq are computed to evaluate
K � .q/ . Given thatX � andY� are independent, it yields

h� q
� i D � K � .q/ D



X qa

�

�D
Yqb

�

E



X a

�

�q

Yb

�

�q

D � KX .qa/� qKX .a/CKY .qb/� qKY .b/ ; (6)

which means we have

K � .q/ D a� X KX .q/ C b� Y KY.q/

D a� X
C1;X

� X � 1
.q � X � q/ C b� Y

C1;Y

� Y � 1
.q � Y � q/

�
C1;�

� � � 1
.q � � � q/: (7)

The exact computation ofK � .q/ is written in the second line
of Eq. (7). The third line is not exact and corresponds the
form K � .q/ would have if � � was actually a UM. This is
not true in the general case. In order to assess pseudo-UM
parametersC1;� and� � , we suggest to use the properties of
Eq. (3) and equalize the �rst and second derivatives of the
two last lines of Eq. (7) forq D 1. This yields

C1;� D C1;X a� X C C1;Yb� Y ;

� � D
C1;X a� X � X C C1;Yb� Y � Y

C1;X a� X C C1;Yb� Y
: (8)

It should be noted that in the speci�c case of� X D � Y, � � is
also equal to this value and� � is actually an exact UM �eld.

Figure 2 displays the scaling moment functions of the pre-
viously discussed �elds for various sets of parameters. Sim-
ilar results are found for other sets of UM parameters and
combinations ofa andb exponents. In Fig. 2a, the same�
is used for bothX � andY� , and the expected exact UM be-
haviour is correctly retrieved. When� X 6D� Y, � � is not ex-
actly a UM. As it is illustrated in Fig. 2b and c, the smaller the
differences, the better the UM approximation for� � . In the
extreme case when� Y D 0 (Fig. 2c), the approximation re-
mains valid only forq ranging from� 0:6 to 1:6. This range
is much wider when the� values are closer. It should be
noted that for great moments, some discrepancies are visible,
with the exact value ofK � .q/ always being greater than its
UM approximation. This could wrongly be interpreted sug-
gesting that a multifractal phase transition associated with the
divergence of moments is occurring, whereas it is merely an
illustration of the limits of validity of the approximation of
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Figure 1. � � (in red) andX � (in blue) for a realization ofX � andY� with � X D 1:8, C1;X D 0:3, � Y D 0:8 andC1;Y D 0:3. De�nition of
Eq. (5) is used. Various values ofa are shown;b is tuned to ensure the sameC1 is retrieved on all the �elds.

� � as a UM �eld. Indeed, the values ofqD are much greater
than the moment for which the discrepancies start to be vis-
ible. In the cases of Fig. 2, we haveqD D 5:96 for panel
(a), qD D 4:58 for panel (b) andqD D 119 for panel (c), for
which the approximation as a UM �eld is less valid. These
values are obtained by looking for the solution> 1 to the
equationK.q D / D .qD � 1/D using the pseudo-UM param-
eters of� � (D is the dimension of the embedding space and
is equal to 1 for time series). When confronted with such be-
haviour, keeping in mind this sort of interpretation could be
interesting.

3.3 Techniques for retrieving parameters

In this sub-section an empirical technique to estimate the UM
parameters ofY� and the exponentsa andb from a joint mul-
tifractal analysis ofX � and � � is presented. The following
steps should be implemented:

– Step 1: performing a UM analysis of each �eldX � and
� � independently.This enables the quality of the scaling
behaviour to be con�rmed and� X , C1;X , � � andC1;� to
be estimated. Without any loss of generality, we can as-
sume thatC1;Y D C1;X . IndeedC1;Y is a rather arbitrary
quantity that can be changed while the one that actually
matters isC1;Yb� Y .

– Step 2: estimatinga. This is actually the trickiest portion
of the process and requires a joint multifractal analysis.
More precisely Eq. (4) is implemented withX � and� � .
In that case, it turns out that the ratio does not depend

any more onY� but only onX � . One obtains

r.q;h/ D KX .ha C q/ � K.ha/ � K.q/

D
C1;X

� X � 1
..ha C q/� X � .ha/ � X � .q/ � X /: (9)

Hence, for a given value ofh andq, r.q;h/ is an in-
creasing function ofa. This property is used to compute
an estimate ofa. The simplest approach is to seth andq,
compute an empirical value ofremp.q;h/ , and �nd the
a that yields this value. When implementing this tech-
nique, one should keep in mind that empirical �elds are
subject to multifractal phase transitions affecting their
scaling behaviour. This means thatha C q, ha and q
should remain within the range of values for which the
estimations of the scaling moment functions remain re-
liable, i.e. smaller that the correspondingqs andqD .

– Step 3: estimating� Y. Using Eq. (8), one can easily ob-
tain the following (noting that� � C1;� D C1;X a� X � X C
C1;Yb� Y � Y, and that the termC1;Yb� Y is simply equal
to C1;� � C1;X a� X , which enables the non-linear part of
the equation to be removed):

� Y D

C1;�
C1;X

� � � a� X � X

C1;�
C1;X

� a� X
: (10)

– Step 4: computingb. Once� Y is known, Eq. (8) (top)
can be used to estimateb as follows (noting that
C1;Yb� Y D C1;� � C1;X a� X and that we haveC1;Y D
C1;X ):

b D
�

C1;�

C1;X
� a� X

� 1=� Y

: (11)
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Figure 2. Illustration of the scaling moment functionsK.q/ of X � , Y� and� � , along with the UM approximation for� � (�tted aroundq D 1).
Three possible sets of parameters are displayed.

3.4 Implementation on numerical simulations (discrete
UM)

The approach presented above is tested on numerical simula-
tions obtained with discrete in-scale cascades. It consists of
iteratively repeating a cascade step with a non-in�nitesimal
scale ratio in which a “parent” structure is divided into
“daughter” structures whose affected value is the one of
the “parent” structure multiplied by a random factor, ensur-
ing that Eqs. (1) and (2) remain valid. Such a simple �eld
generation process is suf�cient for the purposes of this pa-
per. The recent introduction of multifractal operators and
vectors paves the way for physically based, continuous (in-
scale) multivariate analysis of multifractal �elds or measures
(Schertzer and Tchiguirinskaia, 2015, 2020).

A set of 10 000 realizations of 512 long 1D discrete cas-
cades is used, and analyses are carried out on ensemble aver-
ages.

Before starting, let us clarify the objective of this section.
X � andY� are �rst simulated and then� � is built with some
values ofa andb. The purpose is to retrieve the values ofa,
b and� Y by simply analysingX � and� � , which are assumed
to be known.

The parameters used for these simulations are� X D 1:8,
C1;X D 0:3, � Y D 0:8, C1;Y D 0:3, a D 0:6 andb D 0:2. As
a consequence we expect to �nd� � D 1:39 andC1;� D 0:20.
Other sets of parameters have been tested and yield similar
results.

Results of this analysis are displayed in Fig. 3. As ex-
pected, the scaling behaviour observed on bothX � and � �
is excellent. TM analysis, i.e. Eq. (1) in a log–log plot, for
� � is shown in Fig. 3a and all the coef�cients of determina-
tion of the straight lines used to computeK.q/ are greater
than 0.99. With regard to the estimates of UM parameters
retrieved via the DTM technique, forX � they are equal to
1.79 and 0.27 for� andC1 respectively, which is close to the
values input in the simulations. The small discrepancy inC1
has already been noted with such discrete simulations. The

respective estimates for� � are 1.35 and 0.18, which are in
agreement with the theoretical expectations. These small dif-
ferences are visible in Fig. 3b, which displays the empirical
and theoretical �tting ofK.q/ . For X � , it can be noted that
the empirical estimate ofK.q/ is smaller that its theoretical
value (using UM estimates retrieved from the DTM analysis)
for q greater than� 1:7. This is consistent with a behaviour
affected by the multifractal phase transition associated with
sampling limitations (qs D 1:95 for the input UM parame-
ters). It can be noted that for� � we have a greaterqs equal
to 1.95, while it is even greater forY� .D 4:5/. The values
of qD are greater in all cases, meaning that the multifractal
phase transition associated with divergence of moment will
not bias our analysis.

In order to estimatea (step 2 of the process described
in the previous sub-section), we consider the two moments
q D h D 0:7. Note that with these values we haveha C q D
1:12, which is much smaller than the minimumqs for the
chosen values of UM parameters. This means that the esti-
mates should not be affected by expected biases associated
with multifractal phase transitions. Figure 3c shows the out-
put of the joint multifractal (Eq. 4 in log–log plot). It appears
that the scaling is excellent and the slope gives an estimate
of r. 0:7; 0:7/. It is then used to estimatea by adjusting the
value ofa so thatr. 0:7; 0:7/.a/ equals the computed empiri-
cal value (Fig. 3d). This yieldsa D 0:59. Finally (Eqs. 10 and
11) we obtain an estimate ofb equal to 0.20 and an estimate
of � Y equal to 0.77. These values are very close to those input
in the simulations. In summary, there is a very good agree-
ment between theoretical expectations and numerical simula-
tions, which con�rms the validity of the framework presented
in this section.

Finally, let us discuss the uncertainties in the estimates of
a. Fig. 4 displays the estimates ofa on the simulated �elds
(see Fig. 3) as a function of the moment ordersq andh used
in the joint multifractal analysis. It appears that as long as
the studied moments remain within the range of reliability
of the multifractal analysis (i.e.ha C q < qs as previously
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Figure 3. Results of numerical analysis with� X D 1:8, C1;X D 0:3, � Y D 0:8, C1;Y D 0:3, a D 0:6 andb D 0:2 as input parameters.(a) TM
analysis i.e. Eq. (1) in log–log plot, for� � . (b) Scaling moment functionsK.q/ for � � andX � . (c) Joint multifractal analysis (Eq. 4 in log–log
plot) for q D h D 0:7. (d) Illustration of the estimation ofa with the valuesr. 0:7; 0:7/ computed in(c).

discussed), the estimates are rather stable. For greater values,
there is an underestimation ofa.

4 Toward an indicator of correlation

Let us consider two �elds� � and� � . It is assumed that they
both exhibit UM properties, with known UM parameters.
The purpose of this section is to present a framework to study
the correlations across scales between the two �elds. This re-
lies on the joint multifractal analysis presented in Sect. 2.1,
with the suggestion of a simpli�ed indicator. It furthermore
opens the path to numerical simulations of one �eld from the
other.

More precisely, the consequences of describing each �eld
as a multiplicative power law combination of the other and
an independent one will be explored. The notations are

� � D
� a

� Yb
�


� a
� Yb

�

� ;

Figure 4.Estimate ofa on the simulated �elds (see Fig. 3) as a func-
tion of the moment ordersq and h used in the joint multifractal
analysis. The blue grid at the constant value of 0.6 corresponds to
the value ofa inputted in the simulations.
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� � D
� a0

� Z b0

�D
� a0

� Z b0

�

E; (12)

wherea, b, a0andb0characterize the level of correlation be-
tween the two �elds, whileY� andZ � are independent ran-
dom UM �elds. As shown in the previous section, without
any loss of generality it can be assumed thatC1;Y D C1;�
andC1;Z D C1;� . This enables the following calculations to
be simpli�ed.

4.1 Limitations of this symmetric framework

If both lines of Eq. (12) were to be correct, then the joint
multifractal correlation of� � and� � could be computed in
two equivalent ways:



� q

� � h
�

�
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�
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D
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� Ybq
�
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�
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� � � 1T.aqCh/ � � � .aq/ � � � .h/ � � U
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�
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�
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�
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�
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�
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� q

�

�D
� a0h

�

E

D � r�� .q;h/ D �
C1;�
� � � 1T.qCa0h/ � � � .q/ � � � .a0h/ � � U; (13)

leading to

8 h;q
C1;�

� � � 1
T.qa C h/ � � � .qa/ � � � .h/ � � U

D
C1;�

� � � 1

�
.q C a0h/ � � � .q/ � � � .a0h/ � �

�
: (14)

In the general case, Eq. (14) is not valid for anyq andh. To
better understand this, let us consider a given level of corre-
lation by setting the parametersa andb. The goal is to com-
putea0 andb0 from the available parameters. The left-hand
side of Eq. (14) is known, and after setting given values of
q andh it is possible to implement the same process as in
Sect. 3.3 to determinea0, b0 and � Z . Figure 5 displays the
outcome of this analysis, according to the values ofh andq
used, fora D 0:2 in the case� � D 0:8, C1;� D 0:4, � � D 0:8,
C1;� D 0:2 (meaning thatb D 0:30 and� Y D 0:68). As can
be seen, the estimates ofa0 exhibit a dependency onq and
h. The dependency is stronger onq than onh and esti-
mates remain rather stable as long asq < 0:8. Both sides
of Eq. (14) are plotted in Fig. 6 for this set of UM param-
eters witha D 0:2 and estimates ofa0D 0:19 obtained with
h D q D 0:7. Expected differences are visible for the larger
values ofh andq. It should be mentioned that these results
are presented for a bad case with strong differences between
� � and� � . They are actually much smaller if both values are
closer to 2. For the speci�c case,� � D � � D 2, Eq. (14) be-
comes

8 h;q C1;� ahq D C1;� a0hq; (15)

Figure 5. Estimates ofa0 as a function ofh andq using Eq. (14)
and the process described in Sect. 3.3. Computations are carried out
with � � D 0:8, C1;� D 0:4, � � D 0:8, C1;� D 0:2 anda D 0:2. The
blue horizontal grid corresponds to the value obtained with Eq. (17).

meaning that oncehq has been removed,a0 is determin-
istically obtained oncea is set andr�� .q;h/ D r�� .q;h/ D
C1;� ahq is linear with regard toh andq.

Figure 7 illustrates the relation between the parameters re-
trieved by setting different values ofa in the same case� � D
0:8,C1;� D 0:4, � � D 0:8,C1;� D 0:2. First it should be men-
tioned that for a given set of UM parameters, not all values of
a are possible. Indeed the inequality 0� � Y � 2 must be re-
spected, leading toa � minT. C1;� � �

C1;� � �
/1=� � ; . C1;� .2� � � /

C1;� .2� � � / /1=� � U.
In this case we must havea � 0:43. We retrieved the ex-
pected behaviour and are able to quantify it:b decreases
with increasinga (Fig. 7a),a0 increases with increasinga
(Fig. 7b),� Y decreases with increasinga (Fig. 7c), and sim-
ilar behaviour is found in terms of dependency ina0 for the
symmetric case.

4.2 A simpli�ed indicator

In Sect. 4.1, limitations of this fully symmetric framework
are highlighted. However, it is possible to suggest a rather
intuitive indicator enabling most of the information obtained
from the joint multifractal correlation analysis (i.e. the com-
putation ofr.q;h/ ) to be extracted. This corresponds to the
portion of intermittencyC1 of one �eld explained by the
other:

IC�� D
C1;� a� �

C1;�
;

IC�� D
C1;� a0� �

C1;�
: (16)

Both “indicators of correlation” (ICs) are displayed in Fig. 8
for the data corresponding to Fig. 7. Both curves are close,
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Figure 6. Both sides of Eq. (14) for� � D 0:8, C1;� D 0:4, � � D 0:8 andC1;� D 0:2 in the casea D 0:2 anda0D 0:19.r�� .q;h/ is in red and
corresponds to the left-hand side of Eq. (14) whiler�� .q;h/ is the right-hand side and is in blue. Two views of the same �gure are provided
to improve visualization.

Figure 7. Illustration of the relations between the various parameters characterizing the correlation across scales between two UM �elds in
the case� � D 0:8, C1;� D 0:4, � � D 0:8 andC1;� D 0:2. The dash line in(b) corresponds to the relation obtained by implementing Eq. (17).

and this symmetric behaviour is what is wanted for such an
indicator of correlation. Again, much closer curves are ob-
tained with greater values of� and identical curves are re-
trieved when the� of � and� are both equal to 2. Forcing
IC�� D IC�� can actually be a way to �nd an estimate ofa0

oncea is known without having to implement the process
described above. It yields

a0D
�

C1;�

C1;�

� 2=� �

a� � =� � : (17)
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Figure 8. Plot of IC�� and IC�� as a function ofa (Eq. 17) for the
same data that is presented in Fig. 7.

Equation (17) is actually plotted in a dashed line in Fig. 7b
and provides very good estimates. Hence this IC appears to
be a good candidate for characterizing in a simple way the
correlations across scales between two �elds. One should
keep in mind that it is mainly relevant in the case where the
studied �elds do not exhibit values of� that are too small
(typically< 0:8).

5 Implementation on rainfall data

5.1 Presentation of the data

The rainfall data used in this paper were collected by
a OTT Parsivel2 disdrometer (Battaglia et al., 2010; OTT,
2014) located on the roof of the Carnot building of the
Ecole des Ponts ParisTech campus near Paris between 15
January 2018 and 9 December 2018. It is part of the
TARANIS observatory of the Fresnel Platform of École
des Ponts ParisTech (https://hmco.enpc.fr/portfolio-archive/
fresnel-platform/, last access: 12 March 2020). Data are col-
lected with 30 s time steps. Data will only be brie�y pre-
sented in this paper and interested readers are referred to
Gires et al. (2018b), who discusses available database in de-
tail along with some data samples for a similar measurement
campaign.

In this paper four quantities are studied:

– R, the rain rate (mmh� 1);

– LWC, the liquid water content (gm� 3);

– Nt, the total drop concentration (m� 3);

– Dm, the mass weight diameter (mm).

Nt and Dm are used to characterize the drop size distri-
bution (DSD,N.D/ , m� 3 mm� 1) of the rainfall.N.D/ dD
is the number of drops per unit volume (in m� 3) with an
equivolumic diameter betweenD and D C dD (in mm).

DSDs are commonly written in the formN.D/ D Ntf .D m/ ,
with Dm being an indicator of the shape of the DSD and
Nt an indicator of the total intensity. They can be computed
from the DSD as follows (Leinonen et al., 2012; Jaffrain and
Berne, 2012):

Nt D

DmaxZ

Dmin

N.D/ dD; (18)

Dm D

RDmax
Dmin

N.D/D 4dD
RDmax

Dmin
N.D/D 3dD

: (19)

It should be noted that the disdrometer provides data binned
per class of equivolumic diameter and fall velocity, from
which a discrete DSD is computed and then used to evaluate
the integrals of Eqs. (18) and (19) (see Gires et al., 2018b,
for more details).

Multifractal analyses are carried out on ensemble analy-
ses, i.e. on average over various samples. Once rainfall events
(an event is de�ned as a rainy period during which more than
1 mm is collected and that is separated by more than 15 min
of dry conditions before and after) have been selected within
the longer time series, a process similar to in Gires et al.
(2016) and Gires et al. (2018a) is implemented to extract the
various samples of data: “for each event (i) a sample size is
chosen (a power of two, if possible); (ii) the maximum num-
ber of samples for this event is computed; (iii) the portion of
the event of length equal to the sample size multiplied by the
number of samples found in (ii) with the greatest cumulative
depth is extracted; (iv) the extracted series is cut into various
samples.” SinceDm is not de�ned when there is no rain, only
samples with no zeros are used.

Dyadic sample sizes are simpler to use for multifractal
analysis, which results in some data not being used. With the
process described above, 63, 52, 38 and 22 % of the data is
actually not used for sample sizes of 32, 64, 128 and 256 re-
spectively. A size of 32 time steps, corresponding to 16 min,
is used, to maximize the amount of data used while keeping
an acceptable length for the studied time series. An example
of a sample for the four studied quantities during a rainfall
event that occurred on 15 January 2018 is shown in Fig. 9. A
total of 491 such samples are used in the analysis.

5.2 Joint analysis and discussion

Let us �rst discuss the results of the joint multifractal analysis
carried out betweenNt andR. The purpose is to check if the
scale-invariant analysis of correlations is relevant for these
�elds and then to quantify their correlations in this frame-
work (i.e. write the �elds as in Eq. 12 (top) and estimatea, b
and� Y from the two �elds only).

The main curves are shown in Fig. 10, with� � being the
�uctuations of Nt and � � being the �uctuations ofR. The
analysis directly on the �eld showed that they were non-
conservative, meaning that the TM and DTM analysis would
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Figure 9. Illustration of the four studied rainfall quantities corresponding to a 32 min sample (i.e. 64 time steps) that occurred on 15 January
2018.

Figure 10.Results of joint multifractal analysis for� � being the �uctuations ofNt and� � being the �uctuations ofR. (a) TM analysis, i.e.
Eq. (1) in log–log plot, for� � . (b) Same as in(a) for � � . (c) Scaling moment functionsK.q/ for � � and� � . (d) Joint multifractal analysis
(Eq. 4 in log–log) forq D h D 0:7. (e) Illustration of the estimation ofa with the valuesr. 0:7; 0:7/ computed in(d).

be biased. Hence multifractal analysis was carried out on an
approximation of the underlying conservative �elds consist-
ing of their �uctuations (Lavallée et al., 1993). Numerical
values of the various parameters of the analysis are in Ta-
bles 1 and 2.R exhibits a very good scaling behaviour on
the whole range of scales taken into account, as shown by
the TM analysis where the coef�cients of correlationr 2 of
the linear regressions forq around 1 are all greater than 0.98

(Fig. 10b). Similar scaling behaviour was found on a previ-
ous campaign with the same devices (Gires et al., 2016). The
scaling forNt is worse, withr 2 values only slightly greater
than 0.9, but it remains acceptable (Fig. 10a). We �nd� R D
1:86 andC1;R D 0:14 and� Nt D 1:78 andC1;N t D 0:10. The
values of UM parameters observed mean that we are in the
domain of highest relevance of the framework developed in
the previous section. ForR, and to a lesser extentNt, there is
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Table 1.UM parameters for the studied �elds.

Field � C 1 r 2 for q D 1:5

R 1.86 0.14 0.99
LWC 1.82 0.12 0.98
Nt 1.78 0.10 0.91
Dm 1.87 0.12 0.97

a clear departure of the �ttedK.q/ from the empiricalK.q/ ,
with much greater values for the �tted curve. Furthermore
the empiricalK.q/ values exhibit a linear behaviour forq
greater than approximately 1.5 (Fig. 10c). Such behaviour is
consistent with the expected one when a multifractal phase
transition associated with sampling limitations occurs.

The joint multifractal analysis (Eq. 4 in log–log) forq D
h D 0:7 of the two studied �elds is displayed in Fig. 10d. The
scaling is good, with a value ofr 2 D 0:97 for the linear �t. It
enables the exponentsa andb to be estimated at 0.33 and
0.75 respectively (Fig. 10e). The corresponding IC is equal
to 0.18. In addition to quantifying the level of correlations
between the two �elds, it suggests how to simulate one from
the other. More precisely, once a time series of �uctuations
of R is available, it is possible to simulate a realistic corre-
sponding time series of �uctuations ofNt, by raising to the
powera D 0:33 theR series and multiplying it with an inde-
pendent random �eldY with � D 1:76 andC1 D 0:14 raised
to the powerb D 0:75, and renormalizing the ensemble. For-
mally it suggests the �uctuations ofNt can be written as

R0:33
�uctuationsY

0:75



R0:33

�uctuationsY
0:75

� :

Such relations open the path for techniques to simulate �uc-
tuations ofNt knowing only the temporal evolution of the
rain rate.

Similar qualitative results are found for the other combi-
nations, and numerical values are reported in Table 1. Both
LWC andDm exhibit a good scaling behaviour and their UM
parameters are in Table 1. As expected given the observed
values of� , the ICs computed in one way or the other (i.e.
inverting the role of� � and� � ) are very similar. Furthermore
the values ofa0 found using Eq. (17) (not shown) are very
close to those obtained by inverting the role of the two �elds.
This con�rms the relevancy of the framework of Sect. 4 in
this case. It appears that the correlation found betweenR and
LWC is much stronger than betweenR andNt or Dm. There
is no correlation betweenNt or Dm which suggests but is not
proof of independence (it would be proof for Gaussian vari-
ables). Note that the very bad scaling for the joint analysis of
these two quantities is partially due to the very small values
found for r.q;h/ which are basically equal to zero.R ex-
hibits a slightly greater correlation withDm (IC D 0:26) than
with Nt (IC D 0:18). It is the inverse for LWC with values of
IC equal to 0.15 and 0.27 respectively.

Table 2. Numerical output of the joint multifractal analysis of the
four studied �elds. For each box, using the notations of Eq. (12)� �
corresponds to the �eld of the column and� � to the row.

R LWC Nt Dm

R 0.98 0.97 0.97 r 2

0.82 0.33 0.45 a
0.38 0.75 0.80 b
0.78 0.18 0.26 IC

LWC 0.98 0.95 0.97 r 2

0.93 0.44 0.36 a
0.50 0.75 0.92 b
0.77 0.27 0.15 IC

Nt 0.97 0.95 0.50 r 2

0.44 0.53 0.00 a
1.08 0.94 1.11 b
0.17 0.27 0.00 IC

Dm 0.97 0.97 0.50 r 2

0.51 0.37 0.00 a
0.91 0.91 0.89 b
0.25 0.16 0.00 IC

6 Conclusions

In this paper, we used the framework of joint multifractal
analysis to characterize the correlation across scales between
two multifractal �elds. We extended the existing framework
to universal multifractals and also to analyse the correlations
between two �elds consisting of renormalized multiplicative
power law combinations of two known UM �elds. In gen-
eral, the resulting �elds can be well approximated by UM
�elds. Estimates of the corresponding pseudo-UM parame-
ters can be theoretically computed by focusing on the be-
haviour for moments close to one. These estimates remain
valid for a range of moments between� 0.6 and� 1.6 in
the worst case. The closer the two� of the initial �elds, the
better the approximation. When both� values are equal, the
approximation is exact. An analysis technique to estimate
the properties of the underlying �elds (UM parameters and
power law exponents used in the combination) was devel-
oped and validated with the help of numerical simulations.

In a second step, this analysis was used to develop an in-
novative framework to investigate the correlations between
two UM �elds. It basically consists of looking at the best
parameters, enabling one �eld to be written as a power law
multiplicative combination of the other �eld and a random
one. In this context, a good candidate for a simple indicator
of the strength of the correlation (called IC) is the propor-
tion of intermittency of a �eld explained by the other one. In
the general case, this framework is not symmetric, which is
a limitation. However when the� values are typically greater
than� 0:8, it is approximately symmetric, meaning that it is
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relevant to extract some information on the correlations be-
tween two �elds.

Finally this was implemented on rainfall data collected
by a disdrometer installed on the roof the Ecole des Ponts
ParisTech. More precisely the correlations betweenR and
LWC and DSD features (Nt andDm) are investigated. First
it should be mentioned that the scaling behaviour of bothR
and LWC is excellent, while that of the DSD features is only
good. The� values are rather similar and greater than 1.7,
meaning that it is a favourable context in which to use the
newly developed approach. It appears that the correlation be-
tweenR and LWC is as expected very strong, the one be-
tweenR or LWC and the DSD features is medium, and the
one betweenNt and Dm is basically null. Besides quanti-
fying these correlations, the developed framework suggests
a simple technique to simulate one �eld from the other. In-
deed, it is suf�cient to compute a power law multiplicative
combination between one �eld and a random one to obtain
the other. The characteristic parameters of the random �eld
as well as the power law exponents of the relation can be ob-
tained through a joint multifractal analysis of the two studied
�elds.

Further investigations on other �elds in various contexts
should be carried out to con�rm the ability of this framework
to both characterize and simulate correlations across scales
between two multifractal �elds. In future work, this frame-
work should also be extended to more than two �elds.
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