Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Different versions of the nerve theorem and colourful simplices

Abstract : Given a simplicial complex and a collection of subcomplexes covering it, the nerve theorem, a fundamental tool in topological combinatorics, guarantees a certain connectivity of the simplicial complex when connectivity conditions on the intersection of the subcomplexes are satisfied. We show that it is possible to extend this theorem by replacing some of these connectivity conditions on the intersection of the subcomplexes by connectivity conditions on their union. While this is interesting for its own sake, we use this extension to generalize in various ways the Meshulam lemma, a powerful homological version of the Sperner lemma. We also prove a generalization of the Meshulam lemma that is somehow reminiscent of the polytopal generalization of the Sperner lemma by De Loera, Peterson, and Su. For this latter result, we use a different approach and we do not know whether there is a way to get it via a nerve theorem of some kind.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-03247121
Contributeur : Frédéric Meunier <>
Soumis le : mercredi 2 juin 2021 - 18:25:30
Dernière modification le : mardi 8 juin 2021 - 03:10:51

Fichier

Nerve_Rainbow_JCTA_revision2.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03247121, version 1

Collections

Citation

Frédéric Meunier, Luis Montejano. Different versions of the nerve theorem and colourful simplices. Journal of Combinatorial Theory, Series A, Elsevier, 2019. ⟨hal-03247121⟩

Partager

Métriques

Consultations de la notice

6

Téléchargements de fichiers

14