Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Non-isothermal viscoelastic flows with conservation laws and relaxation

Abstract : We propose a system of conservation laws with relaxation source terms (i.e. balance laws) for non-isothermal viscoelastic flows of Maxwell fluids. The system is an extension of the polyconvex elastodynamics of hyperelastic bodies using additional structure variables. It is obtained by writing the Helmholtz free energy as the sum of a volumetric energy density (function of the determinant of the deformation gradient det F and the temperature θ like the standard perfect-gas law or Noble-Abel stiffened-gas law) plus a polyconvex strain energy density function of F, θ and of symmetric positive-definite structure tensors that relax at a characteristic time scale. One feature of our model is that it unifies various ideal materials ranging from hyperelastic solids to perfect fluids, encompassing fluids with memory like Maxwell fluids. We establish a strictly convex mathematical entropy to show that the system is symmetric-hyperbolic. Another feature of the proposed model is therefore the short-time existence and uniqueness of smooth solutions, which define genuinely causal viscoelastic flows with waves propagating at finite speed. In heat-conductors, we complement the system by a Maxwell-Cattaneo equation for an energy-flux variable. The system is still symmetric-hyperbolic, and smooth evolutions with finite-speed waves remain well-defined.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-03206116
Contributeur : Sébastien Boyaval <>
Soumis le : jeudi 22 avril 2021 - 22:53:24
Dernière modification le : lundi 31 mai 2021 - 11:07:35

Fichiers

nonisothermal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03206116, version 1
  • ARXIV : 2104.12399

Collections

Citation

Sébastien Boyaval, Mark Dostalík. Non-isothermal viscoelastic flows with conservation laws and relaxation. 2021. ⟨hal-03206116⟩

Partager

Métriques

Consultations de la notice

63

Téléchargements de fichiers

30