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On cyclic steady states and elastic shakedown in
diffusion-induced plasticity

Michaël Peigney

Abstract This chapter is devoted to media in which plasticity and diffusion are
coupled, such as electrode materials in lithium ion batteries. We present some re-
cent results on the large time behavior of such media when they are submitted to
cyclic chemo-mechanical loadings. Under suitable technical assumptions, we no-
tably show that there is convergence towards a cyclic steady state in which the stress,
the plastic strain rate, the chemical potential and the concentration of guest atoms
are all periodic in time (with the same period as the applied loading). A special case
of interest is that of elastic shakedown, which corresponds to the situation where the
medium behaves elastically in the large time limit. We present general theorem that
allow one to construct both lower and upper bounds of the set of loadings for which
elastic shakedown occurs, in the spirit of Melan and Koiter theorems in classical
plasticity. An illustrative example – for which all the relevant calculations can be
done in closed-form – is presented.

1 Introduction

This chapter is devoted to cyclically loaded media in which plasticity and diffusion
are coupled. An example of such media is electrode materials in lithium-ion bat-
teries: in those batteries, the flow of electrons is the result of lithium ion diffusing
in electrode particles (and in an electrolyte). The absorption of lithium in electrode
particles produces some swelling, which in certain situations can be large enough
to trigger plastic flow. In the media considered – of which electrode materials are
an example – plastic flow and diffusion act as two concurrent dissipative processes.
This results in a complex evolution problem in which the interplay between plas-
tic flow and diffusion may lead to some unusual behavior. For instance, under a
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monotone loading, a particle may flow plastically for some time and later unloads
elastically [1]. The main objective in this chapter is to study the large-time behav-
ior of solutions to the evolution problem in the case of cyclic chemo-mechanical
loadings. In classical plasticity (without diffusion), some general results are avail-
able [4, 5, 6] and fostered the development of direct methods aiming at determin-
ing the large-time response without resorting to step-by-step incremental analysis
[20, 10, 21, 23]. A central question, which we address in this chapter, is to investi-
gate whether similar general results can be established for media coupling plasticity
with diffusion. The outline of this chapter is as follows: In Sect. 2 are derived the
governing equations of the evolution problem. As an illustration, some finite ele-
ment simulations on a model problem related to lithium-ion batteries are presented.
In Sect. 3 are presented the main results on cyclic steady states in diffusion-induced
plasticity. Under suitable technical assumptions, we notably show that any solution
to the evolution problem converges towards a cyclic steady state in which the stress,
the plastic strain rate, the chemical potential and the concentration of guest atoms
are all periodic in time (with the same period as the applied loading). Sect. 4 fo-
cuses on elastic shakedown, defined as the special case where the plastic dissipation
is bounded on the time interval [0,+∞) (or, in more intuitive terms, that the medium
behaves elastically in the large time limit). In classical plasticity, Melan and Koiter
theorems deliver bounds on the set of loadings for which elastic shakedown occurs.
Those theorems (Melan theorem especially) have been extended to several types of
nonlinear behaviors, see e.g. [14, 15, 16, 17, 22, 7] for recent examples. Building
on the results of Sect. 3 we show that both a Melan-type theorem and a Koiter-type
theorem can be obtained for media coupling plasticity with diffusion. An illustra-
tive example – for which all the relevant calculations can be done in closed-form –
is presented.

2 Diffusion-induced plasticity in a cyclically loaded continuum

2.1 Conservation equations

Consider a deformable continuum occupying a domain Ω , in which guest atoms
diffuse. The continuum is submitted to a body force f. Tractions T are prescribed
on a part ΓT of the boundary and displacements U are prescribed on Γu = ∂Ω −
ΓT . A normal flux J of guest atoms is prescribed on a part ΓJ of the boundary.
On Γµ = ∂Ω −ΓJ , the chemical potential µ is prescribed to take a given value M.
The functions f, U, T, M, J define the chemo-mechanical loading history. Those
functions are assumed to be periodic in time, with the same period T . Functions that
are periodic in time with a period T as referred to as T -periodic in the following.

For the problem at hand, the two main conservation equations are the diffusion
equation (expressing the mass conservation of guest atoms)

ċ+divj = 0 in Ω , (1)
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and the equilibrium equation (assuming quasi-static evolutions)

divσ + f = 0 in Ω . (2)

In (1) and (2), c is the concentration of guest atoms, j is the flux and σ is the stress.
Eqs (1) and (2) are complemented by the boundary conditions

µ = M on Γµ , j ·n = J on ΓJ , σ ·n = T on ΓT , u = U on Γu. (3)

2.2 Constitutive equations

The constitutive material is assumed to be elastic-plastic. Following the thermo-
dynamic framework of [9] in small perturbations, the local state of the material is
described by the total linearized strain ε , the (deviatoric) plastic strain ε p and the
concentration c of guest atoms. The free energy w of the material is taken as a
quadratic function of the form

w(ε,ε p,c) =
1
2
(ε− ε p) : L : (ε− ε p)+

1
2

kc2 + cA : (ε− ε p)+ cµ0 (4)

where the fourth-order symmetric tensor L, the symmetric second-order tensors A,
the scalars k and µ0 are material parameters satisfying

L� 0, k > 0, k−A : L−1 : A > 0 (5)

where the notation� indicates that a tensor is positive definite. The requirements (5)
ensure that w is convex and guarantee the uniqueness of the evolution starting from
a given initial state, as will be later discussed. From (4) we obtain the constitutive
relations

σ =
∂w
∂ε

= L : (ε− ε p)+ cA, µ =
∂w
∂c

= µ0 + kc+A : (ε− ε p). (6)

It can be observed that the tensor A in (6) induces a two-way coupling between
mechanics and diffusion. In particular, the concentration c has a linear influence on
the stress, in a way similar to thermal stress. Similarly, the chemical potential µ

depends linearly on the elastic strain.
The constitutive equations (6) are complemented by a law of diffusion and a

plasticity flow rule complying with the second law of thermodynamics. In more
detail, the flux j of guest atoms is assumed to obey the relation

j =−ψ
′(∇µ). (7)

where ψ is a positive, differentiable and strictly convex function such that ψ(0) = 0.
The special case of Fick’s law (linear diffusion) corresponds to the situation ψ =
1
2 j ·D · j for some symmetric second order tensor D� 0.
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2.3 Illustrative example

In order to illustrate the type of behavior that arises in the media considered, we
present some finite-element simulations performed on a plane strain problem related
to lithium-ion batteries. We consider a free-standing cylinder electrode particle with
radius R. Cyclic lithiation-delithiation is achieved by applying a T−periodic flux

J(t) =−Rω

4
H sinωt (8)

on the boundary. In (8), ω and H > 0 are given. The loading parameter H in (8)
is directly related to the maximum number of inserted lithium ions which is indeed
equal to−2πRL

∫ T/2
0 J(t)dt = πR2LH where L is the length of the cylinder in the ez

direction.
The free energy w is taken as an isotropic version of (4), i.e.

w(ε,ε p,c) =
1
2

K(trε)2 +G(εd− ε p) : (εd− ε p)+
1
2

kc2 +ac trε + cµ0 (9)

where εd is the deviatoric strain and c is the concentration of lithium. In (9), K, G,
a and µ0 are material parameters. The constitutive relations (6) specialize as

σm = Ktrε +ac , s = 2G(εd− ε p), µ = µ0 + kc+a trε, (10)

where σm = (trσ)/3 is the hydrostatic stress and s is the deviatoric stress. The scalar
material parameter a in (9) accounts for the chemo-mechanical coupling. In par-
ticular, the ratio −a/K can be interpreted as the volumetric expansion coefficient
associated with the insertion of lithium.

Fick’s law is adopted for diffusion, i.e.

j =
D
k

∇µ

where D is the diffusion coefficient. A Von Mises plasticity model is adopted. The
corresponding elasticity domain if defined by

1
2

s : s≤ σ2
Y (11)

where σY is the yield strength.
The numerical results presented in the following have been obtained using the

parameters E = 80 GPa, ν = 0.3, σY = 50 MPa, a = −2.72× 10−18 J, k = 0.5×
10−13 J.m3, D = 10−16 m2/s. The bulk modulus K and the shear modulus G are
related to Young’s modulus E and Poisson’s ratio ν by the expressions K = E/3(1−
2ν) and G = E/2(1+ν). In Figs 1 and 2 is shown the time evolution of the plastic
strain field ε p for two different sets of loading parameters. For both simulations the
initial value ε p(0) is non zero and taken as
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ε p(0) = 0.003sin(πr/2R)(e1⊗ e2 + e2⊗ e1)

where (e1,e2) is a reference orthonormal frame. Fig.1 corresponds to the loading
parameters H = 100 mol/m3, ω = 10/T0 where T0 is a time scale defined by

T0 =
R2

D
(

1− aã
k

)with ã =
3a

3K +4G
. (12)

The map ‖ε p(t)−ε p(0)‖ is shown at several time instants during the first two load-
ing cycles. The plots in Fig. 1 suggest that the plastic strain stabilizes to a time-
independent field, i.e. that elastic shakedown occurs. Fig. 2 corresponds to the load-
ing parameters H = 100 mol/m3 and ω = 20/T0. The plots in Fig. 2 suggest that
the plastic strain reaches a cyclic steady state, i.e. that cyclic plasticity occurs. Note
that the same value of the parameter H has been used in Figs. 1 and 2, which means
that the same number of lithium is injected in the particle. The only difference is
the charging rate. The loading rate is thus found to have an influence on the plas-
tic response of the system, even though rate-independent plasticity is considered in
the constitutive equations. This is a result of the chemo-mechanical coupling: the
combined facts that diffusion is a rate-dependent process and that the stress depends
on the local concentration entail that the mechanical response of the system is rate-
dependent.

Fig. 1 Map of ‖ε p(t)− ε p(0)‖ at several times instants t/T for a cylinder particle under cyclic
lithiation. Case H = 100 mol/m3, ω = 10/T0. Reported values of ‖ε p(t)− ε p(0)‖ are normalized.

In the electrochemical community, a quantity of interest is the charge–voltage
response, relating the total charge C of lithium ions in the electrode particle to the
voltage V on the surface of the particle. The charge C is obtained from the con-
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centration field c by C =
∫

Ω
cdΩ . The voltage V is directly related to the chemical

potential µ by V =−(µ−µ0)/e where e is the elementary charge. Let C(t) and V (t)
be the charge and voltage at time t, as obtained in the finite element simulations. The
trajectories of (C(t),V (t)) in the C−V plane are shown in Fig. 3 for the two load-
ings considered previously. It can be observed that (C(t),V (t)) converges towards
a cyclic steady state. Some hysteresis is displayed in the cyclic steady state, even
in the case ω = 10/T0 for which elastic shakedown occurs. Indeed, even if plastic
flow vanishes in the elastic shakedown regime, there remains the diffusion-related
dissipation corresponding to the cyclic insertion of lithium ions. By contrast, in the
case ω = 20/T0, the diffusion-related dissipation and the plastic dissipation (due to
cyclic plasticity) add up on the cyclic steady state. For designing lithium-ion batter-
ies with improved electrochemical efficiency, it is beneficial to reduce the hysteresis
in the C−V response. In that regard, the shakedown regime is likely to be beneficial
[1]. It can further be added that elastic shakedown is also beneficial for the mechan-
ical fatigue behavior since elastic shakedown is typically associated with high-cycle
fatigue – as opposed to cyclic plasticity which is associated with low-cycle fatigue
[2].

The results in Figs. 1, 2 and 3 have been obtained for specific geometry, loading
and material parameters. One can wonder to what extent those results are general.
Considering a continuum of arbitrary shape submitted to a cyclic chemo-mechanical
loading, the main questions to be addressed are

1. Is there always convergence to a steady state cycle ?
2. How does the steady state cycle (if exists) depend on the initial state ?
3. Is is possible to obtain a priori restrictions on the loading for ensuring that

elastic shakedown occurs ?

Regarding question 3 above, Melan theorem (also known as the static shake-
down theorem) and Koiter theorem (also known as the kinematic shakedown theo-
rem) come to mind [11, 24, 8]. In standard plasticity (without coupling with diffu-
sion), those theorems provide bounds on the set of loadings for which elastic shake-
down occurs. The classical reasoning used in the proof of those theorems consists in
bounding the total dissipation on the time interval [0,∞). For the media considered
here, there are two sources of dissipation, namely plasticity and diffusion. Bounding
the total dissipation thus essentially means that there is no plastic flow and no diffu-
sion in the large time limit. This is not really the situation of interest for applications
such as lithium-ion batteries: one is instead interested in situations where there is no
plastic flow in the large limit but diffusion still occurs as a result of cyclic lithiation,
as in Fig. 1. In such situations, the total plastic dissipation on the time interval [0,∞)
is bounded but the diffusion-related dissipation is not. There does not seem to be
any obvious way to modify Melan’s and Koiter’s reasoning so as to bound only a
part of the total dissipation (namely the plastic dissipation). As will shown in the
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following, shakedown theorems as desired can still be obtained at the price of first
addressing the more general questions 1 and 2 listed above.

Fig. 2 Map of ‖ε p(t)− ε p(0)‖ at several times instants t/T for a cylinder particle under cyclic
lithiation. Case H = 100 mol/m3, ω = 20/T0. Reported values of ‖ε p(t)− ε p(0)‖ are normalized.

3 General results on steady state cycles

In this section are presented some general results addressing questions 1-2 related
to cyclic steady states in diffusion-induced plasticity. We first derive an evolution
equation for the fields (σ ,µ) and proceed to discuss some properties of that equa-
tion. As a preliminary, observe that the free energy w(ε,ε p,c) in (4) can be put in
the form
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Fig. 3 Charge-Voltage re-
sponse for ω = 10/T0 (blue
curve) and ω = 20/T0 (red
curve). The parameter H is set
to H = 100 mol/m3.
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w(ε,ε p,c) =
1
2
(ε− ε p,c):̇M:̇(ε− ε p,c)+ cµ0 (13)

where M is the symmetric operator defined by the relations

M:̇(ε− ε
p,c) = (L : (ε− ε p)+ cA,kc+A : (ε− ε p)) .

for any ε − ε p and c. Under the assumptions (5) , M can be verified to be positive
definite. The operator M is thus invertible and its inverse M−1 is symmetric positive
definite. For later reference, note that the constitutive relations (6) can be rewritten
as

(ε− ε p,c) =M−1 :̇(σ ,µ−µ0). (14)

Setting B = A : L−1 and k′ = k−A : L−1 : A, it can be calculated that

(σ ,µ):̇M−1 :̇(σ ′,µ ′)〉=σ :L−1 : σ
′+

1
k′
(
(B : σ)(B : σ

′)+µµ
′−µ

′B : σ−µB : σ
′)

(15)
for any (σ ,µ) and (σ ′,µ ′). To simplify the presentation, we will consider the case of
viscoplasticity: the flow rule takes the form ε̇

p = φ ′(σ) where φ is a positive, strictly
convex, differentiable function of the deviatoric stress and such that φ(0) = 0. The
elasticity domain of the material is denoted by C .

3.1 Evolution equation for the stress and the chemical potential

The fields (σ ,µ) are assumed to live in a closed subspace of H(div;Ω)×H1(Ω) .
Since M−1 � 0, H is a Hilbert space for the scalar product 〈·, ·〉 defined by
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〈(σ ,µ),(σ ′,µ ′)〉=
∫

Ω

(σ ,µ):̇M−1 :̇(σ ′,µ ′)dΩ

We denote K (f,T,M) the set of stress and chemical potential fields that are com-
patible with data (f,T,M), i.e

K (f,T,M) =
{
(σ ,µ) ∈H : divσ + f = 0 in Ω ,σ ·n = T on ΓT ,µ = M on Γµ

}
.

Let (σ ,µ) be the stress and chemical potential in a given evolution satisfying the
governing equations described in Sect. 2. We have (σ ,µ) ∈K (f,T,M) and it can
be verified that

〈(σ̇ , µ̇),(ρ,ν)〉=−
∫

Ω

(φ ′(σ) : ρ +ψ
′(∇µ) ·∇ν)dΩ −

∫
ΓJ

Jν dS ∀(ρ,ν) ∈K0;

(16)
with K0 =

{
(σ ,µ) ∈H : divσ = 0 in Ω ,σ ·n = 0 on ΓT ,µ = 0 on Γµ

}
. Eq. (16)

can be interpreted as an evolution equation for the stress and chemical potential
fields (σ ,µ).

3.2 Contraction properties

The norm in H is denoted by ‖ · ‖, i.e. ‖(σ ,µ)‖2 =
∫

Ω
(σ ,µ):̇M−1 :̇(σ ,µ)dΩ . The

two following lemmas can be proved [18]:

Lemma 1. Let Σ = (σ ,µ) and Σ
′ = (σ ′,µ ′) be two solutions of (16). Then

‖Σ(t2)−Σ
′(t2)‖ ≤ ‖Σ(t1)−Σ

′(t1)‖ for all t1 < t2.

Lemma 2. Let Σ = (σ ,µ) and Σ
′ = (σ ′,µ ′) be two solutions of (16) such that

‖Σ(t)−Σ
′(t)‖= ‖Σ(t1)−Σ

′(t1)‖ for all t1 ≤ t. Then

φ
′(σ(x, t)) = φ

′(σ ′(x, t)) for t1 ≤ t.

Moreover, there exists a time-independent stress field ρ and a constant η such that
(ρ,η) ∈K0 and

σ(x, t)−σ
′(x, t) = ρ(x), µ(x, t)−µ

′(x, t) = η for t1 ≤ t.

Lemma 1 means that the distance between two solutions decreases with time. It
notably implies the uniqueness of the solution for a given initial state. Lemma 2
means that if the distance between two solutions is constant then the difference
between those solutions is constant (which is not obvious at first sight).
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3.3 Main results

We are now in a position to prove the main results regarding T−periodic solutions
to the evolution equation (16). Although such T−periodic solutions are not unique,
they are quite similar to one another. More precisely, we have the following

Theorem 1. Let Σ = (σ ,µ) and Σ
′ = (σ ′,µ ′) be two T−periodic solutions

of (16). Then
φ
′(σ(x, t)) = φ

′(σ ′(x, t)) for t1 ≤ t.

Moreover, there exists a time-independent stress field ρ and a constant η such
that (ρ,η) ∈K0 and

σ(x, t)−σ
′(x, t) = ρ(x), µ(x, t)−µ

′(x, t) = η .

Proof. The result follows from Lemmas 1 and 2. Let Σ = (σ ,µ) and Σ
′ = (σ ′,µ ′)

be two T−periodic solutions of (16). By Lemma 1 we have

‖Σ(T )−Σ
′(T )‖ ≤ ‖Σ(t)−Σ

′(t)‖ ≤ ‖Σ(0)−Σ(0)‖ (17)

for all t ∈ [0,T ]. Since Σ and Σ
′ are T−periodic, we have ‖Σ(T )−Σ

′(T ) = ‖Σ(0)−
Σ(0)‖. Hence (17) becomes ‖Σ(t)−Σ

′(t)‖= ‖Σ(0)−Σ(0)‖ for all t ∈ [0,T ]. Ap-
plying Lemma 2 proves the claim. ut

We now arrive at the main result on the large time convergence of solutions to
(16):

Theorem 2. Assume that there exists a T−periodic solution to (16) and that
the dimension of H is finite. For any solution Σ(t) of (16) on [0,∞), there
exists a T−periodic solution Σ

′ of (16) such that

Σ(t)→ Σ
′(t) as t→ ∞.

Proof. We will make use of Opial’s lemma [13], which is a general result in Hilbert
spaces that reads as follows:

Let F be a nonempty subset of H and {un} a sequence in H such that :
(i) {‖un− f‖} converges for all f ∈ F,
(ii) the limit of every (weakly) convergent subsequence of {un} is in F.
Then the whole sequence {un} (weakly) converges to a point of F.
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Here we only consider the simplified situation where the dimension of H is fi-
nite, so that weak and strong convergences coincide. Considering an arbitrary solu-
tion Σ(t) of (16), we wish to apply Opial’s lemma to the sequence {un}= {Σ(nT )}
and to the set F formed by the initial values of T−periodic solutions to (16), i.e.
F =

{
Σ̃(0) : t 7→ Σ̃(t) is a T−periodic solution of (16)

}
. To that purpose, the main

effort consists in checking assumptions (i) and (ii) in Opial’s lemma.
Let us begin with assumption (i). Consider f ∈ F and let Σ

′ be a T−periodic
solution of (16) such that f = Σ

′(0). Lemma 1 gives

‖Σ((n+1)T )−Σ
′((n+1)T )‖ ≤ ‖Σ(nT )−Σ

′(nT )‖. (18)

Since Σ
′ is T− periodic, we have Σ(nT ) = Σ(0) = f for all n. Hence (18) becomes

‖un+1− f‖ ≤ ‖un− f‖. The positive sequence {‖un− f‖} is decreasing. It follows
that {‖un− f‖} converges to a limit as n→ ∞, which shows that assumption (i) is
verified.

We now proceed with assumption (ii). Let {unk} be a converging subsequence of
{un} and denote its limit by g. Denoting by Σ

∗(t) the solution of (16) for the initial
condition Σ

∗(0) = g, we wish to show that Σ
∗(t) is T−periodic. We consider a fixed

t in the interval [0,T ] in what follows. Lemma 1 gives

‖Σ(nkT + t)−Σ
∗(t)‖ ≤ ‖Σ(nkT )−Σ

∗(0)‖= ‖unk −g‖ −→
k→∞

0.

Thus
Σ(nkT + t)−→

k→∞
Σ
∗(t) (19)

Let Σ
′ be a T−periodic solution to (16). Lemma 1 yields

‖Σ(nk+1T )−Σ
′(nk+1T )‖ ≤ ‖Σ(nkT + t)−Σ

′(nkT + t)‖ ≤ ‖Σ(nkT )−Σ
′(nkT )‖

(20)
Setting f = Σ

′(0) ∈ F and noting that Σ
′(nkT + t) = Σ

′(t), (20) becomes

‖Σ(nk+1T )− f‖ ≤ ‖Σ(nkT + t)−Σ
′(t)‖ ≤ ‖Σ(nkT )− f‖. (21)

By (i), both the left and the right terms in (21) converge to a limit A as k→ ∞. It
follows that

‖Σ(nkT + t)−Σ
′(t)‖ −→

k→∞
A. (22)

Combining (19) and (22) shows that ‖Σ ∗(t)−Σ
′(t)‖= A for all t in [0,T ]. Lemma

2 implies that Σ
∗(t)−Σ

′(t) is time-independent. Hence Σ
∗(t) is T−periodic, i.e.

Σ
∗(0) = g ∈ F . Assumption (ii) is thus verified.
Applying Opial’s lemma shows that there exists a T−periodic solution Σ

∗(t)
such that Σ(nT )→ Σ

∗(0) as n→ ∞. By Lemma 1, it follows that Σ(t)−Σ
∗(t)→ 0

as t→ ∞. ut

Theorems 1 and 2 allow one to provide some answers to questions 1-2 listed
in Sect. 2 regarding cyclic steady states in diffusion-induced plasticity. Theorem 2
indeed implies that the stress σ , the plastic strain rate ε̇

p and the chemical potential
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µ converge towards a cyclic steady state as t → ∞. Using the constitutive relations
(7) and (14), it follows that the flux j and the concentration c also converge towards
a cyclic steady state. Since there is no uniqueness of T−periodic solutions to (16),
the cyclic steady state depends on the initial state. However, Theorem 1 shows that
some features of the cyclic steady state are unique, namely the stress rate, the plastic
strain rate and the chemical potential (up to a constant). Using again (7) and (14),
the flux and the concentration rate on the cyclic steady state are also unique, i.e.
independent of the initial state.

Let us denote by ε̇
p
∞ the plastic strain rate on the cyclic steady steady state. The

facts that ε̇
p
∞ is T−periodic and uniquely defined imply that there is either elastic

shakedown, cyclic plasticity or ratchetting – with the exclusion of any other regime.
Moreover, for a given structure, the type of asymptotic plastic behavior (i.e elastic
shakedown, cyclic plasticity or ratchetting) is only determined by the loading, inde-
pendently of the initial state. In a similar fashion, diffusion-related quantities reach
a cyclic steady state which is largely independent of the initial state. In particular,
for electrode particles in lithium-ion batteries, the charge-voltage response reaches
a cyclic steady state which is uniquely defined (possibly up to a translation in the
C−V plane, depending on the type of chemical boundary conditions).

In such conditions, it makes sense to establish Bree-like diagrams mapping the
space of load parameters to path-independent properties such as the type of asymp-
totic behavior, the plastic dissipation or the diffusion-related dissipation on the
steady state cycle.

4 Shakedown theorems in diffusion-induced plasticity

Let us consider the fictitious purely elasto-diffusive problem obtained by discarding
plastic flow in the original problem. As a special case of (16), the stress and chemical
potential in the diffusive elasto-diffusive problem satisfy

〈(σ̇ , µ̇),(ρ,ν)〉=−
∫

Ω

ψ
′(∇µ) ·∇ν dΩ −

∫
ΓJ

Jν dS ∀(ρ,ν) ∈K0. (23)

Periodic solutions to (23) play a central role in formulating shakedown conditions in
diffusion-induced plasticity, as will be later demonstrated. Periodic solutions to (23)
are not uniquely defined. As a particular case of Theorem 1, two periodic solutions
of (23) differ by a time independent stress field ρ and a constant η such that (ρ,η)∈
K0. Conversely, if (ρ,η) ∈K0 and (σE ,µE) is a particular T−periodic solution to
(23) then (σE ,µE)+ (ρ,η) can easily be verified to be a T−solution to (23). The
whole set of T−periodic solutions to (23) is thus an affine space than can be written
as

{(σE ,µE)+(ρ,η) : (ρ,η) ∈K0} (24)

where (σE ,µE) denotes any given T−periodic solution to (23).
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4.1 Static shakedown theorem

Assume that elastic shakedown occurs in the original problem involving diffusion-
induced plasticity and denote by (σ∞,µ∞) the stress and the chemical potential in
the cyclic steady state. The fields (σ∞,µ∞) form a T−periodic solution to (16).
Elastic shakedown corresponds to the situation where ε̇

p
∞ = φ ′(σ∞) = 0, hence we

have

〈(σ̇∞, µ̇∞),(ρ,ν)〉=−
∫

Ω

ψ
′(∇µ∞) ·∇ν dΩ −

∫
ΓJ

Jν dS ∀(ρ,ν) ∈K0; (25)

Comparing (25) with (23) shows that (σ∞,µ∞) is a T−periodic solution to the
elasto-diffusive problem (23). Conversely, assume there exists a T−periodic solu-
tion (σ̃ , µ̃) to the elasto-diffusive (23) such that φ ′(σ̃)= 0. It can be directly checked
that (σ̃ , µ̃) is also a T−periodic to the equation (16). Noting that the associated plas-
tic strain is zero and using Theorem 1, we obtain that the plastic strain rate vanishes
for any T−periodic solution to (16), i.e. in any cyclic steady state. Consequently,
elastic shakedown is characterized by the existence of a T−periodic solution (σ̃ , µ̃)
to (16) such that φ ′(σ̃) = 0, i.e. such that σ̃ ∈ C . Using (24), we can formulate the
following result

Theorem 3. If there exists a time-independent stress field ρ ∈ A0 such that
σE(x, t)+ρ(x)∈C for all x∈Ω and t ∈ [0,T ], then elastic shakedown occurs
(whatever the initial state is).

In Theorem 3, A0 is the space of self-equilibrated stress fields, i.e.

A0 = {ρ : divρ = 0 in Ω ,ρ.n = 0 on ΓT}.

Although the statement of Theorem 3 is similar to Melan theorem, we emphasize
that its proof largely differs from the standard proof used in Melan theorem for pure
plasticity. Theorem 3 motivates the introduction of a ’static security coefficient’ mS
as

mS = sup{m : there exists ρ ∈A0 such that
ρ(x)+mσE(x, t) ∈ C for all (x, t) ∈Ω × [0,T ]}. (26)

The value of mS indeed determines the shakedown behavior according to the fol-
lowing rules {

mS > 1 =⇒ shakedown occurs
mS < 1 =⇒ shakedown does not occur (27)

Lower bounds on mS can be obtained by using Theorem 3 with particular stress
fields in A0.
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4.2 Kinematic shakedown theorem

Upper bounds on mS can be obtained by convex duality, as used for instance by
[3, 12]. Let A be the set of triplets (m,ρ∗, σ̃) such that ρ∗(x) is a time-independent
stress field in A0 and σ̃(x, t) ∈ C for all (x, t). From (26) we have

mS = sup
(m,ρ∗, σ̃) ∈A ,
ρ∗+mσE = σ̃

m

This is a constrained maximization problem over the convex set A . Denote by L
the corresponding lagrangian, i.e.

L (m,ρ∗, σ̃ ;d) = m+
∫

Ω

∫ T

0
d(x, t) : (σ̃(x, t)−ρ

∗(x)−mσ
E(x, t))dΩdt. (28)

We have
mS = sup

(m,ρ∗,σ̃ )∈A
inf
d

L (m,ρ∗, σ̃ ;d).

From the min-max inequality

sup
(m,ρ∗,σ̃ )∈A

inf
d

L ≤ inf
d

sup
(m,ρ∗,σ̃ )∈A

L (29)

we get
mS ≤ mK (30)

where
mK = inf

d
sup

(m,ρ∗,σ̃ )∈A
L (m,ρ∗, σ̃ ;d).

Rewriting the coefficient mK in a more explicit form [19] leads to

mK = inf{
∫

Ω

∫ T

0
D(d(x, t))dΩdt :

∫ T

0

∫
Ω

d : σ
EdΩdt = 1 and

∫ T

0
ddt ∈B0}

(31)
with D(d) = supσ∈C σ : d and

B0 = {(∇u+∇
tu)/2 : u = 0 on Γu}.

If mK < 1 then by (30) and (27) we can conclude that shakedown does not occur.
A necessary condition for shakedown is thus that mK ≥ 1. We can thus formulate
the following

Theorem 4. If shakedown occurs, then 1≤
∫

Ω

∫ T
0 D(d(x, t))dΩdt for any his-

tory d(x, t) such that
∫ T

0
∫

Ω
d : σEdΩ dt = 1 and

∫ T
0 d ∈B0.
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In practice, an upper bound m+
K on mK (and therefore on mS) can be ob-

tained by constructing specific strain histories satisfying the requirements
∫ T

0
∫

Ω
d :

σEdΩ dt = 1 and
∫ T

0 d ∈B0.

4.3 Illustrative example

As an illustration of the shakedown theorems, consider the example introduced in
Sect. 2.3. A T− periodic solution (σE ,µE ,uE ,cE) to the corresponding purely
elasto-diffusive problem has been calculated in closed-form in [18]. Denoting by
ℜ (resp. ℑ) the real (resp. imaginary) part of a complex valued quantity, we have in
particular

σE(x, t) = ℜ

(
eiωt GãH

2
(σ̂rer⊗ er + σ̂θ eθ ⊗ eθ + σ̂zez⊗ ez)

)
where

σ̂r = 1− R̂
r̂

J1(r̂)
J1(R̂)

, σ̂θ = 1+
R̂
r̂

J1(r̂)
J1(R̂)

− R̂J0(r̂)
J1(R̂)

, σ̂z = 2ν− R̂J0(r̂)
J1(R̂)

(32)

and

r̂ = λ̂ r, R̂ = λ̂R, λ̂ = ei 3π
4

√
ω

D(1−aã/k)
. (33)

In (32), J is the Bessel function of the first kind. The scalar ã in (33) is defined as in
(12).

Let us denote by sE the deviatoric part of σE . Using Theorem 3 with ρ = 0, we
can see that if

sup
r,t
‖sE(r, t)‖ ≤

√
2σY (34)

then shakedown occurs. It can be verified that the supremum in (34) is reached at
r = R. Condition (34) can thus be rewritten as

‖sE(R, t0)‖ ≤
√

2σY (35)

where t0 ∈ [0,T ] is such that ‖sE(R, t0)‖ = supt ‖sE(R, t‖. By Theorem 3, condi-
tion (35) is a sufficient condition for shakedown. Theorem 4 shows that it is also
necessary. Consider indeed the history defined by

d(x, t) =
1

4πRL
sE(R, t0)
‖sE(R, t0)‖2 δ (r−R)(δ (t− t0)−δ (t− t1)) (36)

where L is the length of the particle in the ez direction and δ is the Dirac distribution.
The time instant t1 in (36) is defined by t1 = (t0 +T/2)modT . Observe in partic-
ular that sE(R, t1) =−sE(R, t0). We have

∫ T
0 d(x, t)dt = 0 hence

∫ T
0 d(x, t)dt ∈B0.
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Moreover we have
∫

Ω

∫ T
0 σE : ddΩdt = 1. Using Theorem 4 with the history d in

(36) shows that a necessary condition for shakedown is

1≤
∫

Ω

∫ T

0
D(d(x, t))dΩdt (37)

For the Mises elasticity domain, the function D is given by D(d) =
√

2σY‖d‖ pro-
vided that d is deviatoric. It follows that∫

Ω

∫ T

0
D(d(x, t))dΩdt =

√
2σY

‖sE(R, t0)‖
.

Condition (37) is thus the same as (35). This shows that Condition (35) is both a
necessary and a sufficient for shakedown to occur.

Condition (35) can be rewritten as [18]

H ≤ HSD(ω̃) (38)

where

HSD(ω̃) = 2

√
6σY

G|ã|

(
A(ω̃)+

√
A2(ω̃)−B(ω̃)

)− 1
2

(39)

and

A(ω̃) = 3(1−ν)2 +(ℜz−1−ν)2 +(ℑz)2, B(ω̃) = 12(1−ν)2(ℑz)2; (40)

with

ω̃ = ωT0, z =
R̂J0(R̂)
J1(R̂)

.

Using the values of the constitutive parameters reported in Sect. 2.3, we obtain
that

HSD(20)< 100 mol/m3 < HSD(10) (41)

For a loading parameter H = 100 mol/m3, (41) means that elastic shakedown oc-
curs for ω = 10/T0 but not for ω = 20/T0. Those predictions agree with the finite
element simulations shown in Fig. 1 and Fig. 2. In the case ω = 10/T0 correspond-
ing to elastic shakedown, a result from Theorem 1 and Theorem 2 is that the C–V
response in the cyclic steady state coincide (up to a time-independent translation)
with the cyclic C–V response of the purely elasto-diffusive problem. The latter can
be calculated in closed form and is given by

CE(t) =
1
2
(1+ sinωt), µ

E(t) =
1
4

ℜ(eiωt iz) (42)

The C–V response provided by (42) is shown in Fig. 4 (red line). The curve obtained
form the finite element simulations of the diffusion-induced plasticity problem is
shown as a blue curve in Fig. 4. It appears that the steady state in the C–V plane is
translated form the elasto-diffusive response as expected.
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Fig. 4 Charge-Voltage re-
sponse for H = 100 mol/m3,
ω = 10/T0. Diffusion-induced
plasticity (blue curve), pure
elasto-diffusion (red curve).
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élastoplastiques., J. Mecanique 15 ( 1976) 1–53.

4. Frederick, C., Armstrong, P., 1966. Convergent internal stresses and steady cyclic states of
stress. J. Strain Anal. Eng. Des. 1, 154–159.

5. Halphen, B., 1978. Steady cycles and shakedown in elastic-viscoplastic and plastic structures.
In: Structures et matériaux sous chargement cyclique. Association amicale des ingénieurs
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