B. S. Altan and E. C. Aifantis, On the structure of the mode III crack-tip in gradient elasticity, Scripta Metallurgica et Materialia, vol.26, p.90194, 1992.

B. S. Altan and E. C. Aifantis, On Some Aspects in the Special Theory of Gradient Elasticity, Journal of the Mechanical Behavior of Materials, vol.8, pp.231-282, 1997.

H. Askes and E. C. Aifantis, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, International Journal of Solids and Structures, vol.48, pp.1962-1990, 2011.

M. Bornert, C. Stolz, and A. Zaoui, Morphologically representative patternbased bounding in elasticity, Journal of the Mechanics and Physics of Solids, vol.44, pp.83-89, 1996.

J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol.241, pp.376-396, 1957.

S. Forest and K. Sab, Stress gradient continuum theory. Mechanics Research, Communications, vol.40, pp.16-25, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00697585

S. Forest and K. Sab, Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models, Mathematics and Mechanics of Solids, 2017.

Z. Hashin and S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, Journal of the Mechanics and Physics of Solids, vol.10, pp.335-342, 1962.

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals, Journal of the Mechanics and Physics of Solids, vol.10, pp.343-352, 1962.

G. Hütter, K. Sab, and S. Forest, Kinematics and constitutive relations in the stress-gradient theory: Interpretation by homogenization. International Journal of Solids and Structures 193-194, pp.90-97, 2020.

D. Jeulin, Random texture models for material structures, Statistics and Computing, vol.10, pp.121-132, 2000.

V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, 1994.

J. Korringa, Theory of elastic constants of heterogeneous media, Journal of Mathematical Physics, vol.14, pp.509-513, 1973.

E. Kröner, On the, Topics in Applied Continuum Mechanics, pp.22-38, 1974.

R. D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, vol.16, pp.51-78, 1964.

J. Moreau, Duality characterization of strain tensor distributions in an arbitrary open set, Journal of Mathematical Analysis and Applications, vol.72, pp.760-770, 1979.
URL : https://hal.archives-ouvertes.fr/hal-01788889

M. Ostoja-starzewski, Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics, vol.21, pp.112-132, 2006.

C. Polizzotto, A micromorphic approach to stress gradient elasticity theory with an assessment of the boundary conditions and size effects, ZAMM -Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol.98, pp.1528-1553, 2018.

K. Sab, Homogenization of non-linear random media by a duality method. Application to plasticity, Asymptotic Analysis, vol.9, pp.311-336, 1994.

K. Sab, F. Legoll, and S. Forest, Stress Gradient Elasticity Theory: Existence and Uniqueness of Solution, Journal of Elasticity, vol.123, pp.179-201, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01288563

K. Sab and B. Nedjar, Periodization of random media and representative volume element size for linear composites, Comptes Rendus Mécanique, vol.333, pp.187-195, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00121487

V. P. Smyshlyaev and N. A. Fleck, Bounds and estimates for linear composites with strain gradient effects, Journal of the Mechanics and Physics of Solids, vol.42, pp.90016-90023, 1994.

P. Suquet, A simplified method for the prediction of homogenized elastic properties of composites with a periodic structure. Comptes-rendus de l'Académie des sciences série II 311, pp.769-774, 1990.

V. P. Tran, Modeling of Random Heterogeneous Materials from Microscale to Macroscale, 2016.

V. P. Tran, S. Brisard, J. Guilleminot, and K. Sab, Mori-Tanaka estimates of the effective elastic properties of stress-gradient composites, International Journal of Solids and Structures, vol.146, pp.55-68, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01740741

L. J. Walpole, Fourth-Rank Tensors of the Thirty-Two Crystal Classes: Multiplication Tables, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol.391, pp.149-179, 1984.

J. Willis, Bounds and self-consistent estimates for the overall properties of anisotropic composites, Journal of the Mechanics and Physics of Solids, vol.25, pp.90022-90031, 1977.

J. Willis, On methods for bounding the overall properties of nonlinear composites, Journal of the Mechanics and Physics of Solids, vol.39, pp.73-86, 1991.

J. R. Willis, Mechanics of Random and Multiscale Microstructures, pp.221-267, 2001.

R. Zeller and P. H. Dederichs, Elastic Constants of Polycrystals, Physica Status Solidi (B), vol.55, pp.831-842, 1973.