Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Morphology-dependent Hashin–Shtrikman bounds on the effective properties of stress-gradient materials

Abstract : Stress-gradient materials are generalized continua with two generalized stress variables: the Cauchy stress field and its gradient. For homogenization purposes, we introduce an extension to stress-gradient materials of the principle of Hashin and Shtrikman. The variational principle is first stated within the framework of periodic homogenization, then extended to random homogenization. Contrary to the usual derivation of the classical principle, we adopt here a stress-based approach, much better suited to stress-gradient materials. We show that, in many cases of interest, the third-order trial eigenstrain may be discarded, leaving only one (second-order) trial eigenstrain in the functional to optimize. For N-phase material, the bounds are very similar in structure to their classical counterpart. One notable difference is the fact that, even in the case of isotropy, the bounds depend on some additionnal microstructural parameters (besides the usual volume fractions).
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-02986476
Contributeur : Sébastien Brisard <>
Soumis le : mardi 3 novembre 2020 - 08:22:12
Dernière modification le : samedi 7 novembre 2020 - 03:34:50

Fichier

 Accès restreint
Fichier visible le : 2021-05-03

Connectez-vous pour demander l'accès au fichier

Identifiants

Collections

Citation

S. Brisard, V.P. Tran, K. Sab. Morphology-dependent Hashin–Shtrikman bounds on the effective properties of stress-gradient materials. European Journal of Mechanics - A/Solids, Elsevier, 2021, 85, pp.104072. ⟨10.1016/j.euromechsol.2020.104072⟩. ⟨hal-02986476⟩

Partager

Métriques

Consultations de la notice

27