Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Learning to Guide Local Feature Matches

Abstract : We tackle the problem of finding accurate and robust keypoint correspondences between images. We propose a learning-based approach to guide local feature matches via a learned approximate image matching. Our approach can boost the results of SIFT to a level similar to state-of-the-art deep descriptors, such as Superpoint, ContextDesc, or D2-Net and can improve performance for these descriptors. We introduce and study different levels of supervision to learn coarse correspondences. In particular, we show that weak supervision from epipolar geometry leads to performances higher than the stronger but more biased point level supervision and is a clear improvement over weak image level supervision. We demonstrate the benefits of our approach in a variety of conditions by evaluating our guided keypoint correspondences for localization of internet images on the YFCC100M dataset and indoor images on the SUN3D dataset, for robust localization on the Aachen day-night benchmark and for 3D reconstruction in challenging conditions using the LTLL historical image data.
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : François Darmon Connectez-vous pour contacter le contributeur
Soumis le : vendredi 16 octobre 2020 - 19:18:16
Dernière modification le : vendredi 14 janvier 2022 - 03:41:24
Archivage à long terme le : : dimanche 17 janvier 2021 - 23:36:43


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-02969789, version 1



François Darmon, Mathieu Aubry, Pascal Monasse. Learning to Guide Local Feature Matches. 3DV, Nov 2020, Fukuoka ( On line ), Japan. ⟨hal-02969789⟩



Consultations de la notice


Téléchargements de fichiers