Y. Kanno, Nonsmooth mechanics and convex optimization, 2011.

Y. Kanno, J. A. Martins, A. Pinto-da, and C. , Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem, International Journal for Numerical Methods in Engineering, vol.65, issue.1, pp.62-83, 2006.

R. Ku?era, J. Machalová, H. Netuka, and P. ?en?ák, An interior-point algorithm for the minimization arising from 3d contact problems with friction, Optimization methods and software, vol.28, issue.6, pp.1195-1217, 2013.

I. Temizer, M. Abdalla, and Z. , An interior point method for isogeometric contact, Computer Methods in Applied Mechanics and Engineering, vol.276, pp.589-611, 2014.

D. Mangoni, A. Tasora, and R. Garziera, A primal-dual predictor-corrector interior point method for non-smooth contact dynamics, Computer Methods in Applied Mechanics and Engineering, vol.330, pp.351-367, 2018.

C. E. Boustani, ]. , J. Bleyer, M. Arquier, M. Ferradi et al., Dual finite-element analysis using second-order cone programming for structures including contact, Engineering Structures, vol.208, p.109892, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02428540

K. Krabbenhoft, A. Lyamin, S. Sloan, and P. Wriggers, An interior-point algorithm for elastoplasticity, International Journal for Numerical Methods in Engineering, vol.69, issue.3, pp.592-626, 2007.

K. Yonekura and Y. Kanno, Second-order cone programming with warm start for elastoplastic analysis with von Mises yield criterion, Optimization and Engineering, vol.13, issue.2, pp.181-218, 2012.

C. E. Boustani, J. Bleyer, M. Arquier, M. Ferradi, and K. Sab, Elastoplastic and limit analysis of 3D steel assemblies using second-order cone programming and dual finiteelements, Engineering Structures, p.38, 2020.

A. Makrodimopoulos and C. M. Martin, Lower bound limit analysis of cohesive-frictional materials using second-order cone programming, International Journal for Numerical Methods in Engineering, vol.66, issue.4, pp.604-634, 2006.

A. Makrodimopoulos and C. M. Martin, Upper bound limit analysis using simplex strain elements and second-order cone programming, International Journal for Numerical and Analytical Methods in Geomechanics, vol.31, issue.6, pp.835-865, 2007.

C. M. Martin and A. Makrodimopoulos, Finite-element limit analysis of Mohr-Coulomb materials in 3d using semidefinite programming, Journal of Engineering Mechanics, vol.134, issue.4, pp.339-347, 2008.

H. Vincent, M. Arquier, J. Bleyer, and P. De-buhan, Yield design-based numerical analysis of three-dimensional reinforced concrete structures, International Journal for Numerical and Analytical Methods in Geomechanics, vol.42, issue.18, pp.2177-2192, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01738638

J. Bleyer and G. Hassen, Automated formulation and resolution of limit analysis problems, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02570860

K. Krabbenhoft, A. Lyamin, J. Huang, and M. V. Da-silva, Granular contact dynamics using mathematical programming methods, Computers and Geotechnics, vol.43, pp.165-176, 2012.

X. Zhang, K. Krabbenhoft, and D. Sheng, Particle finite element analysis of the granular column collapse problem, Granular Matter, vol.16, issue.4, pp.609-619, 2014.

J. Bleyer, M. Maillard, P. De-buhan, and P. Coussot, Efficient numerical computations of yield stress fluid flows using second-order cone programming, Computer Methods in Applied Mechanics and Engineering, vol.283, pp.599-614, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01081508

J. Bleyer, Advances in the simulation of viscoplastic fluid flows using interior-point methods, Computer Methods in Applied Mechanics and Engineering
URL : https://hal.archives-ouvertes.fr/hal-01672045

J. Bleyer, Automating the formulation and resolution of convex variational problems: applications from image processing to computational mechanics
URL : https://hal.archives-ouvertes.fr/hal-02388646

F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical Programming, vol.95, issue.1, pp.3-51, 2003.

M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone programming, Linear algebra and its applications, vol.284, issue.1-3, pp.193-228, 1998.

N. Karmarkar, Proceedings of the sixteenth annual ACM symposium on Theory of computing, pp.302-311, 1984.

G. B. Dantzig, Origins of the simplex method, A history of scientific computing, pp.141-151, 1990.

Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-point polynomial algorithms in convex programming, vol.13, 1994.

Y. E. Nesterov and M. J. Todd, Primal-dual interior-point methods for self-scaled cones, SIAM Journal on optimization, vol.8, issue.2, pp.324-364, 1998.

M. Wright, The interior-point revolution in optimization: history, recent developments, and lasting consequences, Bulletin of the American mathematical society, vol.42, issue.1, pp.39-56, 2005.

R. Chares, Cones and interior-point algorithms for structured convex optimization involving powers and exponentials, 2009.

C. Miehe, N. Apel, and M. Lambrecht, Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Computer Methods in Applied Mechanics and Engineering, vol.191, pp.438-441, 2002.

E. Andersen, C. Roos, and T. Terlaky, On implementing a primal-dual interior-point method for conic quadratic optimization, Mathematical Programming, vol.95, issue.2, pp.249-277, 2003.

S. Mehrotra, On the Implementation of a Primal-Dual Interior Point Method, SIAM Journal on Optimization, vol.2, issue.4, pp.575-601, 1992.

M. Salahi, J. Peng, and T. Terlaky, On mehrotra-type predictor-corrector algorithms, SIAM Journal on Optimization, vol.18, issue.4, pp.1377-1397, 2008.

E. Andersen, On formulating quadratic functions in optimization problems, MOSEK, 2013.

. Mosek, Mosek Modeling Manual, User manual, 2013.

M. A. Caminero, F. J. Montáns, and K. Bathe, Modeling large strain anisotropic elastoplasticity with logarithmic strain and stress measures, Computers & Structures, vol.89, pp.826-843, 2011.

M. Latorre and F. J. Montáns, Stress and strain mapping tensors and general workconjugacy in large strain continuum mechanics, Applied Mathematical Modelling, vol.40, pp.3938-3950, 2016.

B. Halphen and Q. S. Nguyen, Sur les matériaux standard généralisés, Journal de Mécanique, vol.14, pp.39-63, 1975.

J. Lemaitre and J. Chaboche, Mechanics of solid materials, 1994.

M. Abbas, A. Ern, and N. Pignet, Hybrid high-order methods for finite deformations of hyperelastic materials, Computational Mechanics, vol.62, issue.4, pp.909-928, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01575370

M. Smith, ABAQUS/Standard User's Manual, Version 6.9, Simulia, 2009.

A. Logg and G. N. Wells, Dolfin: Automated finite element computing, ACM Transactions on Mathematical Software, vol.37, issue.2

A. Logg, K. Mardal, and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, vol.84, 2012.

M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet et al., The fenics project version 1.5, Archive of Numerical Software, vol.3

T. Helfer, J. Bleyer, T. Frondelius, I. Yashchuk, T. Nagel et al., The 'mfrontgenericinterfacesupport' project, Journal of Open Source Software, vol.5, issue.48, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02552891

J. Simo, Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Computer Methods in Applied Mechanics and Engineering, vol.99, issue.1, pp.90123-90125, 1992.

P. Papadopoulos and J. Lu, A general framework for the numerical solution of problems in finite elasto-plasticity, Computer Methods in Applied Mechanics and Engineering, vol.159, issue.1-2, pp.1-18, 1998.

S. P. Boyd and L. Vandenberghe, Convex optimization, 2004.

T. Helfer, B. Michel, J. Proix, M. Salvo, J. Sercombe et al., Introducing the open-source mfront code generator: Application to mechanical behaviours and material knowledge management within the pleiades fuel element modelling platform, Computers & Mathematics with Applications, vol.70, issue.5, pp.994-1023, 2015.

H. Yamashita and H. Yabe, A primal-dual interior point method for nonlinear optimization over second-order cones, Optimization Methods and Software, vol.24, issue.3, pp.407-426, 2009.

J. Kleinert, B. Simeon, and M. Obermayr, An inexact interior point method for the largescale simulation of granular material, Computer Methods in Applied Mechanics and Engineering, vol.278, pp.567-598, 2014.

H. Zhang, J. Li, and S. Pan, New second-order cone linear complementarity formulation and semi-smooth newton algorithm for finite element analysis of 3d frictional contact problem, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.1-4, pp.77-88, 2011.

A. Klarbring, A mathematical programming approach to three-dimensional contact problems with friction, Computer Methods in Applied Mechanics and Engineering, vol.58, issue.2, pp.175-200, 1986.