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Highlights 

 We calibrate a hybrid dynamic recursive CGE model of Saudi Arabia on original data 

 We acknowledge the Saudi specifics of currency peg and investment stability  

 We explore 3 scenarios of international and domestic energy prices 

 Low global prices affect Saudi GDP little but lower national and public savings 

 Reformed domestic prices restore activity but not national or public savings 

Abstract 

We analyse the mid-term macroeconomic challenge to Saudi Arabia of a global low-carbon 

transition reducing oil revenues, versus the opportunity of national energy reforms. We 

calibrate a compact, dynamic recursive model of Saudi Arabia on original energy-economy 

data to explore scenarios. We first assess the consequences of oil prices declining from their 

levels in the New Policies Scenario (NPS) of the IEA, to their levels in its Sustainable 
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Development Scenario (SDS). By 2030, the Saudi economy loses 1.4 GDP points, 1.6 

employment points and USD 504 billion trade surplus accumulation. Its cumulated public 

deficit rises to 92.8% of GDP. National reforms gradually aligning Saudi energy prices on 

international prices and inducing structural change of Saudi activity away from energy-

intensive industries mitigate these costs if a share of the public income from energy-price 

deregulation is directed to investment. However, they reduce the cumulated trade surplus 

and fail to control public deficit accumulation. Sensitivity analysis confirms the capacity of 

national energy reforms to mitigate the activity cost of global mitigation action, but aggravates 

the threat of an escalating public deficit. These results underline the importance of broader 

economic and fiscal reforms as part of the ambitious Vision 2030 Saudi initiative.  

Keywords 

Saudi Arabia, low-carbon transition, hybrid energy-economy modelling, administered energy 

prices  
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1. Introduction 

The Kingdom of Saudi Arabia (KSA) remains highly reliant on oil revenues, which generated 

around 83% of both government income and exports earnings over the past decade (SAMA, 

2017). This is despite several plans to diversify the Saudi economy since 1970 (Albassam, 

2015). As a direct consequence, global climate mitigation action challenges the Saudi 

economic model as that of other oil-exporting countries, because it should lead to a structural 

weakening of export revenues (IPCC, 2015; Barnett et al., 2004; Bauer et al., 2016; Waisman 

et al., 2013). However, the Intergovernmental Panel on Climate Change (IPCC) highlights that 

differences across countries could exist (IPCC, 2015). In this paper, we investigate this issue in 

the case of the largest oil exporter: KSA.  

In addition to the threat on oil exports, Saudi energy consumption is on a substantially 

increasing trend due to energy prices publicly administered at levels largely below 

international references (ECRA, 2014). Between 2007 and 2017, Saudi consumption of oil, 

refined products and gas increased by almost 60%, consumption of electricity by 70%, when 

real GDP only increased 42% (SAMA, 2017). As a response to this unsustainable trend, the 

Saudi government started reforming its energy pricing policy to curb energy demand by better 

reflecting opportunity costs.  

Quantifying economic pathways related with both challenges is crucial for Saudi policymakers 

and other oil-dependent economies. To the best of our knowledge, ours is the first endeavour 

to produce such quantification. 

Modelling the Saudi economy raises specific methodological issues concerning the interplay 

of a prominent public sector, integrated energy branches, administered energy prices and the 
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nominal peg of its currency. Compared to previous efforts at modelling KSA in a Computable 

General Equilibrium (CGE) framework,1 our specific contribution has several dimensions. 

Firstly, we work on an original dataset that reconciles national accounting and energy balance 

data. Secondly, we perform a dynamic exploration of medium-term growth rather than a 

static, counterfactual analysis. Thirdly, we consider exogenous energy consumption pathways 

backed by a bottom-up (BU) model of the Saudi economy designed and maintained at 

KAPSARC, in Riyadh. Lastly, we consider imperfections of primary factor markets—

sluggishness of the average real wage and imperfect mobility of capital—as well as regulated 

market prices of energy at consumer-specific levels. 

Our work builds on research material of the RISKERGY programme (see Acknowledgments), 

which aimed at developing an original economic modelling capacity open to BU expertise on 

energy systems and covering many individual countries (Ghersi, 2016). The compact 2-sector 

KLEM general equilibrium model designed in response to these specifications builds on the 

tradition of “hybrid” energy/economy exercises (Hourcade et al., 2006), carried on at the 

Centre International de Recherche sur l’Environnement et le Développement (CIRED) to 

contribute to the economics of climate policies.  

Our paper develops as follows. In Section 2, we introduce our KLEM model. In Section 3, we 

detail the exogenous energy and non-energy drivers that back up the scenarios that we 

present and comment upon in Section 4. Finally, we conduct a sensitivity analysis of our results 

                                                      

1 See De Santis (2003), Chemingui and Lofgren (2004), Al-Hawwas (2010) and Al-Thumairi (2012).   
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with regard to key elasticities and the real effective exchange rate specification of KLEM in 

Section 5.  

2. The KLEM model 

The purpose of KLEM (for Capital, Labour, Energy and Materials) is to compute 

macroeconomic trajectories under constraint of exogenous energy flows and prices informed 

by BU modelling, on both international and domestic markets. KLEM is indeed meant as a 

macroeconomic model to ‘soft-link’ with any BU modelling experiment, in the spirit initiated 

by Hoffman and Jorgenson (1976) with numerous recent applications (see, e.g., Messner and 

Schratenholzer, 2000; Schäfer and Jacoby, 2006; Martinsen, 2011; Dai et al., 2014; Fortes et 

al., 2014; Labriet et al., 2015). Our focus on overall macroeconomic impacts is the reason why 

we aggregate KLEM in two sectors only, one sector representing energy branches and the 

other sector the rest of the economy. One important assumption underlying such aggregation 

is that further sectoral specificities in the non-energy sector are without significant influence 

on our simulation results.2 In this section, we describe the main features of KLEM. Annex A 

presents its exhaustive nomenclature and formulary. 

                                                      

2 This assumption is fairly innocuous in the absence of significant structural change within the non-energy good. Considering 

structural change requires the careful introduction of productivity gains differentiated by input, to shape the cost structure 

of the aggregate non-energy sector in the direction expected from such changes (see below our Reformed scenario). We 

postpone to further publication a more thorough analysis of the diversification challenge of non-energy activities, which we 

are currently investigating in a multisector expansion of our KLEM model. 
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2.1 A constrained Solow growth model 

KLEM is a dynamic, recursive model deriving from a Solow-Swan growth model. It pictures 

economic growth in yearly time steps as driven by exogenous assumptions on the supply and 

productivity of labour and on the investment rate. The vector of domestic energy and non-

energy outputs at year 𝑡,  𝑌𝑡, is a function  𝑓𝑡 of the stock of capital 𝐾𝑡, of the labour force 𝐿𝑡, 

and of the intermediate consumption of energy and non-energy resources. The 𝑡 index to 𝑓 

conveys that 𝑓 varies with time via exogenous labour productivity gains (the Harrod-neutral 

assumption on technical progress). Capital stock dynamics follow the standard accumulation 

rule 𝐾𝑡+1 = (1 − 𝛿) 𝐾𝑡 + 𝐼𝑡, with 𝛿 the depreciation rate, constant over the modelled 

horizon. Investment 𝐼𝑡 is the amount of non-energy output used to build up 𝐾 at period 𝑡. 

Beyond these core specifications, KLEM deviates from the Solow standard model by a set of 

constraints imposed by its treatment of energy systems and called for by its modelling of 

trajectories encompassing short-term horizons—as advocated by Solow himself (Solow, 

2000). 

One foremost constraint is full exogeneity of the energy system, on account of KLEM being 

designed to couple with BU energy modelling (Ghersi, 2015). The growth trajectories traced 

by KLEM thus build around exogenous energy volumes. The cost structure of energy supply 

beyond its own energy intensity, as well as the specific net taxes and trade margin on each 

energy sale, can also be exogenously adjusted to match any assumption on the dynamics of 

annualised investment, operational expenses or domestic and trade prices—typically, 

assumptions on administered energy prices. These constraints on volumes, costs and prices 

weigh on economic growth, by reserving part of value-added to a fixed energy expense and 

part of primary factors endowments to the supply of some exogenous volume of energy.  
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Outside energy systems, one first short-term constraint, especially meaningful when 

modelling large energy producers such as KSA, is on capital mobility: KLEM forbids any 

reallocation of energy-supply capital to the non-energy sector by imposing that the capital 

stock of energy supply 𝐾𝐸  does not contract faster than the depreciation rate 𝛿 (Equation 21).  

One second short-term constraint is on the potential under-utilization of labour, particularly 

relevant to the rigid nature of the Saudi labour market (Devaux, 2013). KLEM considers that 

some inertia of real wages prevents full market clearing, i.e. induces unemployment. Rather 

than specifying labour supply behaviour, it merely correlates the unemployment rate and the 

real wage in a “wage curve” following Blanchflower and Oswald (2005). It relates the dynamics 

of this static correlation to labour productivity 𝜙 by conditioning a stable unemployment rate 

to real wages progressing at the same rate as 𝜙 (Equation 16).3  

2.2 Behavioural specifications 

Because all dimensions of energy trade, supply and demand including the input intensities of 

energy supply are exogenous, the behavioural specifications of KLEM are limited to non-

energy trade-offs in the production of non-energy goods and to non-energy trade 

specifications. 

KLEM models non-energy production as a nested structure of trade-offs between inputs, 

which are settled via Constant Elasticity of Substitution (CES) functions. At the foot of the 

                                                      

3 This aggregate treatment of unemployment disregards the documented segmentation of the Saudi labour market between 

Saudi nationals and foreigners. Proper differentiation of these two markets would require additional information on labour 

mobility, wage gaps, immigration as well as on public policies aiming at a ‘Saudization’ of the workforce. We postpone such 

investigation to further research and only comment upon the potential consequence of increased labour market flexibility in 

Section 5.1.  
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structure, labour and capital combine into value-added 𝐾𝐿, which combines with energy into 

the aggregate input 𝐾𝐿𝐸, which finally combines with the non-energy good into non-energy 

output (see Figure A.1 and Equations 2 to 6 of Annex A). Capital costs are calibrated on fixed 

capital consumption accounts rather than on the full gross operating surplus. KLEM models 

the net operating surplus as a constant mark-up rate on output costs (see Equation 24). This 

is a simple way of assuming the constancy of non-optimal market characteristics.4   

Regarding international trade of the non-energy good, KLEM relies on price elasticities that 

impact, for imports 𝑀𝑄, the share of foreign production in total (domestic and foreign) 

resource (Equation 10 of Annex A); for exports 𝑋𝑄, an exogenous trend (Equation 11). 

Regarding the trade balance, our KLEM application to KSA (hereafter KLEM-KSA) considers a 

‘fixprice’ assumption (Robinson, 1989) to acknowledge the specific pegging of the Saudi riyal 

(SAR) currency to the US dollar (Equation 13). However, we lift this assumption when analysing 

energy pricing reforms, which induce an inflation differential between KSA and its trading 

partners (Annex B).We additionally analyse the sensitivity of our results to an alternative, 

more statistically robust specification in Section 5.3. 

One last behavioural specification concerns KLEM’s treatment of the investment decision. 

Because economy-wide models must accommodate the basic national accounting constraint 

of resources equating uses, they would be overdetermined equation systems if they enforced 

behavioural specifications to all resources and uses elements. The “closure rule” (Sen, 1963) 

is how models address this issue, with quantitative and qualitative consequences on their 

                                                      

4 This feature is particularly relevant to the Saudi Arabia case, where a large proportion of economic activity operates far from 

standard market mechanisms.  
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results (Decaluwé et al., 1987). Concerning investment and savings, the neoclassical closure 

of standard CGE models considers endogenous investment efforts balancing out domestic and 

international savings flows. Conversely, ‘Johansen closure’ (after Johansen, 1960) enforces 

some exogenous level of investment (controlled by public policy) and endogenises savings to 

let them adjust. We choose the latter closure to KLEM-KSA (Equation 9 of Annex A), to 

acknowledge the relative stability of the Saudi investment rate compared to the Saudi savings 

rate as reported by e.g. The World Bank’s gross fixed capital formation versus gross savings 

series.5 This also reflects the documented use by resource-exporting countries of foreign 

assets (foreign reserves in the case of Saudi Arabia) as a buffer against world market 

fluctuations (Bems and de Carvalho Filho, 2011). 

2.3 Calibration of KLEM-KSA 

We calibrate KLEM-KSA at base year 2013 on an extensive, original energy-economy dataset 

that reconciles national accounting and energy flows and prices data (see Annex C). To 

improve the relevance of modelled trajectories and estimates of cumulated deficits and 

surpluses, we further calibrate the model dynamically to replicate GDP, unemployment and 

the trade balance of years 2014 to 2017, under constraint of observed investment efforts. 

Lastly, beyond 2017 we specifically calibrate the model’s exogenous trend of investment 

efforts (our choice of a Johansen closure, see above) to deliver a stable unemployment 

trajectory under baseline conditions. Annex D provides full detail of the three calibration 

procedures. 

                                                      

5 The standard deviation of the series (as shares of GDP) over the 2006 to 2016 period is 2.5 for GFCF versus 9.3 for gross 

savings. 
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3. Scenario description 

Our scenario exploration rests on exogenous driver trajectories, which we present in two sets: 

conventional macroeconomic drivers and energy system trajectories. Macroeconomic drivers 

are common to all scenarios (Section 3.1). Energy system trajectories resort to three scenarios 

based on BU expertise and complementary assumptions (Section 3.2). For reference purposes, 

we use KLEM notations of Annex A to describe scenario drivers.  

3.1 Non-energy drivers 

The non-energy macroeconomic drivers of KLEM-KSA consist of three parameters: labour 

endowment, labour productivity and the trend of non-energy exports (Table 3.1). We 

project labour endowment 𝐿 to follow the annual trajectory laid out by the International 

Labour Organisation (ILO, 2017), from 11.6 million workers in 2013 to 15.2 in 2030. The 

corresponding average annual growth rate is of 1.9%. We assume labour productivity 𝜙 to 

follow the data and projection of Oxford Economics.6 The average annual growth rate 

between 2013 and 2030 is of 0.3%.7 The labour endowment and productivity trajectories 

combine into an efficient-labour trend of +2.23% per year, which points at a potential 

increase of real GDP of 45.7% between 2013 and 2030. 

                                                      

6 Available by subscription at https://www.oxfordeconomics.com/country-economic-forecasts. 

7 This assumption is in clear contradiction with the ‘catch-up’ hypothesis, whereby the productivities of developing countries 

grow at higher rates than those of developed countries. However, MGI (2015) reports that Saudi Arabia is one of two G20 

countries only (with Mexico) whose productivity diverges from that of the US over the 2003-2013 period. The World Bank 

statistics confirm an almost stagnant GDP-per-worker in Saudi Arabia over the same period (+0.12% per year on average), 

and one declining when considering a larger period (-1% per year between 2000 and 2017).   

https://www.oxfordeconomics.com/country-economic-forecasts
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Variable (index 1 in 2013) 2013 2030 AAGR 

Labour endowment 1.00 1.38 1.9% 

Labour productivity 1.00 1.05 0.3% 

Non-energy exports trend 1.00 1.76 3.4% 

Sources: Authors’ computations based on data from ILO, Oxford Economics, and IMF. AAGR is the Average 
Annual Growth Rate. 

Table 3.1 Macroeconomic drivers of KLEM-KSA 

Non-energy exports 𝑋𝑄 represented around 16% of total KSA exports over the past decade 

(SAMA, 2017). Considering current Saudi export markets, we use the growth rate of the 

Middle-East and North Africa (MENA) region as their driver. The World Economic Outlook of 

the IMF (2016b) projects that rate up to 2021, when it reaches 3.6%. We assume that this 

rate holds until 2030. 

3.2 Exogenous energy system trajectories 

KLEM-KSA accommodates exogenous energy flows and prices from two main external 

sources: the KAPSARC Energy Model (KEM, see Matar et al., 2015, 2016), and the World 

Energy Outlook of the IEA (IEA, 2017). For reasons of KEM’s partial coverage of energy flows, 

the export-oriented nature of KSA energy system and the limited flexibility of the refining 

capacity at our 2030 horizon, we limit the soft-linking to KEM to this one-way data flow and 

disregard feedbacks of the economy on the set of outputs that we extract from KEM. We 

complement KEM and IEA data with a set of other assumptions to define three scenarios. Our 

Baseline scenario assumes that current energy-price regulations hold and that energy uses 

keep on growing following past trends, under constraint of oil supply and the oil price 

following the trajectories of the New Policies Scenario (NPS) of the IEA (IEA, 2017).  
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By contrast, our Reformed scenario considers ambitious developments of the pricing reforms 

that Saudi Arabia initiated in 2016 to curb a galloping energy demand and reduce energy 

dependency (Alyousef and Varnham, 2010; Alyousef and Abu-Ebid, 2012), under constraint of 

the lower oil-price trajectory of the Sustainable Development Scenario (SDS) of the IEA. The 

energy pricing reforms that we contemplate eventually bring domestic tariffs in line with 

international references, reflecting anticipations from experts (IMF, 2016a; Jadwa, 2018) as 

well as ongoing reforms in Qatar and the United Arab Emirates (Krane and Hung, 2016). In 

2030, this leads to a 30% increase of households’ energy price as well as dramatic increases 

of ca 350% and 870% of the energy prices faced by respectively non-energy firms and energy 

firms, compared to the Baseline scenario. We assume that these price increases prompt 

energy savings by both consumers and non-energy producers. For the latter, we consider a 

3% per year energy efficiency gain, which brings the Saudi final energy intensity in line with 

that of other countries at similar development stages (see Annex E.2).8 To avoid any risk of 

further collapsing the international price of oil, the KSA does not export the oil saved by such 

efficiency gains and rather curtails its production, maintaining its exports at their Baseline level 

(see Annex E.4). 

Importantly, the assumption of a fix REER is not compatible with the unilateral price increases 

of the Reformed scenario, which cannot but induce inflation differentials between Saudi 

Arabia and its trading partners. We therefore model the Reformed scenario under an 

alternative REER specification, which we further justify and detail in Annex B. 

                                                      

8 For lack of precise assumptions, we do not adjust the productivity of any other input to non-energy production.  
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To disambiguate the influence of the oil-price trajectory, we also develop a Low-oil-price 

scenario identical to the Baseline scenario in all dimensions except that it considers the lower 

international oil price of the Reformed scenario.  

Annex E sustains our choice of considering an exogenous oil price eluding the control of KSA 

in all scenarios. It also provides a detailed description of our assumptions to consolidate the 

energy datasets backing each scenario. We work out the information at a relevant level of 

aggregation, lower than that of KLEM. We then aggregate into the single 𝐸 sector of KLEM via 

straightforward summing and price averaging. 

4. Scenario results 

4.1 A gradual recovery to past trends: the Baseline scenario 

In our Baseline scenario, KLEM-KSA projects real GDP growth at an average 2.05% annual 

rate between 2013 and 2030 (Table 4.1). At this horizon, real GDP is 41.2% above its 2013 

level, slightly below its potential of 45.7% above 2013 as defined by our labour supply and 

productivity assumptions. The main reason for this gap is the below-potential 31.9% growth 

of energy exports resulting from the IEA oil supply forecast and our assumptions on 

domestic demand and imports (see Annex E). 

The decomposition of GDP highlights the specific dynamics of real private consumption, 

which grows 73.9% i.e. at 3.31% per year over our simulation period. This is the result of our 

choice of closure rule, which is to adjust domestic savings to balance out investment 

considering the evolution of foreign savings—in our national accounting framework, the 

opposite of the trade balance. Real exports increase by 38.3% as a result of slower dynamics 
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of oil exports compared to their past trend (see above)—non-oil exports, driven by their 

exogenous trend (Section 3.1) improve their share in total exports, from 15% in 2013 to 20% 

in 2030. Real imports grow a faster 52.5%, in line with non-energy output for their non-

energy share (fix REER assumption), but as fast as potential growth for their energy share. 

The resulting trade balance contribution to GDP recedes to 18.1%, which points at a higher 

contribution of foreign savings to investment. Additionally, real investment requirements, 

which we calibrated to balance the labour market (Annex D), only increase by 24.6%. With 

public consumption a fixed share of GDP, these combined evolutions leave ample room for 

the domestic savings rate to decrease i.e. real private consumption to outgrow real GDP.  

Macroeconomic variable 2013 2030 Variation 

GDP, Bn 2013 SAR 2,773 3,916 +41.2% 

Real private consumption, Bn 2013 SAR 801 1,394 +73.9% 

Real public consumption, Bn 2013 SAR  629 868 +38.0% 

Real investment, Bn 2013 SAR  662 825 +24.6% 

Real exports, Bn 2013 SAR  1,477 2,043 +38.3% 

Real imports, Bn 2013 SAR  796 1,214 +52.5% 

Trade balance, % GDP +24.6% +18.1% -6.4 pts 

Cumulated trade surplus, Bn 2013 USD - 1,750 - 

Unemployment rate 5.6% 6.2% +0.6 pts 

Public budget balance, % GDP +5.8% +3.7% -2.1 pts 

Cumulated public deficit, % GDP - 44.8% - 

Source: KLEM-KSA simulation. To warrant accounting balance, 2030 GDP and its components are reported 
at 2013 prices. Pts stands for percentage points. 

Table 4.1 Macroeconomic results of the Baseline scenario 

The 18.1% contribution of trade to GDP in 2030 is also the consequence of the gradual oil price 

catch-up towards its 2013 level. It is a significant recovery from the -8% extreme low of 2015, 
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although the contribution remains slightly below its 18.5% average during the high oil-price 

period of 2011 to 2014. Between 2013 and 2030, the cumulated net trade surplus amounts to 

2013 USD 1,750 billion or SAR 6,562 billion. 

At 6.2%, 2030 unemployment is at a level slightly above the 5.6% rate targeted by calibration 

of the investment trajectory, an artefact of the calibration procedure.9  

To estimate public budgets dynamics, we define public income as the sum of the oil rent and 

of the specific margins on domestic energy sales and public expenditures as the sum of 

current public expenses and public investment.10 We compute the former as a fixed share 

of GDP (Equation 7) and the latter as a share of total investment, which we set constant 

throughout the years at its 2013 value of 38% (SAMA, 2017). Based on these rules-of-thumb, 

the public budget balance continually improves over time from its lowest of -19.0% of GDP 

in 2016, under the combined effects of oil prices increasing and the energy tariffs reforms 

(in 2016 and 2018). It reaches balance in 2025 and further rises into a surplus of 3.7% of GDP 

in 2030. Still, over our projection period, the net accumulation is that of a public deficit 

reaching 2013 SAR 1,670 billion or 44.8% of GDP in 2030. 

From a broader viewpoint, the Baseline scenario projects 2030 GDP components at relative 

levels close to observed statistics over the past decade, i.e. a Saudi economy gradually 

                                                      

9 The 2017 investment rate pinpointed by our calibration procedure as raising the 2018 capital stock at a level warranting the 

targeted 2018 unemployment rate (Annex D) is substantially higher than the 2017 investment rate statistics. We chose to 

stick to statistics and do not surmise any compensation of this investment gap in further years. 

10 In the notations of KLEM (see Annex A), public expense is 𝑝𝐺𝑄
𝐺𝑄 and public income is   

𝜏𝑅𝐸
 𝑝𝑌𝐸  𝑌𝐸 + 𝑝𝑄𝐸  (𝜏𝑀𝑆𝐸𝑄

𝛼𝐸𝑄 𝑌𝑄 + 𝜏𝑀𝑆𝐸𝐸
𝛼𝐸𝐸 𝑌𝐸 + 𝜏𝑀𝑆𝐶𝐸

𝐶𝐸 + 𝜏𝑀𝑆𝑋𝐸
𝑋𝐸). The computation must account for specific margins 

because international oil price variations are forced via adjustments of 𝜏𝑀𝑆𝑋𝐸
 the specific margin on exports.  
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recovering from the 2014-2015 oil price shock on its formerly prevailing trends. However, 

the lower trend of oil exports and the low oil prices of early years induce a build-up of public 

deficit if public expenses and investment keep on growing at a pace similar to that of GDP. 

This build-up happens in a context where the Saudi economy accumulates a massive trade 

surplus i.e. excess savings capacity. It means that Saudi households and/or firms accumulate 

budget surpluses while public authorities accumulate deficits. This points at a distributive 

issue between domestic agents.  

4.2 The challenge of global mitigation action: the Low-oil-price scenario 

The Low-oil-price scenario only differs from the Baseline scenario by considering a depressed 

oil price resulting from more ambitious global climate action. As a direct consequence, the 

trade balance trajectory of the Low-oil-price scenario abates markedly and the trade surplus 

only reaches half its GDP share of the Baseline scenario in 2030 (Table 4.2). Although total 

trade surplus accumulation remains positive, it is cut down by 28.8% or USD 504 Billion 

compared to Baseline. The peg of the Saudi riyal to the US dollar forbids any exchange rate 

fluctuation to mitigate this loss of trade surplus, i.e. this increase of foreign savings at the 

expense of the Saudi economy.  

Maintaining an exogenous investment effort (our choice of Johansen closure reflecting KSA 

statistics, see Section 2.2) tends to deprive this variation of foreign savings of any impact on 

economic activity, at the cost of decreased national savings. It is only because the investment 

effort is defined as a share of GDP at current prices (Equation 9 of Annex A) that real 
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investment drops following relative price shifts.11 The lower investment trajectory develops 

into a 2030 capital stock 3.0% below its level in the Baseline scenario. The rental price of capital 

consequently increases, which induces a decrease of the purchasing power of wages, i.e. of 

activity (-1.4% GDP) and employment (-1.6 points).  

Macroeconomic variable 2030 Variation from Baseline 

GDP, Bn 2013 SAR 3,860 -1.4% 

Real private consumption, Bn 2013 SAR 1,491 +7.0% 

Real public consumption, Bn 2013 SAR  762 -12.2% 

Real investment, Bn 2013 SAR  725 -12.2% 

Real exports, Bn 2013 SAR  2,059 +0.8% 

Real imports, Bn 2013 SAR  1,177 -3.1% 

Trade balance, % GDP +10.0% -8.1 pts 

Cumulated trade surplus, Bn 2013 USD 1,246 -28.8% 

Unemployment rate 7.7% +1.6 pts 

Public budget balance, % GDP -3.3% -7.0 pts 

Cumulated public deficit, % GDP 92.8% +47.9 pts 

Source: KLEM-KSA simulations. GDP components are in billions of 2013 SAR. Pts stands for percentage points. 

Table 4.2  Macroeconomic results of the Low-oil-price scenario 

In the absence of any REER variation, real imports broadly reflect the activity drop, while real 

exports benefit from the reduced domestic energy consumption to increase slightly via their 

energy share.12 Public consumption, also a share of GDP at current prices (Equation 7 of Annex 

                                                      

11 The “price” of real GDP i.e. the GDP deflator is significantly lowered by the 26% drop of the oil export price considering the 

weight of energy exports in GDP—they reach 40.7% of 2030 GDP in the Baseline scenario. Conversely, real investment is 

priced as the non-energy good and thus virtually not impacted by the oil price drop.  

12 Market clearing warrants that energy exports adjust to the decrease of domestic consumptions of non-energy production 

prompted by the lower activity level, considering that the Low-oil-price scenario replicates all other energy-flow assumptions 

of the Baseline scenario, including those on energy supply.  
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A), declines as real investment in real terms, facing the same relative-price shifts. Private 

consumption adjusts to balance out activity, i.e. increases considering the sharp declines of 

investment and public consumptions, and the increase of foreign savings. It should not be 

considered any proxy of welfare, which should also somehow reflect the strong drops in public 

consumption and accumulated trade surplus i.e. national savings. Lastly, our estimated public 

budget balance significantly suffers from the reduced oil rent on foreign markets, which drops 

by SAR 381 Billion (USD 102 Billion) in 2030 only, compared to the Baseline scenario. The 

12.2% lower public expenditures are not enough to compensate this income loss and the 2030 

public budget exhibits a deficit amounting to 3.3% of GDP. Over our simulation period, similar 

if not larger deficits cumulate into a massive SAR 3,025 billion amounting to 92.8% of 2030 

GDP. The cumulated trade surplus, at USD 1,246 billion or SAR 4,672 billion, remains higher 

but much less so than in Baseline. 

4.3 The opportunity of national reforms: the Reformed scenario 

Our Reformed scenario means to test some policy adjustments that Saudi Arabia could adopt 

in the face of lower international oil prices. It captures the two fronts of the energy reforms 

programme: increasing domestic energy tariffs and enacting efficiency initiatives (Section 3.2). 

It also considers a gradual structural change away from energy-intensive activities, leading to 

additional energy savings. The expected outcome of such policies is to increase fiscal income 

as the government phases out energy subsidies, while improving the overall energy efficiency 

of the Saudi economy. The much higher pace of energy price increases warrants that the two 

objectives do not contradict (see below). 
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How the government recycles the increased fiscal income in the economy is key to the 

macroeconomic consequences of the scenario. Our numerical results demonstrate that the 

Low-oil-price scenario primarily threatens the balance of public budgets. However, using the 

increased fiscal income to restore that balance would come at a high cost to the economy, 

which would face a dramatic increase of domestic energy prices, without any form of 

compensation other than the 3% annual energy efficiency gains that we surmise in non-energy 

activities from 2018 on. Compounding into a 32.7% decrease of the energy intensity of non-

energy output in 2030, these gains are far from compensating the 389% increase of the price 

of that energy at the same horizon. For this reason, we assume that only part of the increased 

fiscal income decreases public deficits, while the other part fuels additional investment into 

economic activity. 13 

For an illustrative 50% split of the additional rent recycling into budget balance versus 

investment, our Reformed scenario improves upon our Low-oil-price scenario for many 

indicators, and even upon our Baseline scenario for some (Table 4.3). Real GDP thus ends 0.6% 

above its Baseline level in 2030. This gain stems from the combined effects of the additional 

investment effort raising the 2030 capital stock close to its Baseline level and the energy 

efficiency gains in production, which allows some decoupling of output and hence imports 

from GDP. The distribution of the gain among GDP components again betrays relative-price 

shifts. These decrease real public consumption (a fixed share of GDP measured at 2030 prices 

including a depressed oil export price) at the benefit of private consumption via model closure. 

                                                      

13 Our assumption reflects those provisions of the Vision 2030 public programme that concern stimulus to the private sector 

with a view to support industries affected by the pricing reforms, as stated e.g. in the recent pre-2019 budget statement by 

the Saudi Ministry of Finance. 
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Macroeconomic variable 2030 
From Low-oil-
price scenario 

From Baseline 
scenario 

GDP, Bn 2013 SAR 3,938 +2.0% +0.6% 

Real private consumption, Bn 2013 SAR 1,505 +0.9% +8.0% 

Real public consumption, Bn 2013 SAR  780 +2.4% -10.1% 

Real investment, Bn 2013 SAR  808 +11.6% -2.1% 

Real exports, Bn 2013 SAR  2,049 -0.5% +0.3% 

Real imports, Bn 2013 SAR  1,205 +2.4% -0.7% 

Trade balance, % GDP +8.7% -1.3 pts -9.5 pts 

Cumulated trade surplus, Bn 2013 USD 1,219 -2.2% -30.4% 

Unemployment rate 7.0% -0.8 pts +0.8 pts 

Public budget balance, % GDP -3.0% +0.3 pts -6.7 pts 

Cumulated public deficit, % GDP 86.3% -6.5 pts +41.4 pts 

Source: KLEM-KSA simulations. Pts stands for percentage points. 

Table 4.3 Macroeconomic results of the Reformed scenario 

Although total employment improves compared to the Low-oil-price scenario, it remains 

below that of the Baseline scenario. This is partly explained by our constraining energy exports 

at their Low-oil-price levels to avoid the risks attached to a “market-flooding” strategy (see 

Annex E), which induces reducing 2030 energy output by 13.4% compared to Baseline, 

dragging down energy sector employment (1.4% of the labour force in 2013). It is also the 

direct consequence of the loss of purchasing power induced by the increase of energy prices 

and its impact on non-energy prices. 

The 50% share of the additional rent on domestic sales captured by public budgets allows 

reducing public deficit to 3.0% of GDP in 2030, a 0.3 percentage-point improvement compared 

to the Low-oil-price scenario. However, the cumulated budget deficit still amounts to SAR 

2,989 billion or 86.3% of GDP in 2030. This is an improvement of 6.5 points compared to the 
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Low-oil-price scenario, but the level remains high compared to the current public debt. This 

result underlines the importance to implement broader economic and fiscal reforms as part 

of the ambitious programme planned by KSA under its Vision 2030 initiative.14 

5. Sensitivity analysis 

In this last section, we test the sensitivity of our results to variations of key parameters as well 

as to an alternative specification of the REER. Considering our focus on macroeconomic 

balances and the relative uncertainty surrounding the parameters of KLEM-KSA, we focus our 

parameter tests on the influence of the CES and unemployment elasticities and of our 

assumption of energy efficiency gains in non-energy activity.15  

5.1 Sensitivity to selected elasticities 

To test the sensitivity of KLEM-KSA results to its elasticities, we increase and decrease the 

reference values of three central elasticities by multiplying them by 0.5 (low variant) and 1.5 

(high variant). We limit our analysis to the Reformed scenario. Nevertheless, for the sake of 

consistency, we duly update all elements of that scenario originating in the Baseline 

(calibration of the investment trajectory) and in the Low-oil-price scenario (trajectory of the 

price of value-added to approximate the currency peg, see Annex B). In the light of the results 

                                                      

14 See https://vision2030.gov.sa/en/. 

15 For the sake of concision, we do not report the very low sensitivity of our results to trade elasticities. In the format of Table 

5.1, it is barely perceptible even for trade because of the fix REER assumption of the Baseline and Low-oil-price scenarios, and 

because of the over-determining weight of exogenous oil exports in the Reformed scenario (see Annex E) where the REER is 

allowed to vary (see Annex B). 

https://vision2030.gov.sa/en/media-center
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of our sensitivity analysis (Table 5.1), we first comment on activity and employment variations, 

then on trade and public deficit. 

In the central KLEM-KSA parameterisation, we set the elasticity of real wage to unemployment 

𝜎𝑤𝑢 at 10% following Blanchflower and Oswald (2005). A higher 𝜎𝑤𝑢 elasticity i.e. a higher 

adaptability of wages to labour market conditions expectedly benefits GDP and 

unemployment. The sensitivity of unemployment results is higher: in 2030, the 

unemployment differential between the two extreme 𝜎𝑤𝑢 parameterisations reaches 0.9 

percentage points, while the GDP differential is of 0.23 points. The sensitivity of 

macroeconomic results to 𝜎𝑤𝑢 provides insights not only on the robustness of our estimations, 

but also on the impacts of potential reforms by Saudi policymakers. Rigidity of the Saudi labour 

market stems from its segmentation, i.e. Saudi versus non-Saudi labour, which induces high 

wage differentials and a general preference of Saudi nationals for public sector jobs.  

Macroeconomic variable Low 𝝈𝒘𝒖 High 𝝈𝒘𝒖 Low 𝝈𝑲𝑳 High 𝝈𝑲𝑳 Low 𝝈𝑲𝑳𝑬 High 𝝈𝑲𝑳𝑬 

Real GDP -0.14% +0.09% -0.01% +0.06% -0.30% +0.07% 

Unemployment rate +0.6 pts -0.3 pts -0.4 pts +0.3 pts +0.1 pts -0.0 pts 

Trade balance, % GDP  +0.2 pts -0.1 pts +0.1 pts -0.1 pts +0.2 pts -0.0 pts 

Cum. trade surplus,  
Bn 2013 USD 

+9.8 -6.1 +3.5 -5.1 +5.8 -1.5 

Public budget balance,  
% GDP 

+0.1 pts -0.1 pts +0.1 pts -0.1 pts +0.0 pts -0.0 pts 

Cum. public deficit,  
% GDP 

-0.7 pts +0.4 pts -0.8 pts +0.9 pts +0.0 pts -0.0 pts 

Source: KLEM-KSA simulations. Pts stands for percentage points.  

Table 5.1 Sensitivity of 2030 results of the Reformed scenario to elasticities 

Elasticities of input substitutions in non-energy production have a smaller bearing on GDP 

results. The elasticity of substitution between capital and labour (𝜎𝐾𝐿) embodies the ease of 
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moving production factors at the base of our non-energy production structure. For lack of 

estimate of 𝜎𝐾𝐿  for KSA, to produce the value of our central parameterisation we average 

values estimated by Okagawa and Ban (2008) weighted by each sector’s contribution to our 

aggregate non-energy output. The resulting elasticity is of 0.29. Decreasing it expectedly 

reduces GDP, but turns out increasing employment because of the relative scarcity of capital 

and labour.  

Increasing 𝜎𝐾𝐿𝐸 the elasticity of substitution of value-added to energy improves GDP and 

reduces unemployment, by facilitating the substitution of value-added to energy in non-

energy production. The central elasticity value is of 0.63, extrapolated from Okagawa and Ban 

(2008) similarly to 𝜎𝐾𝐿 .  

For the three tested elasticities, the contribution of the trade balance to 2030 GDP and the 

cumulated trade surplus up to that horizon react contrary to GDP. This stems from our trade 

specifications: both our assumptions of oil exports and the non-oil export trend are 

irrespective of elasticity choices, whereas non-energy imports (which largely dominate energy 

imports, see Figure C.1 of Annex C) follow non-energy output variations (see Equation 10 of 

Annex A). The trade balance therefore degrades as activity increases.  

For similar reasons, public budgets react opposite to GDP: public income i.e. the oil rent stands 

irrespective of activity, whereas public expenses increase with it. This is again demonstration 

that the threat of public debt increasing with growth is inscribed into the structures of public 

income and expenditures. 
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5.2 Sensitivity to energy efficiency gains in non-energy production 

Our Reformed scenario considers energy efficiency gains in non-energy activity at the pace of 

3% per year (see Annex E.2). This is a best case scenario of successful efficiency improvement 

and diversification of non-energy activity. Considering lesser efficiency gains affects Saudi GDP 

in a limited and non-systematic way (Table 5.2). 

2030 macroeconomic variable 0% annual gain 1% annual gain 2% annual gain 

Real GDP, Bn 2013 SAR +0.06% +0.09% +0.07% 

Unemployment rate +0.4 pts +0.2 pts +0.1 pts 

Trade balance, % GDP -0.4 pts -0.3 pts -0.2 pts 

Cumulated trade surplus, Bn 2013 USD -11.0 -8.1 -4.4 

Public budget balance, % GDP +0.6 pts +0.4 pts +0.2 pts 

Cumulated public deficit, % GDP +3.5 pts +2.2 pts +1.1 pts 

Source: KLEM-KSA simulations. Pts stands for percentage points. 

Table 5.2 Sensitivity of 2030 results of the Reformed scenario to annual energy 
efficiency gains in non-energy production 

The cost share of energy in non-energy production, at 4.4% under the 3% efficiency gain 

assumption, helps interpreting these results. It induces that the limit case of the absence of 

any efficiency improvement only increases the non-energy output cost by 2.3%. The low 

import trade elasticity drawn from IMF (2016a) (see Annex A.3) warrants that this increase 

does not significantly affect domestic output—bearing in mind that the rent on increased 

energy sales is recycled in the economy. This shows in the low sensitivity of the trade balance 

and cumulated trade surplus to the energy efficiency assumption.  

Additionally, larger energy expenses increase the GDP price index, which causes the relative 

price of investment to decrease. The constant share of GDP dedicated to investment therefore 
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translates into slightly higher capital accumulation. This induces a decrease of capital costs, 

which is the cause of the activity increase. It also allows containing the decrease of the 

purchasing power of wages i.e. the increase of the unemployment rate.  

The impacts on public budgets and the cumulated public deficit directly reflect the loss of rent 

on domestic sales as energy efficiency improves, i.e. energy consumptions decrease.  

5.3 Sensitivity to the REER specification 

To approximate the macroeconomics of the currency peg, our Baseline and Low-oil-price 

simulations of Section 4 build on the assumption of a fix REER and a flexible trade balance, 

following Al-Thumairi (2012) and Al-Hawwas (2010). In our Reformed scenario (Section 4.3) 

we open the door to REER adjustments by acknowledging the necessary impact of unilateral 

pricing reforms on the relative Saudi versus foreign prices (see Annex B). In this section, we 

systematise the possibility of simultaneous trade balance and REER variations, as statistics 

warrant (see below). We must therefore devise some intermediate between the ‘flexprice’ 

(flexible REER, fixed balance) and ‘fixprice’ (fixed REER, flexible balance) options.  

Our solution builds on statistical observation of a significant, negative correlation of the REER 

and the trade balance contribution to GDP (B/GDP) since the currency pegging of 1986 (Figure 

5.1).16 With the peg barring any significant nominal exchange rate fluctuation, it is inflation 

differentials that explain the revealed negative slope. Domestic Saudi prices are less sensitive 

                                                      

16 This correlation echoes the results of Allegret et al. (2016), who establish a negative relationship between the oil price and 

the REER of Saudi Arabia versus a positive one for four other oil exporters with floating currencies. In an earlier paper, Habib 

and Kalamova (2007) conclude on the absence of such a relationship, probably because they analyse quarterly data over a 

1980-2006 period that reaches before the 1986 pegging decision: extending our own range to 1980 shrinks the R2 of our 

estimation to 0.12. 
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to international oil prices than the prices of Saudi trading partners, because of energy self-

sufficiency, stable energy costs and administered energy prices. When the international price 

of oil rises, the Saudi trade surplus rises as well, but foreign prices rise more than Saudi prices 

and the Saudi REER decreases.  

 
Source: Authors’ computation on the World Bank and IMF data.  
Points are yearly observations from 1986 to 2015. B/GDP is the ratio of the trade balance to GDP. 

Figure 5.1 Saudi REER and trade contribution to GDP, 1986-2015 

We run again our Baseline and Low-oil-price scenarios under constraint of this relationship 

rather than that of a constant REER (see Equation 13c of Annex A). We also run again our 

Reformed scenario with the trajectory of value-added price stemming from the updated Low-

oil-price scenario.17 We perform all runs with due attention to indexation issues raised by 

considering the REER sensitivity to oil prices (see Annex B). 

                                                      

17 The dramatic price reforms of the Reformed Scenario cannot but perturb the recorded relationship between the REER and 

the trade contribution to GDP, considering the explanation of this relationship. Running the Reformed scenario under direct 
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In all three scenarios, combined REER and trade balance flexibilities significantly improve GDP 

and employment (Table 5.3). These gains stem from the REER appreciation compared to 2013 

level, prompted by oil prices remaining below their 2013 levels up to 2030. REER appreciation 

improves the purchasing power of wages by reducing the real cost of imported goods, which 

benefits activity despite the negative response of international trade showing in its lower 

contribution to GDP. 

2030 macroeconomic variable Baseline Low-oil-price Reformed 

Real GDP, Bn 2013 SAR +1.03% +1.41% +1.45% 

Unemployment rate -0.5 pts -1.4 pts -1.3 pts 

Trade balance, % GDP -4.1 pts -3.2 pts -3.0 pts 

Cumulated trade surplus, Bn 2013 USD -219 -160 -166 

Public budget balance, % GDP -2.1 pts -2.3 pts -2.1 pts 

Cumulated public deficit, % GDP +33.0 pts +30.6 pts +28.6 pts 

Source: KLEM-KSA simulations. Pts stands for percentage points. 

Table 5.3 Sensitivity of 2030 scenario results to change of REER specification 

The alternative REER specification also reduces the GDP gap between the Baseline and Low-

oil-price scenarios, while increasing that between the Baseline and the Reformed scenario, at 

the advantage of the latter. The main reason for the increased performance of the Reformed 

scenario is accounting for how REER appreciation increases the purchasing power in imported 

goods of the Saudi economy. This shows in the even-more pronounced reduction of the 

unemployment gap—bearing in mind that KLEM correlates variations of unemployment and 

the purchasing power of wages via a wage curve. The Reformed scenario ends at the same 

                                                      

constraint of this relationship does not therefore make sense. Rather, we must again derive the Reformed scenario from the 

Low-oil-price scenario following Annex B. 
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5.6% rate as the Baseline scenario, which is also the recorded rate of our 2013 calibration year. 

The Low-oil-price scenario ends at 6.4%, close to the 6.3% rate of the Baseline under the 

restrictive constant REER assumption. This sheds more favourable light on the 

macroeconomics of both lower international oil prices and domestic reforms, although the 

cuts in cumulated trade surplus i.e. the decreases of national savings remain compared to 

Baseline. 

However, REER appreciation also has a marked negative effect on public budgets. The reason 

is that public expenditure and investment still increase faster than public income i.e. the oil 

rent, despite the indexation of energy prices on the price of Saudi value-added (see Annex B), 

because input-output relationships amplify any increase of the price of value-added into 

higher increases of public expenditure and investment prices. The resulting cumulated public 

deficit overcomes 100% of 2030 GDP in the case of oil prices depressed by global climate 

action, at 123% and 115% of 2030 GDP for the Low-oil-price and the Reformed scenarios. 

Importantly, in both scenarios it now supersedes the cumulated trade surplus, which reaches 

104% of 2030 GDP in the Low-oil-price scenario and 98% in the Reformed scenario. Under our 

alternative REER specification, balancing public budgets at our assumed levels of public 

investment and expenditure implies forcing a cumulated net deficit on either Saudi 

households or firms. 

6. Conclusion and policy implications 

In this paper, we assess the combined medium-term macroeconomic impacts on the Saudi 

economy of global climate-change mitigation action inducing significantly lower international 

oil prices, and of national reforms of energy tariffs aimed at both the control of domestic 
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energy demand and the amelioration of public budget balance. To this end, we mobilise a 

computable general equilibrium model that has for innovative features, compared to the 

literature on models of the Saudi economy, to calibrate on original hybrid energy-economy 

data. To perform dynamic recursive rather than static—counterfactual—analysis. To constrain 

its dynamic recursive simulation of the Saudi energy system on results of the dedicated KEM 

BU model. And to consider imperfections of the labour and capital markets as well as public 

regulations of the energy markets via administered prices. 

Our simulation results show that global mitigation effort in line with the SDS scenario of the 

IEA World Energy Outlook is likely to harm the Saudi economy in a medium term when 

compared to the more modest action of the IEA’s NPS scenario, even if only depressing the oil 

price without reducing Saudi export volumes. Our central estimation of the impact is a 1.4% 

decline of real GDP, a 1.6 percentage-point increase of the unemployment rate and a 504 

billion 2013 USD decrease (a 29% cut) of the trade surplus cumulated between 2013 and 2030. 

In parallel, the lower oil rent on international markets induces a cumulated public budget 

deficit of 2013 SAR 3,025 billion or 92.8% of projected 2030 GDP. At that horizon, the public 

budget deficit still amounts to 3.3% of GDP, although recovering from even lower levels thanks 

to the gradual increase of oil prices.  

Implementing reforms to align Saudi energy tariffs with international reference prices 

generates additional public income that offsets some of the losses stemming from decreased 

oil export prices. If half invested, and under the assumption of strong energy-efficiency gains 

implying successful diversification of the Saudi economy, this additional income allows 

economic growth to catch up on that triggered by the higher oil prices of the NPS scenario. 

However, even though benefitting half the additional income, budget deficit accumulates to 
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86.3% of 2030 GDP over the 2013 to 2030 simulation period—notwithstanding cumulated 

interests. The pricing reforms and diversification do not allow balancing the public budget 

under our set of assumptions. The basic reason for this is that public expenses, proportional 

to economic activity, still increase faster than the unique source of public income i.e. the oil 

rent, even if extended to domestic energy sales. Obviously, the gap is all the wider as energy 

efficiency gains induced by the reform are high.  

Importantly, a more accurate description of REER dynamics minimises the activity impacts of 

lower international prices at 1% real GDP loss and 0.7-point increase of the unemployment 

rate by 2030. It also raises the activity gains from the pricing and diversification reforms to a 

1% real GDP gain and a stabilisation of unemployment at the same 2030 horizon. However, it 

aggravates public deficit, which cumulates to over 100% of 2030 GDP, and indeed supersedes 

the cumulated trade surplus, with or without policy reforms. 

This persistence of public budget unbalances across scenarios and sensitivity analyses 

underlines the importance of implementing broader economic and fiscal reforms as part of 

the ambitious programme planned by KSA under its Vision 2030 initiative. Particularly, the oil 

rent cannot remain the close-to only source of public income if public expenditures follow on 

economic activity, as they commonly do in most economies.  
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Annex A KLEM-KSA formulary and reference tables 

This Annex provides full detail of KLEM-KSA. For reference purposes, we list and describe all 

variables and parameters below (Table A.1), with the exception of a series of constants 

calibrated on 2013 values. The model counts 43 variables and 43 equations: equations 1, 14, 

15, 18, 26, 28 and 31 cover both sectors and thus count twice; equation 27 defines the prices 

of the IO matrix and thus counts 4 times. Equation 13, which effectively constrains the ratio 

of domestic to foreign prices, comes in three alternative variants that aim at reflecting the 

currency peg of the Saudi Riyal to the US dollar in our different runs (see Annex B). All 

equations prevail at each annual time period of the model, from 2013 (calibration year) to 

2030. However, we drop time index t except when necessary. We index good-specific 

notations with subscript 𝐸 for the aggregate energy good and subscript 𝑄 for the aggregate 

non-energy good. 
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Notation Description Status 

𝐿 Labour endowment 1 parameter from ILO (see Section 3.1) 

𝐾 Capital endowment 1 parameter set exogenously in 2013 then from 
perpetual inventory (see Section 2.1) 

𝜙 Labour productivity (index 1 in 2013) 1 parameter from Oxford Economics (see Section 
3.1) 

𝐿𝑖 Volume of labour in good 𝑖 production 2 variables 

𝐾𝑖 Capital stock in good 𝑖 production 2 variables 

𝐾𝐿 Value-added aggregate of 𝐾𝑄  and 𝐿𝑄 in the production 

of good 𝑄 

1 variable 

𝐾𝐿𝐸 Aggregate of value-added 𝐾𝐿 and energy 𝐸 in the 
production of good 𝑄 

1 variable 

𝐸𝑖 Consumption of energy in the production of good 𝑖 1 variable 𝐸𝑄, 

1 parameter 𝐸𝐸  from KEM data (see Annex E) 

𝐶𝑖 Consumption of good 𝑖 by households 1 variable 𝐶𝑄, 

1 parameter 𝐶𝐸   set exogenously (see Annex E) 

𝐺𝑄 Consumption of good 𝑄 by public administrations 1 variable 

𝐼𝑄 Investment in good 𝑄 1 variable 

𝑋𝑖 Export of good 𝑖 1 variable 𝑋𝑄, 

1 parameter/variable 𝑋𝐸  depending on scenario  
(see Section 3.2 and 𝑌𝐸  below). 

𝑀𝑖 Import of good 𝑖 1 variable 𝑀𝑄, 

1 parameter 𝑀𝐸 set exogenously (see Annex E) 

𝑌𝑖  Output of good 𝑖 1 variable 𝑌𝑄, 

1 parameter/variable 𝑌𝐸  depending on scenario 
(see Section 3.2 and 𝑋𝐸  above). 

𝑆𝑖 Total supply of good 𝑖 2 variables 

𝛼𝑖𝑗 Intensity of good 𝑗 in good 𝑖 2 variables 𝛼𝑄𝑄, 𝛼𝐸𝐸, 

2 parameters 𝛼𝑄𝐸  calibrated in 2013, 𝛼𝐸𝑄 

exogenous (see Annex E) 

𝜆𝑖 Labour intensity of good 𝑖 1 variable 𝜆𝑄,  

1 parameter 𝜆𝐸  calibrated in 2013 

𝜅𝑖 Capital intensity of good 𝑖 1 variable 𝜅𝑄, 1 parameter 𝜅𝐸 (see Annex E) 

𝑤 Average wage 1 variable 

𝑝𝐾 Rental price of capital 1 variable 

𝑝𝐾𝐿 Price of value-added 𝐾𝐿 in good 𝑄 production 1 variable 

𝑝𝐾𝐿𝐸 Price of aggregate 𝐾𝐿𝐸 in good 𝑄 production 1 variable 

𝑝𝑌𝑖
 Output price of good 𝑖 2 variables 

𝑝𝑆𝑖 Average price of good 𝑖 supply 2 variables 

𝑝𝑖𝑗 Price of good 𝑖 used in the production of good 𝑗 2 variables 𝑝𝑄𝑗, 

2 parameters 𝑝𝐸𝑗 (see Annex E) 

𝑝𝐶𝑖
 Price of good 𝑖 for households 1 variable 𝑝𝐶𝑄

, 

1 parameter 𝑝𝐶𝐸
 (see Annex E) 

𝑝𝐺𝑄
 Price of good 𝑄 for public administrations 1 variable 

Table A.1a KLEM-KSA notations  
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Notation Description Status 

𝑝𝐼𝑄
 Price of good 𝑄 for investment 1 variable 

𝑝𝑋𝑖
 Export price of good 𝑖 1 variable 𝑝𝑋𝑄

, 

1 parameter 𝑝𝑋𝐸
 from IEA data (see Annex E) 

𝑝𝑀𝑖
 Import price of good 𝑖 1 parameter 𝑝𝑀𝑄

 price of the numéraire 𝑀𝑄 

1 parameter 𝑝𝑀𝐸
 from IEA data (see Annex E) 

𝐶𝑃𝐼 Consumer Price Index (chained Fischer index) 1 variable 

𝑀𝑃𝐼 Import Price Index (chained Fischer index) 1 variable 

𝑢 Unemployment rate 1 variable 

𝐺𝐷𝑃 Gross Domestic Product 1 variable 

𝐵 Trade balance value 1 variable 

𝛺𝐵 Adjustment factor inversely affecting imports and 
exports of the non-energy good (index 1 in 2013) 

1 parameter calibrated on 2014-2017 dynamics (see 
Section D.2) 

𝛺𝐿 Adjustment factor affecting labour productivity 
(index 1 in 2013) 

1 parameter calibrated on 2014-2017 dynamics (see 
Section D.2) 

𝛺𝐾 Adjustment factor affecting capital productivity 
(index 1 in 2013) 

1 parameter calibrated on 2014-2017 dynamics (see 
Section D.2) 

𝛺𝑤 Adjustment factor affecting real wage correlated 
to unemployment via the wage curve (index 1 in 
2013) 

1 parameter calibrated on 2014-2017 dynamics (see 
Section D.2) 

𝛼𝐾𝐿 Coefficient of  𝐾𝑄 in the  𝐾𝐿 CES function 1 parameter calibrated in 2013 

𝛽𝐾𝐿  Coefficient of  𝐿𝑄 in the  𝐾𝐿 CES function 1 parameter calibrated in 2013 

𝜎𝐾𝐿 Elasticity of substitution between 𝐾𝑄  and 𝐿𝑄 in 𝐾𝐿 1 parameter from Okagawa and Ban (2008) 

𝛼𝐾𝐿𝐸 Coefficient of  𝐾𝐿 in the  𝐾𝐿𝐸 CES function 1 parameter calibrated in 2013 

𝛽𝐾𝐿𝐸  Coefficient of 𝛼𝐸𝑄 𝑌𝑄 in the  𝐾𝐿𝐸 CES function 1 parameter calibrated in 2013 

𝜎𝐾𝐿𝐸 Elasticity of substitution between 𝐾𝐿 and 𝛼𝐸𝑄 𝑌𝑄  1 parameter from Okagawa and Ban (2008) 

𝛼𝑌 Coefficient of KLE in the 𝑌𝑄 CES function 1 parameter calibrated in 2013 

𝛽𝑌  Coefficient of 𝛼𝑄𝑄 𝑌𝑄 in the 𝑌𝑄 CES function 1 parameter calibrated in 2013 

𝜎𝑌 Elasticity of substitution between 𝐾𝐿𝐸 and 𝛼𝑄𝑄  𝑌𝑄 

in 𝑌𝑄 

1 parameter from Van der Werf (2008) 

𝜎𝑤𝑢 Elasticity of real wage to the unemployment rate 1 parameter from Blanchflower and Oswald (2005) 

𝜎𝑀𝑝 Elasticity to relative prices of the share of imports 
in the total non-energy resource 

1 parameter (see Equation 10) 

𝜎𝑋𝑝 Elasticity to relative prices of the non-energy 
export trend 

1 parameter (see Equation 11) 

𝛿 Depreciation rate of the capital stock 1 parameter (0.04). 

𝑠𝐺  Ratio of public expenditure to GDP 1 parameter calibrated in 2013 

𝑠𝐺  Ratio of public expenditure to GDP 1 parameter calibrated in 2013 

𝑠𝐼 Ratio of investment to GDP 1 parameter dynamically calibrated (see Section D.3) 

𝜏𝑆𝑇𝑖
 Sales tax on good 𝑖 sales 2 parameters calibrated in 2013 

𝜏𝑌𝑖 Output tax on good 𝑖 production 2 parameters calibrated in 2013 

Table A.1b KLEM-KSA notations 
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Notation Description Status 

𝜏𝑀𝑆𝑖𝑗
 Specific margin on good 𝑖 sales to good 𝑗 

production 
2 parameters 𝜏𝑀𝑆𝑄𝑖

 calibrated in 2013 (nil), 

2 variables 𝜏𝑀𝑆𝐸𝑖
 

𝜏𝑀𝑆𝐶𝑖
 Specific margin on good 𝑖 sales to households 1 parameter 𝜏𝑀𝑆𝐶𝑄

 calibrated in 2013 (nil), 

1 variable 𝜏𝑀𝑆𝐶𝐸
 

𝜏𝑀𝑆𝑋𝑖
 Specific margin on good 𝑖 exports 1 parameter 𝜏𝑀𝑆𝑋𝑄

 calibrated in 2013 (nil) 

1 variable 𝜏𝑀𝑆𝑋𝐸
 

Table A.1c KLEM-KSA notations 

A.1 Production 

Trade-offs in the production of the energy good are exogenous assumptions based on KEM 

and IEA data (see Section 3.2 and Annex E). The only required equation is the breakdown of 

the energy consumption of production—which holds for the non-energy sector too: 

 𝐸𝑖 = 𝛼𝐸𝑖 𝑌𝑖  (1) 

Non-energy production follows a “production tree” of nested CES functions (Figure A.1). 

 

Figure A.1 Production structure of the non-energy good 
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At the foot of the tree, capital and labour trade off with a constant 𝜎𝐾𝐿 elasticity of substitution 

to form a 𝐾𝐿 aggregate. The mobilized quantity of labour 𝐿𝑄 is however augmented by a 

productivity factor 𝜙, while both the labour and capital inputs are also adjusted by factors 𝛺 

to warrant dynamic calibration on key macroeconomic variables (see Section D.2): 𝐾𝐿 =

(𝛼𝐾𝐿 (𝛺𝐾𝐾𝑄)𝜌𝐾𝐿 + 𝛽𝐾𝐿 (𝛺𝐿𝜙 𝐿𝑄) 𝜌𝐾𝐿)
1

𝜌𝐾𝐿, with here and elsewhere, for convenience, 𝜌𝑖 =

 
𝜎𝑖−1

𝜎𝑖
. Facing prices 𝑝𝐾 and 𝑝𝐿, cost minimization induces 

 𝐿𝑄 =  
1

𝛺𝐿 𝜙
 (

𝛺𝐿 𝜙 𝛽𝐾𝐿

𝑝𝐿
)

𝜎𝐾𝐿

(𝛼𝐾𝐿
𝜎𝐾𝐿 (

𝑝𝐾

𝛺𝐾 
)

1−𝜎𝐾𝐿

+  𝛽𝐾𝐿
𝜎𝐾𝐿 (

𝑝𝐿

𝛺𝐿 𝜙
)

1−𝜎𝐾𝐿

)
−

1

𝜌𝐾𝐿
𝐾𝐿 (2) 

 𝐾𝑄 =  
1

𝛺𝐾
 (

𝛺𝐾 𝛼𝐾𝐿

𝑝𝐾
)
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(𝛼𝐾𝐿
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𝑝𝐾
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+  𝛽𝐾𝐿
𝜎𝐾𝐿 (

𝑝𝐿

𝛺𝐿 𝜙
)

1−𝜎𝐾𝐿

)
−

1

𝜌𝐾𝐿
𝐾𝐿 (3) 

Higher up the tree, aggregate factor 𝐾𝐿 (value-added) and energy 𝐸𝑄 again trade off with a 

constant 𝜎𝐾𝐿𝐸 elasticity of substitution to form a 𝐾𝐿𝐸  aggregate. However, 𝐸𝑄 is forced 

following BU expertise (see section 3.2). As a consequence 𝐾𝐿 is deduced from 𝐾𝐿𝐸 being a 

CES of it and energy: 𝐾𝐿𝐸 = (𝛼𝐾𝐿𝐸 𝐾𝐿𝜌𝐾𝐿𝐸 + 𝛽𝐾𝐿𝐸 𝐸𝑄
𝜌𝐾𝐿𝐸)

1

𝜌𝐾𝐿𝐸 , which yields: 

 𝐾𝐿 = (
𝐾𝐿𝐸𝜌𝐾𝐿𝐸

𝛼KLE
−  

𝛽KLE

𝛼KLE
𝐸𝑄

𝜌𝐾𝐿𝐸  ) 
1

𝜌𝐾𝐿𝐸  (4) 

On the tier immediately above, the 𝐾𝐿𝐸 aggregate and non-energy input 𝛼𝑄𝑄 𝑌𝑄 trade off 

with a constant 𝜎𝑌 elasticity of substitution to form domestic output 𝑌𝑄. Facing prices 𝑝𝐾𝐿𝐸 

and 𝑝𝑄𝑄, cost minimization induces 

 𝐾𝐿𝐸 = (
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1−𝜎Y +  𝛽Y 

𝜎Y𝑝𝑄𝑄
1−𝜎Y)

−
1

𝜌Y  𝑌𝑄 (5) 

  𝛼𝑄𝑄𝑌𝑄 = (
𝛽Y

𝑝𝑄𝑄
)

𝜎Y

(𝛼Y
𝜎Y 

𝑝𝐾𝐿𝐸
1−𝜎Y +  𝛽Y 

𝜎Y𝑝𝑄𝑄
1−𝜎Y)

−
1

𝜌Y  𝑌𝑄 (6) 
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A.2 Final consumption and investment 

Household consumption of energy 𝐶𝐸 is exogenous (see Annex E) while household 

consumption of the non-energy good 𝐶𝑄 adjusts to close the model considering the domestic 

savings demand resulting from the investment and trade balance assumptions (‘Johansen’ 

closure, see Section 2.2).  

Public spending 𝑝𝐺𝑄
𝐺𝑄 is a constant share 𝑠𝐺 of GDP (public spending in energy goods is zero 

by national accounting convention): 

 𝑝𝐺𝑄
𝐺𝑄 =  𝑠𝐺𝐺𝐷𝑃 (7) 

with 𝐺𝐷𝑃 defined on the expenditure side as 

 𝐺𝐷𝑃 = ∑ 𝑝𝐶𝑖𝑖=𝐸,𝑄 𝐶𝑖 +  𝑝𝐺𝑄
𝐺𝑄 + 𝑝𝐼𝑄

𝐼𝑄 +  ∑ 𝑝𝑋𝑖𝑖=𝐸,𝑄 𝑋𝑖 −  ∑ 𝑝𝑀𝑖𝑖=𝐸,𝑄 𝑀𝑖 (8) 

Investment expenses 𝑝𝐼𝑄
 𝐼𝑄 are an exogenous ratio 𝑠𝐼  of 𝐺𝐷𝑃 (investment in energy goods is 

zero except for stock variations that are cancelled out in our hybrid data, see Annex C): 

 𝑝𝐼𝑄
𝐼𝑄 =  𝑠𝐼𝐺𝐷𝑃 (9) 

A.3 International trade 

Imports 𝑀𝐸 are exogenous and exports 𝑋𝐸 are either the remainder of energy supply following 

Equation 14 (Baseline and Low-oil-price scenarios) or fixed at their Low-oil-price scenario level 

(Reformed scenario). For the non-energy good, the share of imports 𝑀𝑄 in total supply 𝑆𝑄 has 

a 𝜎𝑀𝑝 elasticity to terms-of-trade and is corrected by the inverse of the export adjustment 

factor 𝛺𝐵 (see Section D.2): 
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𝑀𝑄

𝑆𝑄
=  

1

𝛺𝐵
 𝐴𝑀 (

𝑝𝑌𝑄

𝑝𝑀𝑄

)

𝜎𝑀𝑝

, (10) 

with 𝐴𝑀 one constant calibrated on 2013 data. We follow IMF (2016a) using elasticities from 

Hakura and Billmeier (2008) and set 𝑀𝑝 at -0.09. We regard this elasticity as compatible with 

the import structure of the Kingdom, composed of goods with very few domestic substitution 

opportunities.  

Exports 𝑋𝑄 are elastic to terms of trade around the exogenous trend 𝛿𝑋𝑄
 (see Section 3.1): 

 𝑋𝑄 =  𝛺𝐵 (1 +  𝛿𝑋𝑄
) 𝐴𝑋 (

𝑝𝑋𝑄

𝑝𝑀𝑄

)

𝜎𝑋𝑝

. (11) 

They are adjusted by 𝛺𝐵 following dynamic calibration on 2014 to 2017 data (see Section D.2). 

Similar to the price elasticity of imports, we derive 𝜎𝑋𝑝
 from IMF (2016a) based on Hakura and 

Billmeier (2008) estimating the elasticity of non-oil exports at 0.69. 𝐴𝑋 is a constant calibrated 

in 2013. The trade balance 𝐵 is: 

 𝐵 =  ∑ 𝑝𝑋𝑖
𝑋𝑖 − 𝑝𝑀𝑖

𝑀𝑖𝑖=𝐸,𝑄  (12) 

In the model applied to our Baseline (Section 4.1) and Low-oil-price (Section 4.2) scenarios, 

the real effective exchange rate—the ratio of the consumer price index 𝐶𝑃𝐼 and the import 

price index 𝑀𝑃𝐼—remains constant at calibration-year value 1: 

 
𝐶𝑃𝐼

𝑀𝑃𝐼
= 1. (13) 

In our Reformed scenario, (Section 4.3) we drop the constant REER assumption to rather 

acknowledge the impact of the massive increase of regulated energy prices on the REER by 
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constraining the price of value-added in the non-energy sector on the same 𝛿𝑝𝐾𝐿
trajectory 

that it follows in our Low-oil-price scenario (see Section B.1): 

 𝑝𝐾𝐿 = (1 + 𝛿𝑝𝐾𝐿
) 𝐵𝑅𝐸𝐸𝑅, (13b) 

with 𝐵REER the value of 𝑝𝐾𝐿 at calibration year. 

In Section 5.3, we propose a third way of constraining the REER reflecting our observation of 

a significant statistical relationship between the REER and the trade balance contribution to 

GDP. To specify the relationship, we tested several functional forms including a linear link 

(with an R2 of 0.622), with little impact on model results. We settle on an exponential form, 

which exhibits an R2 of 0.674. This relationship defines the REER as an exponential function of 

the trade-balance-to-GDP ratio:  

 
𝐶𝑃𝐼

𝑀𝑃𝐼
= 𝐶𝑅𝐸𝐸𝑅 +  𝐷𝑅𝐸𝐸𝑅  𝑒𝐸𝑅𝐸𝐸𝑅 

𝐵

𝐺𝐷𝑃, (13c) 

with 𝐷𝑅𝐸𝐸𝑅 and 𝐸𝑅𝐸𝐸𝑅 calibrated on 1986 to 2015 statistical observation of the two variables 

(see Figure 5.1 of Section 5.3), and 𝐶𝑅𝐸𝐸𝑅 the adjustment that allows fitting 2013 data. 

A.4 Market clearings 

Market balance for each good 𝑖 stems from the definitions of total domestic supply 𝑆𝑖 seen 

from the use and resource sides: 

 𝑆𝑖 =  ∑ 𝛼𝑖𝑗
𝑛
𝑗=1 𝑌𝑗 +  𝐶𝑖 +  𝐺𝑖 +  𝐼𝑖 + 𝑋𝑖, (14) 

 𝑆𝑖 = 𝑌𝑖 + 𝑀𝑖. (15) 

On the labour market, a ‘wage curve’ describes the elasticity of real wage (the purchasing 

power of wage 𝑤) to unemployment 𝑢. The real wage 𝑤/𝐶𝑃𝐼 attached to unemployment at 
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2013 level (5.6%)  is defined as the 2013 real wage multiplied by labour productivity increase 

𝜙 and a wage moderation factor 𝛺𝑤 via the calibration of one constant 𝐴𝑢:   

 
𝑤

𝐶𝑃𝐼
=  𝜙 𝛺𝑤  𝐴𝑢 𝑢𝜎𝑤𝑢. (16) 

Labour demands of the 2 productions and unemployment balance out labour endowment 𝐿: 

 ∑ 𝐿𝑖𝑖=𝐸,𝑄 = (1 − 𝑢) 𝐿 (17) 

For each sector, labour consumption and output are conventionally related via labour 

intensity: 

 𝐿𝑖 = 𝜆𝑖 𝑌𝑖 (18) 

On the capital market, demands of the two productions balance out capital endowment 𝐾: 

 ∑ 𝐾𝑖𝑖=𝐸,𝑄 =  𝐾 (19) 

With for the non-energy sector, similarly to labour: 

 𝐾𝑄 = 𝜅𝑄 𝑌𝑄 (20) 

However, as stated in Section 2.1 the amount of capital for the production of the energy good 

follows a constraint under which the capital stock of energy production 𝐾𝐸  cannot contract 

faster than the depreciation rate 𝛿 fixed at 4%: 

 𝐾𝐸,𝑡 = 𝑚𝑎𝑥 ((1 − 𝛿) 𝐾𝐸,𝑡−1; 𝜅𝐸  𝑌𝐸). (21) 

A.5 Producer and consumer prices 

Primary factor payments 𝑤 the wage and 𝑝𝐾 the price of capital rental are common to both 

sectors. They adjust according to their market balances.  
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The price of the 𝐾𝐿 aggregate 𝑝𝐾𝐿  is the canonical function (𝐾𝐿 being a CES product of 𝐾 and 

𝐿) of prices 𝑝𝐾 and 𝑝𝐿 and of the elasticity of substitution of the two inputs 𝜎𝐾𝐿: 

 𝑝𝐾𝐿 =  (𝛼𝐾𝐿
𝜎𝐾𝐿 (

𝑝𝐾

𝛺𝐾
)

1−𝜎𝐾𝐿

+ 𝛽𝐾𝐿
𝜎𝐾𝐿 ( 

𝑤

 𝛺𝐿 𝜙
)

1−𝜎𝐾𝐿

)

1

1−𝜎𝐾𝐿
 (22) 

Contrary to 𝑝𝐾𝐿, 𝑝𝐾𝐿𝐸  the price of the 𝐾𝐿𝐸 aggregate specific to non-energy production 

cannot be defined as a function of prices 𝑝𝐾𝐿 and 𝑝𝐸𝑄 and of the elasticity of substitution of 

the two inputs 𝜎𝐾𝐿𝐸, because exogenously setting 𝐸𝑄 in the 𝐾𝐿𝐸 aggregate truncates the 

underlying cost-minimisation programme. Consequently, 𝑝𝐾𝐿𝐸 is rather inferred from the 

simple accounting equation: 

 𝑝𝐾𝐿𝐸  𝐾𝐿𝐸 =  𝑝𝐾𝐿 𝐾𝐿 + 𝑝𝐸𝑄 𝐸𝑄 (23) 

The producer price of the non-energy good 𝑝𝑌𝑄 is again the canonical CES price of the 𝐾𝐿𝐸 

aggregate and the non-energy input to production 𝛼𝑄𝑄 𝑌𝑄, to which a constant ad valorem 

output tax 𝜏𝑌𝑄
 as well as a constant rent mark-up 𝜏𝑅𝑄

, are added: 

 𝑝𝑌𝑄
(1 − 𝜏𝑌𝑄

− 𝜏𝑅𝑄
) =  (𝛼𝑌

𝜎𝑌  𝑝𝐾𝐿𝐸
1−𝜎𝑌 + 𝛽𝑌

𝜎𝑌  𝑝𝑄𝑄
1− 𝜎𝑌)

𝜌𝑌−1

𝜌𝑌  (24) 

For the energy good, the producer price is simply the sum of production costs: 

 𝑝𝑌𝐸 = 𝑝𝑄𝐸  𝛼𝑄𝐸 + 𝑝𝐸𝐸  𝛼𝐸𝐸 + 𝑤 𝜆𝐸 + 𝑝𝐾 𝜅𝐸 + 𝜏𝑅𝐸
 𝑝𝑌𝐸 + 𝜏𝑌𝐸

 𝑝𝑌𝐸 (25) 

The import prices of both goods are exogenous: 𝑝𝑀𝑄 is constant because the imported non-

energy good is the chosen numéraire of the model; and 𝑝𝑀𝐸 follows an exogenous trajectory 

described in Annex E. 

The average supply price of good 𝑖, 𝑝𝑆𝑖 , is inferred from: 
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 𝑝𝑆𝑖
𝑆𝑖 =  𝑝𝑌𝑖

𝑌𝑖 + 𝑝𝑀𝑖
 𝑀𝑖  (26) 

Turning to purchasers’ prices, the price of good 𝑖 for the production of good 𝑗, 𝑝𝑖𝑗, is equal to 

the supply price of good 𝑖 augmented from agent-specific margins 𝜏𝑀𝑆𝑖𝑗
 and ad valorem sales 

taxes 𝜏𝑆𝑇𝑖
: 

 𝑝𝑖𝑗 = 𝑝𝑆𝑖
 (1 + 𝜏𝑀𝑆𝑖𝑗

) (1 + 𝜏𝑆𝑇𝑖
) (27) 

The consumer prices of households, public administrations, the investment good and exports 

are constructed similarly but drop the unnecessary specific margins when energy is not 

concerned (public consumption, investment), as well as sales taxes as regards exports: 

 𝑝𝐶𝑖
= 𝑝𝑆𝑖

(1 + 𝜏𝑀𝑆𝐶𝑖
)(1 + 𝜏𝑆𝑇𝑖

) (28) 

 𝑝𝐺𝑄
= 𝑝𝑆𝑄

(1 + 𝜏𝑆𝑇𝑖
) (29) 

 𝑝𝐼𝑄
= 𝑝𝑆𝑄

(1 + 𝜏𝑆𝑇𝑖
)    (30) 

 𝑝𝑋𝑖
= 𝑝𝑆𝑖

(1 + 𝜏𝑀𝑆𝑋𝑖
) (31) 

In the case of the energy good, the specific margin 𝜏𝑀𝑆𝑋𝐸
 endogenously adapts to 

accommodate the exogenous 𝑝𝑋𝐸
 prescription (see Annex E). The consumer and import price 

indexes 𝐶𝑃𝐼 and 𝑀𝑃𝐼 are computed as chained indexes, i.e. from one period to the next, 

according to Fisher’s formula: 

 𝐶𝑃𝐼𝑡 = 𝐶𝑃𝐼𝑡−1   √
∑ 𝑝𝐶𝑖,𝑡 𝐶𝑖,𝑡−1

∑ 𝑝𝐶𝑖,𝑡−1 𝐶𝑖,𝑡−1

∑ 𝑝𝐶𝑖,𝑡 𝐶𝑖,𝑡

∑ 𝑝𝐶𝑖,𝑡−1 𝐶𝑖,𝑡
 (32) 

 𝑀𝑃𝐼𝑡 = 𝑀𝑃𝐼𝑡−1   √
∑ 𝑝𝑀𝑖,𝑡 𝑀𝑖,𝑡−1

∑ 𝑝𝑀𝑖,𝑡−1 𝑀𝑖,𝑡−1

∑ 𝑝𝑀𝑖,𝑡 𝑀𝑖,𝑡

∑ 𝑝𝑀𝑖,𝑡−1 𝑀𝑖,𝑡
 (33) 
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Annex B Modelling the Saudi currency peg 

The Saudi currency peg has been fixing the nominal exchange rate of the Saudi Riyal (SAR) to 

the US dollar (USD) at 3.75 since 1986. To this date, models of the Saudi economy that do not 

explicitly represent money have approximated the peg by making the “fixprice” assumption 

of a constant real effective exchange rate (REER) and an endogenous trade balance (see Al-

Hawwas, 2010 and Al-Thumairi, 2012), by opposition to the “flexprice” standard of 

constraining the trade balance by adjustment of a flexible REER. We stick to this 

approximation when evaluating our Baseline and Low-oil-price scenarios in sections 4.1 and 

4.2 (see Equation 13 of Annex A).  

However, the approximation cannot hold when modelling domestic energy pricing reforms. 

In section B.1 below, we explain why and introduce the alternative specification sustaining 

our evaluation of the Reformed scenario of section 4.3 (Equation 13b). In section B.2, we 

comment upon indexation issues that arise when considering the third alternative REER 

specification that we introduce in section 5.3 (Equation 13c).  

B.1 REER adjustments following the Saudi pricing reform 

Real effective exchange rate variations reflect either variations of the nominal exchange rate 

or variations in the relative “real” output prices, or costs, of an economy and its trading 

partners. The energy-price reforms of our Reformed scenario substantially increase KSA 

output costs relative to their foreign counterparts, all other things equal. This increase is 

unlikely to induce any adjustment of foreign output costs, considering the small weight of 

Saudi exports other than oil (whose export price is unaffected by the reforms) in the cost 

structures of its partners. The reforms will therefore increase the REER of KSA. Its modelling 
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consequently requires amending the fix REER assumption of the Baseline and Low-oil-price 

KLEM-KSA implementations (Equation 13). To that end, we alternatively consider that the 

reform does not alter the ratio of primary-factor prices to foreign prices. This effectively 

anchors the Saudi price system to the foreign price system—reflecting the currency peg—

while allowing market prices to rise relative to foreign prices, under the impact of the reform, 

as well as relative price shifts between primary factors. Our runs of the Reformed scenario 

therefore substitute, to the fix REER constraint, a trajectory of the average price of value-

added in the non-energy sector constrained to its Low-oil-price scenario pathway (Equation 

13b).18 

B.2 REER sensitivity to oil prices and indexation of exogenous energy price 

trajectories 

The alternative REER and trade balance specification of Section 5.3 improves upon the 

specifications backing Section 4 results by considering the REER variations linked to oil-price-

induced inflation differentials between KSA and its trading partners (see Section 5.3). This 

raises complex indexation issues with important bearing on the evolution of relative prices. 

Both the NPS and SDS oil-price trajectories of our scenarios remain below the 2013 oil price 

up to 2030. The constant-USD output cost of the basket of imported non-energy goods 𝑀𝑄 

should therefore decrease to mark the decrease of international oil prices. There is no reason 

to assume that this cost decrease will affect constant-USD international oil prices, or indeed 

                                                      

18 Our specification overlooks the fact that the level effectively reached by the REER under the pricing reform also depends 

on the indirect impacts of the reform on primary factor markets. Pinpointing this level would require a thorough numerical 

exploration outside the scope of our paper, with a small quantitative impact on our results.  
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constant-USD (constant-SAR) Saudi domestic energy prices, all other things equal. With 𝑀𝑄 

the numéraire of KLEM-KSA (𝑝𝑀𝑄 constant), this means that the exogenous price trajectories 

of energy consumptions and trade should rise when the REER of KSA rises because of low oil 

prices. The increase should remain below the REER rise in itself, which embarks the impact of 

pricing reforms in our Reformed scenario. We approximate this increase by again assuming 

indexation on the price of value-added in the Saudi non-energy sector. The three modelling 

runs of Section 5.2 therefore extend KLEM-KSA to five additional variables, domestic and 

international energy prices 𝑝𝑀𝐸, 𝑝𝐸𝑄, 𝑝𝐸𝐸, 𝑝𝐶𝐸, 𝑝𝑋𝐸, and to five additional equations forcing 

each of these prices at the exogenous levels defined for each scenario (Annex E), augmented 

by indexation on 𝑝𝐾𝐿 variation from its 2013 level.  
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Annex C A hybrid energy/economy KSA dataset 

Developing a hybrid energy/economy dataset is a prerequisite to energy/economy modelling 

because it induces statistical adjustments that have significant bearing on modelling results 

(Combet et al., 2014). The argument is particularly strong for KSA considering the weight of 

oil extraction activities and related industries in the economy. Producing our hybrid KSA 

dataset implied the following steps:19 

 Constructing an Input-Output table (IOT) from the uses and resources tables of the 

Saudi national accounts from the General Authority of Statistics (GAS) for 2013 (CDSI, 

2014). 

 Aggregating the IOT into two products, energy and non-energy. Energy covers the Oil 

and Gas extraction, Petroleum products, and Electricity sectors. Non-energy embraces 

the remainder of economic activity. 

 Computing commercial energy flows in million tons-of-oil equivalent (Mtoe), at 

identical level of aggregation, from the International Energy Agency (IEA) energy 

balance of KSA (IEA, 2015). 

 Comparing the resulting prices with prices from other statistical sources e.g. 

ENERDATA (see https://www.enerdata.net/), and discriminating based on plausibility. 

                                                      

19 For the sake of concision, we only provide a synthetic description of each step. Combet et al. (2014) and Le Treut (2017) 

detail the hybridisation procedure with an application on France. The particulars of its implementation on KSA are available 

from the authors upon request. 
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 Substituting reconstructed energy expenses to irreconcilable national accounting 

data.20 

 Imputing the induced accounting imbalance to the non-energy good, considering that 

the difference between national accounting “energy” expenses and energy flows 

valued at administered or market prices are mainly service activities of energy 

companies. 

 Reassessing the oil rent based on the difference between extraction costs, estimated 

at 4.24 US dollars (USD) per barrel,21 and total expenses on oil, which are dominated 

by exports at international prices. The resulting oil rent amounts to 272.8 billion USD 

or 37.5% of GDP in 2013.22 

 Reassessing net energy taxes and subsidies. Our main effort regarded electricity 

subsidies, which we computed from electricity sales in volume and the difference 

between the average electricity cost of 99.2 USD per MWh reported by Alyousef and 

Stevens (2011)23 and the average selling price of 35.7 USD per MWh revealed by our 

reconstruction of energy sales and administered prices. The resulting effective 

electricity subsidies amount to 17.7 billion USD in 2013. This estimation is broadly in 

line with that of Alyousef and Stevens (2011) of an electricity subsidy of 13.3 billion 

                                                      

20 Because the energy sector of KSA is highly integrated, we treat energy data to only account for those energy flows 

corresponding to actual commercial transactions.  

21 This cost is that charged by Saudi Aramco to Saudi Electricity Company for Arabian Light crude oil (ECRA, 2014). There is no 

official estimation of extraction costs proper. Various sources confirm that this cost ranges between 4 and 5 USD per barrel 

(Smith, 2009; Ramady and Mahdi, 2015).  

22 We thus deviate from the 43.4% contribution of oil rent to GDP reported by the World Bank (available at 

https://data.worldbank.org/indicator/NY.GDP.PETR.RT.ZS?locations=SA). This estimate appears closer to the contribution of 

the gross operating surplus of the extraction and refining branches of national accounts.  

23 Alyousef and Stevens (2011) report 2010 costs, which we assume unchanged in 2013. 

https://data.worldbank.org/indicator/NY.GDP.PETR.RT.ZS?locations=SA
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USD in 2010 when taking account of the growth of electricity consumption between 

2010 and 2013.  

 Scaling the remaining elements of the cost structure of the energy sector (non-energy 

good expenses and value-added components) to balance out uses. 

The third step of this procedure, i.e. the computation of commercial energy flows from IEA 

energy balance, required a series of sub-steps: 

 Excluding energy products exclusively used for non-energy purposes, irrelevant to our 

energy/economy focus. 

 Absorbing statistical differences between resources and uses by distributing half of 

them on supply/production and the other half on demand pro rata consumptions. 

 Reassigning international bunkers and domestic marine and air consumptions to 

exports (sales to foreign transport companies) vs. consumptions of resident firms 

according to the national accounting distinction between domestic vs. foreign agents. 

 Correcting for auto-production by distributing its energy inputs to energy consumers 

and reducing the electricity and heat consumptions of such consumers proportionally 

to their consumption increases.24 

 Reassigning transfers to the consumptions of the refining industry, more specifically to 

the subcategory “Oil refineries”. 

 

                                                      

24 National accounts only record expenses on autoproduction inputs and overlook transformation into electricity or heat. 
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IOT, MSAR Prod. Q Prod. E C G I X  

Q uses 943 502  169 883 787 068 628 521 662 455 217 893 3 409 323 

E uses 34 748 14 215  14 133 - - 1 259 117 1 322 214 

L 510 881 38 899      

Y taxes 7 515 1 047      

K 1 099 394 116 884      

R 4 415 1 039 365      

M 787 958 7 946      

SM use in Q - -196 745      

SM use in E - -219 412      

SM use in C - 19 639      

SM use in X - 396 518      

Sales T 20 908 267      

Subsidies - -66 294      

 3 409 323 1 322 214      

        

E flows, Mtoe Prod. Q Prod. E C G I X  

E uses 119.8 120.9 22.8 - - 432.5 696.1 

Imports  23.7      

Output  672.4      

        

E prices, 

SAR/toe 
Prod. Q Prod. E C G I X  

E uses 290.0 117.5 619.7 - - 2910.8  

Imports  334.4      

Totals may not add up due to rounding. 

Figure C.1 Hybrid 2-sector dataset of 2013 KSA 

The resulting IOT in million SAR (MSAR) and underlying price/quantity disaggregation is 

organised as follows (Figure C.1). On the side of resources (columns), production of the non-

energy good Q or the energy good E proceeds from intermediate consumptions (Q or E uses); 

labour costs L; capital costs K (net of output taxes ‘Y taxes’); the rent on natural resources R; 
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imports M; specific margins SM and net ‘Sales taxes’. Specific margins on energy uses (in Q 

and E production, in household consumption C, in exports X), our original addition to the 

standard national accounting framework, are one major consequence of hybridising 

calibration data and a salient feature of KLEM. For each energy use, they are the difference 

between sales at observed prices and sales at the average resource price 𝑝𝑆𝐸
 (an average of 

output and import prices, see Annex A) augmented by net product taxes—by construction 

their sum is thus zero. They allow modelling agent-specific prices (see Equations 27 to 31 of 

Annex A), i.e. circumventing the undesirable consequences of the uniform pricing standard 

explored by Combet et al. (2014).25 All specific margins of Q uses are individually zero in the 

absence of any underlying matrix of physical flows that could necessitate agent-specific 

pricing. 

On the side of uses, produced or imported goods contribute to productions of Q and E, are 

consumed by households (C) and public administrations (G), used as investment (I) or 

exported (X). As regards energy, correspondence with energy balance aggregates is as follows. 

The energy consumption of the non-energy sector (‘E uses’ in ‘Prod Q’) aggregates total final 

energy consumption net of households’ consumption C, which covers residential energy 

consumptions and a share of refined products consumptions for transportation purposes. The 

energy consumption of the energy sector (‘E uses’ in ‘Prod E’) embraces all commercial flows 

between energy firms: crude oil, refined products and natural gas inputs into electricity 

production as well as crude oil inputs into the refining industry for the part of that industry 

                                                      

25 Pricing of the aggregate energy good cannot be homogeneously based on the average energy cost structure because of 

energy mix differences across energy uses as well as because of actual heterogeneous pricing of even the most homogeneous 

energy goods (electricity and natural gas). 
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that is not vertically integrated. The corresponding flows of crude oil into refineries are not 

represented in national accounts. For instance, the state-owned crude oil producer Saudi 

Aramco operates as much as 71% of the refining capacity in 2013. We assume that this share 

remains constant over the projection horizon and use it to compute commercial flows in the 

process of building energy consumption trajectories from KEM outputs (Annex E).  

By national accounting convention, the consumption of energy goods by public 

administrations is nil.26 Investment of energy goods is nil as well, once stock variations have 

been cancelled out by adjusting output. Exports (X) and imports (M) are close matches to their 

energy balance counterparts. The price of each energy use is specific thanks to specific 

margins SM (see above). Note that the energy output balancing domestic consumption and 

net trade is a mix of primary and transformed energy. This ‘double counting’, from an energy 

engineer’s perspective, is a standard feature of national accounting frameworks. 

Our hybrid dataset (Figure C.1) confirms that, in 2013, the energy sector remains a significant 

contributor to Saudi economic activity: it weighs 28% of total uses or resources, 51% percent 

of total gross operating surplus (K + R in the table of Figure C.1) and 85% of total exports. 

Before hybridisation, the corresponding indicators were at 30%, 57% and 85% respectively. 

Annex D Calibration of KLEM-KSA 

To improve the relevance of modelled trajectories, which particularly bears on our modelling 

results concerning trade surplus and public deficit accumulation, we calibrate KLEM-KSA both 

                                                      

26 The consumption of public institutions is registered as intermediate consumption by the public services sector, which is 

aggregated to the non-energy good in our 2-sector dataset.  
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statically on extensive original 2013 energy-economy data, and dynamically, in two additional 

steps, on focused macroeconomic data. We detail the three calibration steps in subsections 

below. 

D.1 Static calibration on ‘hybrid’ energy/economy 2013 data 

We perform the static calibration of KLEM-KSA on original 2013 data reconciling information 

on national accounts, oil trade, oil extraction costs, the energy balance and administered 

prices (see Annex CFigure C.1). Although this data extends to original elements as specific 

margins allowing differentiation of energy consumer prices beyond taxes and subsidies, our 

calibration procedure follows the standard practice of inverting parameters and variables and 

solving model equations. The only base-year variable lacking statistics is the capital stock. We 

define the 2013 capital stock 𝐾0 as: 

 𝐾0  = 𝐼𝑄,0
1

𝛿+𝑔1
  

which means recognizing the commensurability of 𝐼 and 𝐾, with: 

 𝛿  the depreciation rate, which divides 𝐼𝑄,0 to account for the amount of capital (𝛿 𝐾) 

that will be retired at the end of 2013 and must therefore be replaced by 𝐼𝑄,0. 

 𝑔1 is the potential growth rate between 2013 and 2014, resulting from the combined 

growth of labour supply and labour productivity.27 Dividing 𝐼𝑄,0 by 𝑔1 warrants that the 

capital stock starts growing at a pace compatible with that of efficient labour. 

                                                      

27 See Section 3.1 for our data sources on these parameters. 
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D.2 Dynamic calibration on 2014 to 2017 macroeconomics 

Beyond 2013 data, we first extend the calibration of KLEM-KSA to statistically available years 

(2014-2017 at the time of our research): we compute what disturbances of the productivity 

of primary factors, wages and non-energy trade allow KLEM-KSA to replicate observed trends 

of key macroeconomic series under constraint of reported energy trajectories. 

Each year from 2014 to 2017, this first dynamic calibration procedure extends the model to 4 

additional variables: 𝛺𝐿 and 𝛺𝐾, impacting labour and capital productivity; 𝛺𝑤, impacting the 

real wage considered in the wage curve when linking it to the unemployment rate; and 𝛺𝐵, 

inversely impacting non-energy exports and imports. It also extends KLEM to three additional 

constraints: that the GDP, unemployment rate and trade balance computed by the model 

match statistical observation. Minimising the disturbances allows selecting one of the infinite 

number of solutions induced each year by adding more variables than constraints to the 

model. Beyond 2017, we assume that all disturbances converge at a constant rate to their 

average 2013-to-2017 values in 2030.28  

The adjustment factors resulting from the above procedure are additional parameters of all 

further simulations of KLEM-KSA (Table D.1). They remain within 4.0% of their 2013 values for 

those that concern labour, capital and real wage expectations. They reach 11.8% for the non-

energy trade factor 𝛺𝐵, which reflects the fact that non-energy trade, although dwarfed by oil 

trade, must compensate any statistical discrepancy between our sources for the oil price and 

exports on one side (IEA data), and the aggregate trade balance contribution to GDP on the 

                                                      

28 The alternative option of fading out all disturbances by 2030 would unduly lend more weight to the 2013 balance of factors 

and macroeconomic performance and disregard potential misalignments on underlying trends.  
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other side (World Bank data). Interestingly, they do not particularly reflect the 48% drop of 

the oil price that happened between 2014 and 2015. This fact confirms that our choice of a 

Johansen closure is more adapted to the Saudi macroeconomics than the standard 

neoclassical closure (see Section 2.2). Neoclassical closure would translate the 2015 oil price 

drop into a drop of investment via collapsed foreign savings. The 2016 capital stock would be 

lower and would require more positive capital productivity adjustments to strike the (quite 

unaffected) 2016 GDP. In other words, the neoclassical closure would require larger ad hoc 

productivity adjustments to match observation. 

 2014 2015 2016 2017 2020 2025 2030 

𝛺𝐿 1.024 1.017 1.032 1.023 1.022 1.020 1.019 

𝛺𝑤 1.004 0.999 1.005 1.008 1.007 1.005 1.003 

𝛺𝐵  0.879 0.861 1.030 1.118 1.084 1.029 0.978 

𝛺𝐾 1.020 1.040 1.029 0.994 0.999 1.008 1.017 

Calibrated values appear in bold script, projections to 2030 for selected years in light script. 

Table D.1  Adjustment factors resulting from 2014-to-2017 calibration 

D.3 Full-horizon calibration of investment dynamics 

We perform a second dynamic calibration of KLEM-KSA on the specific issue of the 

investment rate. The reason for this additional calibration is the sensitivity of our 

unemployment results to the available stock of capital. This sensitivity comes from our wage 

curve specification, which translates into employment variations any change of the 

purchasing power of wages induced by nominal wage adjustments. Nominal wage 

adjustments flow in turn from our various specifications of the real effective exchange rate 

(our translation of the Saudi currency peg, see Annex B), depending on the dynamics of the 
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rental price of capital—hence the importance of controlling capital stock i.e. investment rate 

dynamics. 

Beyond 2017,29 we thus assume that the investment rate follows a trajectory that allows 

maintaining a stable unemployment rate in our Baseline scenario (see Section 3 for the full 

description of this scenario). To estimate such trajectory, we run our Baseline scenario with 

constant investment effort and compute what level of capital stock allows, each year, to 

reach the close-to-stable unemployment level projected for KSA by Oxford Economics 

forecasts.30 We translate the resulting capital stock trajectory in an investment trajectory 

based on the perpetual-inventory equation. The resulting investment trajectory is fairly 

stable when expressed as a share of GDP, remaining within 2 percentage points from its 

2013 level up to 2030. 

This extra calibration procedure is not some mere modelling artefact but does reflect actual 

Saudi macroeconomics. Despite the global economic crisis and its dramatic impact on oil 

markets, the Saudi unemployment rate only marginally fluctuated (+/- 0.3 pts) around its 

average of 5.6% over the past decade, which points at public policy intervention. Our 

calibration procedure assumes that this policy intervention mainly takes the form of public 

control on the investment trajectory—which is already our justification for settling on a 

Johansen closure of some exogenous investment trajectory guaranteed by endogenous 

                                                      

29 From 2013 to 2017, we set the investment rate at the value reported by the IMF. The calibration on 2014 to 2017 

macroeconomics (see Section D.2) warrants that the unemployment rate matches available statistics over that period.  

30 See https://www.oxfordeconomics.com/. 
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adjustment of the national saving rate (see Section 2.2). This requires qualifying our GDP 

and unemployment results with trade surplus accumulation results (see Section 4).  

Annex E Energy scenarios 

E.1 Domestic energy prices 

After a long period of nominal energy tariffs stagnation—i.e. of real energy price decrease, 

Saudi Arabia recently started a broad reform of energy pricing (APICORP, 2018). In 2016, the 

first phase of that reform saw the natural gas and ethane tariffs increase by respectively 67% 

and 133%, while tariff hikes for transport fuels (gasoline and diesel) ranged between 50% and 

79%. In 2018, the second phase of the reform raised the price of gasoline between 83% and 

127% (according to fuel grade) and that of residential electricity by 260% (for consumption 

levels below 6,000 kWh per month). Our Baseline and Low-oil-price scenarios assume 

domestic tariffs remaining constant relative to the price of the imported non-energy good (see 

Annex B for indexation issues linked to the currency peg), at the levels where the two phases 

of the reform brought them. 

By contrast, our Reformed scenario assumes that further reforms eventually bring tariffs in 

line with international references.31 More precisely, we assume that domestic oil and gas 

tariffs (e.g. for power generation or water desalinisation) converge towards international 

reference prices by 2030. Those reference prices consist of the projected international oil 

price and American natural gas price in the SDS scenario of the IEA (2017). This corresponds 

                                                      

31 Although public authorities announced further energy pricing reforms, they did not reveal what targets would be pursued 

(Ministry of Finance, 2018). 
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to raising the oil price from 6.35 USD per barrel (2017 price) to 69 USD per barrel and the 

natural gas price from 1.25 USD per million British Thermal Units (MMBTU) to around 4 USD 

per MMBTU by 2030.32 

In SAR per TOE 2013 2030, Baseline AAGR 2030, Reformed AAGR 

Energy consumption of 
non-energy firms  

290.0 419.1 +2.2% 1,907.7 +11.7% 

Energy consumption of 
energy firms 

117.5 145.7 +1.3% 1,412.0 +15.7% 

Energy consumption of 
households 

619.7 1,813.9 +6.5% 2,349.7 +8.2% 

Source: Authors’ computations based on KLEM-KSA and other assumptions. AAGR is the annual average growth rate. The 
Low-oil-price scenario shares all Baseline assumptions. 

Table E.1 Domestic energy prices of KSA scenarios 

These reforms would reflect real production cost for utilities and would foster competiveness 

by removing subsidies burden (i.e. the national oil company would be indifferent between 

selling oil domestically or abroad at international price). For the transport sector, we link fuel 

prices to the price of crude oil by deriving a ratio of crude oil price to refined products 

weighted by shares of diesel of gasoline using EIA data for the US. We assume that this ratio 

remains constant over time. It is of 1.43 for households (who mainly consume gasoline) and 

1.38 for other transports (who mainly use diesel).33 Finally, for electricity, we assume that the 

tariff increase follows the increase of the natural gas price. We aggregate these vector-specific 

assumptions according to the consumption volumes of Section E.2 to feed into KLEM for each 

scenario (Table E.1). 

                                                      

32 2030 prices are in 2016 dollars. 

33 For industrial uses i.e. mainly heavy fuel oil this ratio is equal to 0.92 (the price of heavy fuel oil is 8% lower than that of 

crude oil). 
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E.2 Domestic energy consumptions 

The KAPSARC Energy Model KEM, based on the above energy pricing assumptions, projects 

the energy consumptions of 6 sectors, which covered 71% of primary and final energy 

consumptions in 2013. We report here what assumptions we make to cover sectors outside 

the scope of KEM. 

In the Baseline scenario, KEM reports an increase of the crude oil and natural gas inputs into 

power generation and water desalinisation of 171% and 50% by 2030. The weighted average 

of the two increases is an 88% increase of energy input into energy supply. For the energy 

consumption of non-energy firms, we assume a constant energy intensity—notwithstanding 

KEM’s projection of the petrochemicals and cement sectors considering their minority shares 

in the total consumption of non-energy branches.34 This assumption reflects the fact that, 

even after the tariffs hikes of 2016 and 2018, Saudi energy prices remain well below 

international references.  

For households’ consumption, we assume a gradual alignment of the growth of residential 

consumptions on that of total population by 2030. With regard to refined product uses, we 

assume that light duty vehicles will reach 20 million units35, of which 96% personal cars based 

on current shares as reported by GAS (2017).36 We assume that fuel economy will increase to 

reach average CAFE standards of 17.1 km/l, up from 8 km/l in 2012 (Alabbadi, 2012). We 

                                                      

34 Petrochemicals and cement accounted for 36% of the total energy consumption of non-energy firms in 2013. 

35 https://www.onlyelevenpercent.com/energy-efficiency-saudi-arabia/. 

36 Extracted from the series ‘Car plates issued in the Kingdom by type’ issued by the GAS. 
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derive average annual car mileage from IEA (2009) estimates. According to these assumptions, 

households’ fuel uses will increase by 60% in 2030 compared to 2013. 

In the Reformed scenario, by 2030, KEM projects a phase out of crude oil uses for power 

generation and water desalinisation, and a decline of 67% of refined products (as a result of 

phase out of diesel) uses in this sector. The slowdown is mainly caused by the phase-out of 

crude oil and a significant cut of refined products uses for power generation and water 

desalination, as the Saudi power mix shifts towards renewable (mainly solar) energy and 

nuclear. The two trends combine into a low 15% increase of the aggregate energy input into 

energy firms between 2013 and 2030.  

For the energy consumption of non-energy production, we expect that the increases of energy 

tariffs will foster both energy efficiency measures and structural change away from energy-

intensive industries (petrochemicals, cement industry), in favour of manufacturing and 

services.37 To approximate the impact of such transformations, we assume that the energy 

intensity of non-energy activities converges towards the average energy intensity of a sample 

of 9 developing and middle-income countries by 2030, as projected by the RISKERGY project 

(Ghersi, 2016).38 This induces considering an annual energy-efficiency gain of 3.0% in non-

energy production from 2018 on. 

                                                      

37 For national energy efficiency measures, see the Saudi Energy Efficiency Centre (SEEC) annual reports at 

http://www.seec.gov.sa/.  

38 This sample comprises Brazil, China, the Czech Republic, Indonesia, India, Mexico, Malaysia, Turkey and South Africa. The 

RISKERGY-project energy intensities result from coupling KLEM models dedicated to each of these countries to their 

counterparts in the POLES model of global energy systems (see https://www.enerdata.net/solutions/poles-model.html). 

http://www.seec.gov.sa/
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For households’ consumption, we assume that reforms will contain residential electricity uses 

to grow in line with population only. Regarding transport, we hold to the assumptions of the 

Baseline scenario, except for fuel economy. We assume that the latter reaches the upper 

bound of CAFE standards of 22 km/l by 2030. As a result, households’ fuel uses will increase 

by only 24% in 2030 compared to 2013 (Table E.2). 

In MTOE 2013 2030, Baseline AAGR 2030, Reformed AAGR 

Energy consumption of 
non-energy firms  

119.8 227.9 +3.8% 140.3 +0.9% 

Energy consumption of 
energy firms 

120.9 177.5 +2.3% 119.1 -0.3% 

Energy consumption of 
households 

22.8 37.5 +3.0% 29.2 +1.5% 

Source: Authors’ computations based on KLEM-KSA and other assumptions. AAGR is the annual average growth rate. The 
Low-oil-price scenario shares all Baseline assumptions. 

Table E.2 Domestic energy consumptions of KSA scenarios 

E.3 Energy trade prices 

Oil trade accounts for 83% of Saudi exports earnings, of which 73% derived from crude oil 

exports of around 7 million barrels per day (mb/d) during the past decade (SAMA, 2017). This 

makes crude oil price the main variable of interest for energy trade. Although OPEC supplies 

40% of world oil demand, and Saudi Arabia acts as leader with 30% of the Organization’s 

supply, its impact on oil price is not established. In fact, there is no agreement about OPEC’s 

market power. Many authors argue that the ‘cartel’ strategy was established only during some 

periods, and that the strategy of OPEC has been evolving over time (Fattouh and Mahadeva, 

2013). Indeed, Brémond et al. (2012) show that OPEC has been acting as a price taker for most 

of the period following the first oil shock (1973), and that cartel behaviour only concerns a 

sub-group of the organization. Cairns and Calfucura (2012) or Colgan (2014) even argue that 



66 

OPEC has never constituted a cartel. In light of such evidence, we assume exogenous oil price 

trajectories in all our scenarios. 

Our oil price scenarios derive from IEA (2017). Saudi oil export prices in our Baseline scenario 

and Reformed scenario correspond to the NPS and SDS of the IEA, respectively. In both 

scenarios, the oil price decline of 2014 has resulted in historically low investment levels (IEA, 

2016). Given that oil demand is projected to increase in both scenarios (global oil demand in 

the SDS peaks in the mid-2020), current under-investment in oil resources is projected to raise 

oil prices up to 2025.39 Beyond this horizon, outlooks diverge: moderate climate policy will 

sustain oil demand, driving oil price up in the NPS. In contrast, higher penetration of electric 

vehicles and larger efficiency gains in the transport sector in addition to climate policy 

tightening will cause the oil price to decline under the SDS. In fact, global oil demand in the 

SDS is projected to be some 15.4 mb/d or 15% below that of the NPS by 2030. At this horizon, 

the price gap between the two scenarios is of 26.6% (Figure E.1).  

                                                      

39 This upward trend is similar across reference scenarios of EIA (2017) and OPEC (2017). 
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Source: Authors’ computations based on IEA data and projections. 

Figure E.1 Oil price statistics and projections 

To price the fraction of Saudi energy exports that consists of refined products, we consider a 

ratio to crude oil prices constant over time. We calibrate on the ratio of the weighted average 

of petroleum products export prices over the crude oil export price, which is around 0.96. 40 

This figure is consistent with that reported in SAMA (2017) of average refined products export 

price. Finally, we assume that the price of imported fuels is indexed on that of exported fuels, 

and that this indexation remains constant over time.   

E.4 Energy supply and trade flows 

In our calibration year (2013), KSA exported 7.5 mb/d of crude oil representing 88% of energy 

exports in addition to around 1 mb/d of refined products accounting for the remaining 12%. 

                                                      

40 For our calibration data, oil product exports consist of LPG (29%), gasoline (2%), kerosene (9%), diesel (10%), heavy fuel oil 

(24%) and naphtha (26%). We extract these shares from the Saudi energy balance. The high shares of low-grade products 

(e.g. heavy fuel oil) accounts for the average price being below that of crude oil. 
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By 2017, Saudi Arabia exported around 7 mb/d crude oil,41 whereas refined products exports 

had increased to around 1.8 mb/d.  

In our Baseline scenario, KEM reports natural gas output and electricity generation based on 

energy prices as previously described. Concerning gas, although the Kingdom is and will 

remain a major producer, we direct all production to the domestic market. This is a common 

assumption across Saudi energy models (see Matar et al., 2017). For the remaining sectors, 

i.e. crude oil and refined products, we assume that (1) the Saudi output of crude oil reaches 

12.7 mb/d by 2030. This corresponds to the Saudi oil supply projected by the IEA (2017) in the 

NPS. This requires additional output of around 2 mb/d compared to current levels. However, 

according to existing estimates, Saudi Arabia already has a spare capacity that could lift 

production to that level (IEA, 2018). (2) The Saudi refining capacity increases from the current 

2.9 mb/d to reach 3.3 mb/d by 2030.42 (3) Imports of refined products, which in fact 

correspond to total Saudi energy imports, follow potential growth at 2.23% per year up to 

2030 (see Section 3.1). Under our domestic consumption assumptions, these supply and 

import assumptions point at Saudi energy exports increasing by around 25%, with refined 

products contributing more than 3/4th of this growth.  

In the Reformed scenario, KEM provides natural gas output and electricity generation based 

on reformed tariffs. We maintain the assumption that both supplies meet domestic demand 

only. Concerning oil, we assume that Saudi Arabia keeps its export volume unchanged 

                                                      

41 This resulted from an output cut following OPEC and non-OPEC accord.  

42 After the opening of the Jazan refinery (0.4 mb/d).  
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compared to the Low-oil-price scenario, and adjusts its output accordingly.43 This reflects the 

fact that Saudi Arabia has one of the lowest extraction costs, and that oil-exporters with high 

marginal costs will bear the oil demand decline (see Barnett et al., 2004; Verbruggen and van 

de Graaf, 2015). Modelling the Saudi export-policy response to the climate-policy impact on 

oil demand would require additional assumptions on factors such as the elasticity of the 

international oil price to Saudi output and the market power of KSA (and the OPEC), which are 

beyond our scope in this paper.44 Additionally, we consider that refined fuel imports, rather 

than increasing as potential output, remain constant at their 2013 level, consequently to the 

substantial efficiency gains from diversification reforms. 

One last feature differentiating scenarios is the capital intensity of energy production. We 

work out sector-specific capital intensities in SAR per ton of oil-equivalent output for the four 

energy vectors crude oil, natural gas, refined fuels and power, and compute variations of the 

aggregate capital intensity coefficient by averaging with weights corresponding to output 

shares. In all scenarios, we assume a constant capital intensity of crude oil and natural gas 

production. In all scenarios as well, we increase the capital intensity of refined fuels 

production by the annuity of investment in the new capacity of the Jazan refinery.45 Finally, 

the capital intensity of power generation changes across scenarios to reflect the shifts of 

power mix simulated by KEM. In the Baseline scenario, the mix remains dominated by fossil-

fuel capacity, although gradually shifting toward natural gas, which has a lower capital cost 

                                                      

43 This induces substituting 𝑌𝐸  to 𝑋𝐸  as variable of the model (see Table A.1 of Annex A). 

44 Blazquez et al. (2017) find that exporting the oil production surplus from renewable energy deployment in KSA could have 

a negative impact on oil price and potentially offset the gains associated with renewable energy penetration. 

45 We assume a lifetime of 25 years and a discount rate of 8% to compute annuities of the initial SAR 26.3 billion investment. 
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than alternative technologies (e.g. solar or nuclear). We use capital cost from the WEO (IEA, 

2016). In our Reformed scenario, the penetration of renewables and nuclear increases the 

capital cost of power generation. 

The resulting aggregate capital intensity of energy production remains broadly stable in the 

Baseline (and hence Low-oil-price) scenario, although ending some 2.5% below its 2013 level 

in 2030 thanks to increased utilisation rates—output increases faster than capital 

expenditures relative to the base year (+45.6% vs. +25.1%). In the Reformed scenario, the 

capital intensity ends 1.2% above 2013 level in 2030, i.e. around 4% above its level in the 

Baseline scenario. They capture the higher investment costs of the alternative sources made 

profitable by the sharp increase of energy prices. 


