S. Benzoni-gavage and D. Serre, Multi-dimensional hyperbolic partial differential equations. First order systems and applications, 2007.

B. Bernstein, E. A. Kearsley, and L. J. Zapas, A study of stress relaxation with finite strain, Transactions of the Society of Rheology, vol.7, issue.1, pp.391-410, 1963.

B. Bernstein, E. A. Kearsley, and L. J. Zapas, Thermodynamics of perfect elastic fluids, Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, vol.68, issue.3, p.103, 1964.

E. C. Bingham, Fluidity and plasticity, 1922.

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, vol.1, 1987.

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, vol.2, 1987.

J. Bonet, A. J. Gil, and R. Ortigosa, A computational framework for polyconvex large strain elasticity, Comput. Methods Appl. Mech. Engrg, vol.283, pp.1061-1094, 2015.

F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models, Numerische Mathematik, vol.94, pp.623-672, 2003.

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics. Birkhäuser Verlag, 2004.

F. Bouchut and S. Boyaval, A new model for shallow viscoelastic fluids, vol.3, pp.1479-1526, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00628651

F. Bouchut and S. Boyaval, Unified derivation of thin-layer reduced models for shallow free-surface gravity flows of viscous fluids, Eur. J. Mech. B Fluids, vol.55, pp.116-131, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00833468

S. Boyaval, Derivation and numerical approximation of hyperbolic viscoelastic flow systems: Saint-Venant 2D equations for Maxwell fluids, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01661269

S. Boyaval, Viscoelastic flows with conservation laws, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02262298

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics, 1941.

D. Bernard, W. Coleman, and . Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, vol.13, pp.167-178, 1963.

C. M. Dafermos, Hyperbolic conservation laws in continuum physics, vol.325, 2000.

A. J. De-saint-venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières età l'introduction des marées dans leur lit, C. R. Acad. Sc, vol.73, pp.147-154, 1871.

T. W. Dewitt, A rheological equation of state which predicts nonnewtonian viscosity, normal stresses, and dynamic moduli, Journal of Applied Physics, vol.26, issue.7, pp.889-894, 1955.

M. Doï and S. F. Edwards, The Theory of Polymer Dynamics, 1998.

M. Dressler, B. J. Edwards, and H. Christianöttinger, Macroscopic thermodynamics of flowing polymeric liquids, Rheologica Acta, vol.38, issue.2, pp.117-136, 1999.

J. Brian, A. N. Edwards, and . Beris, Remarks concerning compressible viscoelastic fluid models, Journal of Non-Newtonian Fluid Mechanics, vol.36, pp.411-417, 1990.

S. Ferrari and F. Saleri, A new two-dimensional shallow water model including pressure effects and slow varying bottom topography, M2AN Math. Model. Numer. Anal, vol.38, issue.2, pp.211-234, 2004.

S. Gavrilyuk, K. Ivanova, and N. Favrie, Multi-dimensional shear shallow water flows: problems and solutions, J. Comput. Phys, vol.366, pp.252-280, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01529497

A. Gloria, P. L. Tallec, and M. Vidrascu, Foundation, analysis, and numerical investigation of a variational network-based model for rubber, Continuum Mechanics and Thermodynamics, vol.26, issue.1, pp.1-31, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00673406

E. Godlewski and P. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol.118, 1996.

M. Grmela and P. J. Carreau, Conformation tensor rheological models, Journal of Non-Newtonian Fluid Mechanics, vol.23, pp.271-294, 1987.

J. B. Haddow and H. A. Erbay, Some aspects of finite amplitude transverse waves in a compressible hyperelastic solid, Quart. J. Mech. Appl. Math, vol.55, issue.1, pp.17-28, 2002.

A. Martien and . Hulsen, A sufficient condition for a positive definite configuration tensor in differential models, J. Non-Newtonian Fluid Mech, vol.38, issue.1, pp.93-100, 1990.

F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances, Comm. Pure Appl. Math, vol.41, issue.5, pp.615-666, 1988.

D. D. Joseph, M. Renardy, and J. C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Archive for Rational Mechanics and Analysis, vol.87, issue.3, pp.213-251, 1985.

D. D. Joseph and J. C. Saut, Change of type and loss of evolution in the flow of viscoelastic fluids, Journal of Non-Newtonian Fluid Mechanics, vol.20, pp.117-141, 1986.

T. Kato, The cauchy problem for quasi-linear symmetric hyperbolic systems, Archive for Rational Mechanics and Analysis, vol.58, issue.3, pp.181-205, 1975.

A. Kaye, Non-newtonian flow in incompressible fluids, 1962.

A. Kaye, Non-newtonian flow in incompressible fluids, 1962.

V. I. Kondaurov, On conservation laws and symmetrization of equations of the nonlinear theory of thermoelasticity, Dokl. Akad. Nauk SSSR, vol.256, issue.4, pp.819-823, 1981.

J. Krishnan and D. J. Steigmann, A polyconvex formulation of isotropic elastoplasticity theory, IMA J. Appl. Math, vol.79, issue.5, pp.722-738, 2014.

R. Kupferman, E. Olami, and R. Segev, Continuum dynamics on manifolds: Application to elasticity of residually-stressed bodies, Journal of Elasticity, vol.128, issue.1, pp.61-84, 2017.

R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Biotechnology Series. Butterworths, 1988.

R. J. Leveque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, 2002.

H. Elliott and . Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Advances in Math, vol.11, pp.267-288, 1973.

P. Lions, Incompressible models, of Oxford Lecture Series in Mathematics and its Applications, vol.1, 1996.

A. T. Mackay and T. N. Phillips, On the derivation of macroscopic models for compressible viscoelastic fluids using the generalized bracket framework, J. Non-Newton. Fluid Mech, vol.266, pp.59-71, 2019.

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol.53, 1984.

J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity. Dover Civil and Mechanical Engineering, 2012.

G. A. Maugin, Continuum Mechanics through the Ages -From the Renaissance to the Twentieth Century: From Hydraulics to Plasticity. Solid Mechanics and Its Applications, 2015.

J. Maxwell, Iv. on the dynamical theory of gases, Philosophical Transactions of the Royal Society of London, vol.157, pp.49-88, 1867.

A. Morando, Y. Trakhinin, and P. Trebeschi, Structural stability of shock waves in 2d compressible elastodynamics, Mathematische Annalen, 2019.

J. G. Oldroyd, On the formulation of rheological equations of state, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.200, pp.523-541, 1063.

F. Olsson, A solver for time-dependent viscoelastic fluid flows, Journal of Non-Newtonian Fluid Mechanics, vol.51, issue.3, pp.309-340, 1994.

R. G. Owens and T. N. Philips, Computational rheology, 2002.

I. Peshkov, W. Boscheri, R. Loubère, E. Romenski, and M. Dumbser, Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for eulerian non-linear elastoplasticity, Journal of Computational Physics, vol.387, pp.481-521, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02322050

F. R. Phelan, M. F. Malone, and H. H. Winter, A purely hyperbolic model for unsteady viscoelastic flow, Journal of Non-Newtonian Fluid Mechanics, vol.32, issue.2, pp.197-224, 1989.

S. Poisson, Mémoire sur leséquations générales de l'équilibre et du mouvement des corps solidesélastiques et des fluides, J. Ec. Polytech., cahier, vol.20, pp.1-174, 1831.

M. Renardy, Mathematical Analysis of Viscoelastic Flows, CBMS-NSF Conference Series in Applied Mathematics. SIAM, vol.73, 2000.

M. Renardy, A local existence and uniqueness theorem for a K-BKZfluid. Archive for Rational Mechanics and Analysis, vol.88, pp.83-94, 1985.

C. Speziale, On maxwell models in viscoelasticity that are more computable, International Journal of Non Linear Mechanics, vol.35, pp.567-571, 2000.

C. Ven-te, Open-channel hydraulics, 1959.

H. David and . Wagner, Symmetric-hyperbolic equations of motion for a hyperelastic material, J. Hyperbolic Differ. Equ, vol.6, issue.3, pp.615-630, 2009.

D. H. Wagner, Conservation laws, coordinate transformations, and differential forms, Hyperbolic Problems: Theory, Numerics, Applications, pp.471-477, 1994.

C. C. Wang and C. Truesdell, Introduction to rational elasticity, Monographs and Textbooks on Mechanics of Solids and Fluids, 1973.

W. Yong, Newtonian limit of maxwell fluid flows, Arch. Ration. Mech. Anal, vol.214, issue.3, pp.913-922, 2014.