Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Viscoelastic flows of Maxwell fluids with conservation laws

Sébastien Boyaval 1, 2
1 MATHERIALS - MATHematics for MatERIALS
CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique, Inria de Paris
Abstract : We consider multi-dimensional extensions of Maxwell's seminal rheo-logical equation for 1D viscoelastic flows. We aim at a causal model for compressible flows, defined by semi-group solutions given initial conditions , and such that perturbations propagates at finite speed. We propose a symmetric hyperbolic system of conservation laws that contains the Upper-Convected Maxwell (UCM) equation as causal model. The system is an extension of polyconvex elastodynamics, with an additional material metric variable that relaxes to model viscous effects. Interestingly, the framework could also cover other rheological equations, depending on the chosen relaxation limit for the material metric variable. We propose to apply the new system to incompressible free-surface gravity flows in the shallow-water regime, when causality is important. The system reduces to a viscoelastic extension of Saint-Venant 2D shallow-water system that is symmetric-hyperbolic and that encompasses our previous viscoelastic extensions of Saint-Venant proposed with F. Bouchut.
Liste complète des métadonnées

Littérature citée [61 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-02908379
Contributeur : Sébastien Boyaval <>
Soumis le : jeudi 30 juillet 2020 - 17:15:35
Dernière modification le : jeudi 29 octobre 2020 - 14:30:03

Fichiers

svm2hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02908379, version 1
  • ARXIV : 2007.16075

Citation

Sébastien Boyaval. Viscoelastic flows of Maxwell fluids with conservation laws. 2020. ⟨hal-02908379⟩

Partager

Métriques

Consultations de la notice

74

Téléchargements de fichiers

100