S. Nino, . Di, and A. Luongo, A simple homogenized orthotropic model for in-plane analysis of regular masonry walls, Int J Solids Struct, 2019.

A. Drougkas, E. Verstrynge, R. Hayen, and K. Van-balen, The confinement of mortar in masonry under compression: Experimental data and micro-mechanical analysis, Int J Solids Struct, vol.162, pp.105-120, 2019.

B. Pantò, L. Silva, G. Vasconcelos, and P. B. Lourenço, Macro-modelling approach for assessment of out-of-plane behavior of brick masonry infill walls, Eng Struct, vol.181, pp.529-549, 2019.

G. Salerno and G. De-felice, Continuum modeling of periodic brickwork, Int J Solids Struct, vol.46, pp.1251-1267, 2009.

M. Petracca, L. Pelà, and R. Rossi, Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls, Constr Build Mater, vol.149, pp.296-314, 2017.

A. Cecchi and K. Sab, A multi-parameter homogenization study for modeling elastic masonry, Eur J Mech A/Solids, vol.21, pp.249-268, 2002.

A. Anthoine, Derivation of the in-plane elastic characteristics of masonry through homogenization theory, Int J Solids Struct, vol.32, pp.137-163, 1995.

I. Stefanou, K. Sab, and J. Heck, Three dimensional homogenization of masonry structures with building blocks of finite strength: A closed form strength domain, Int J Solids Struct, vol.54, pp.258-270, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01091848

N. Cavalagli, F. Cluni, and V. Gusella, Strength domain of non-periodic masonry by homogenization in generalized plane state, Eur J Mech A/Solids, vol.30, pp.113-126, 2011.

H. Friaa, M. Hellara, and I. Stefanou, In-plane strength domain numerical determination of hollow concrete block masonry, Design and Modeling of Mechanical Systems-III. CMSM 2017, 2018.

A. Cecchi and K. Sab, A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork, Int J Solids Struct, vol.41, pp.2259-2276, 2004.

A. Bacigalupo and L. Gambarotta, Computational two-scale homogenization of periodic masonry: Characteristic lengths and dispersive waves, Comput Methods Appl Mech Eng, vol.213, pp.16-28, 2012.

M. Mistler, A. Anthoine, and C. Butenweg, In-plane and out-of-plane homogenisation of masonry, Comput Struct, vol.85, pp.1321-1330, 2007.

A. Caporale, F. Parisi, and D. Asprone, Micromechanical analysis of adobe masonry as two-component composite : Influence of bond and loading schemes, Compos Struct, vol.112, pp.254-263, 2014.

L. C. Silva, P. B. Lourenço, and G. Milani, Derivation of the out-of-plane behaviour of masonry through homogenization strategies: Micro-scale level, Comput Struct, vol.209, pp.30-43, 2018.

G. Milani and A. Cecchi, Compatible model for herringbone bond masonry: Linear elastic homogenization, failure surfaces and structural implementation, Int J Solids Struct, vol.50, pp.3274-3296, 2013.

F. Cluni and V. Gusella, Homogenization of non-periodic masonry structures, Int J Solids Struct, vol.41, pp.1911-1923, 2004.

A. Cecchi and K. Sab, Discrete and continuous models for in plane loaded random elastic brickwork, Eur J Mech A/Solids, vol.28, pp.610-625, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00516666

V. Gusella and F. Cluni, Random field and homogenization for masonry with non periodic microstructure, J Mech Mater Struct, vol.1, pp.97-127, 2006.

N. Cavalagli, F. Cluni, and V. Gusella, Evaluation of a Statistically Equivalent Periodic Unit Cell for a quasi-periodic masonry, Int J Solids Struct, vol.50, pp.4226-4240, 2013.

K. Sab, Overall ultimate yield strength of a quasi-periodic masonry, Comptes Rendus -Mec, vol.337, pp.603-609, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00517819

G. Milani, Y. W. Esquivel, and P. B. Lourenço, , p.23, 2013.

, quasi-periodic masonry: Geometrical investigation, homogenization and application to the Guimarães castle, Portugal. Eng Struct, vol.56, pp.621-641

N. Cavalagli, F. Cluni, and V. Gusella, Failure surface of quasi-periodic masonry by means of Statistically Equivalent Periodic Unit Cell approach, Meccanica, vol.53, pp.1719-1736, 2018.

A. Cecchi, D. Marco, and R. , Homogenization of masonry walls with a computational oriented procedure. Rigid or elastic block?, Eur J Mech A/Solids, vol.19, pp.535-546, 2000.

A. Drougkas, P. Roca, and C. Molins, Analytical micro-modeling of masonry periodic unit cells -Elastic properties, Int J Solids Struct, vol.69, pp.169-188, 2015.

H. Adeli, Neural Networks in Civil Engineering, vol.16, pp.126-142, 1989.

S. Moosazadeh, E. Namazi, and H. Aghababaei, Prediction of building damage induced by tunnelling through an optimized artificial neural network, Eng Comput, pp.1-13, 2018.

P. G. Asteris and V. Plevris, Anisotropic masonry failure criterion using artificial neural networks, Neural Comput Appl, 2016.

G. Tayfur, T. K. Erdem, and Ö. Kira, Strength Prediction of High-Strength Concrete by Fuzzy Logic and Artificial Neural Networks, J Mater Civ Eng, vol.10, pp.1-7, 2014.

Z. H. Duan, S. C. Kou, and C. S. Poon, Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete, Constr Build Mater, vol.44, pp.524-532, 2013.

H. Eskandari-naddaf and R. Kazemi, ANN prediction of cement mortar compressive strength , influence of cement strength class, Constr Build Mater, vol.138, pp.1-11, 2017.

A. Hammoudi, K. Moussaceb, C. Belebchouche, and F. Dahmoune, Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates, Constr Build Mater, vol.209, pp.425-436, 2019.

V. Plevris and P. G. Asteris, Modeling of masonry failure surface under biaxial compressive stress using Neural Networks, Constr Build Mater, vol.55, pp.447-461, 2014.

Q. Zhou, F. Zhu, and X. Yang, Shear capacity estimation of fully grouted reinforced concrete masonry walls using neural network and adaptive neuro-fuzzy inference system models, Constr Build Mater, vol.153, pp.937-947, 2017.

Y. Zhang, G. C. Zhou, Y. Xiong, and M. Y. Rafiq, Techniques for Predicting Cracking Pattern of Masonry Wallet Using Artificial Neural Networks and Cellular Automata, J Comput Civ Eng, vol.24, pp.161-172, 2010.

E. N. Ghaleini, M. Koopialipoor, and M. Momenzadeh, A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls, Eng Comput, pp.1-12, 2018.

J. Garzón-roca, J. M. Adam, C. Sandoval, and P. Roca, Estimation of the axial behaviour of masonry walls based on Artificial Neural Networks, Comput Struct, vol.125, pp.145-152, 2013.

J. Garzón-roca, C. M. Obrer, and J. M. Adam, Compressive strength of masonry made of clay bricks and cement mortar : Estimation based on Neural Networks and Fuzzy Logic, vol.48, pp.21-27, 2013.

H. Nguyen, H. Moayedi, and L. K. Foong, Optimizing ANN models with PSO for predicting short building seismic response, Eng Comput, vol.35, 2019.

G. Zhou, D. Pan, X. Xu, and Y. M. Rafiq, Innovative ANN Technique for Predicting Failure/Cracking Load of Masonry Wall Panel under Lateral Load, J Comput Civ Eng, vol.24, pp.377-387, 2009.

A. Barbieri and A. Cecchi, Analysis of masonry columns by a 3D F.E.M homogenisation procedure, Proceedings of the 2nd IASME / WSEAS International Conference on Continuum Mechanics (CM'07), pp.68-75, 2007.

. Nf-p, Blocs en béton pour murs et cloisons -Dimensions et tolérances, AFNOR, vol.301, p.24, 1983.

D. Caillerie and J. C. Nedelec, Thin elastic and periodic plates, Math Meth Appl Sci, vol.6, pp.159-191, 1984.

A. Cecchi, G. Milani, and A. Tralli, Validation of analytical multiparameter homogenization models for out-of-plane loaded masonry walls by means of the finite element method, J Eng Mech, vol.131, pp.185-198, 2005.

K. Sab and A. Lebée, Homogenization of Heterogeneous Thin and Thick Plates, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01266702

S. Nemat-nasser, T. Iwakuma, and M. Hejazi, On composites with periodic structure, Mech Mater, vol.1, pp.239-267, 1982.

G. P. Steven, Homogenization of multicomponent composite orthotropic materials using FEA, Numer Methods Eng, vol.13, pp.517-531, 1997.

A. Lebée and K. Sab, A bending-gradient model for thick plates , Part II : Closed-form solutions for cylinfrical bending of laminates, Int J Solids Struct, vol.48, pp.2889-2901, 2011.

S. L. Omairey, P. D. Dunning, and S. Sriramula, Development of an ABAQUS plugin tool for periodic RVE homogenisation, Eng Comput, vol.35, pp.1-11, 2018.

J. S. Lee, G. N. Pande, and B. Kralj, A comparative study on the approximate analysis of masonry structures, Mater Struct Constr, vol.31, pp.473-479, 1998.

B. Standard, Eurocode 6: Design of masonry structures. British Standard Institution

L. V. Kamble, D. R. Pangavhane, and T. P. Singh, Neural network optimization by comparing the performances of the training functions -Prediction of heat transfer from horizontal tube immersed in gas-solid fluidized bed, Int J Heat Mass Transf, vol.83, pp.337-344, 2015.

H. Demuth and B. Mark, Neural Network Toolbox user's guide, Version 4, 2002.

E. M. Golafshani, A. Rahai, M. H. Sebt, and H. Akbarpour, Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic, Constr Build Mater, vol.36, pp.411-418, 2012.

M. Saridemir, Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic, Adv Eng Softw, vol.40, pp.920-927, 2009.

Z. H. Duan, S. C. Kou, and C. S. Poon, Prediction of compressive strength of recycled aggregate concrete using artificial neural networks, Constr Build Mater, vol.40, pp.1200-1206, 2013.

H. Khaterchi, A. Chamekh, and H. Belhadjsalah, Artificial Neural Network Analysis for Modeling Fibril Structure in Bone, vol.16, pp.581-587, 2015.

V. Chandwani, V. Agrawal, and R. Nagar, Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks, Expert Syst Appl, vol.42, pp.885-893, 2015.

P. B. Cachim, Using artificial neural networks for calculation of temperatures in timber under fire loading, Constr Build Mater, vol.25, pp.4175-4180, 2011.

B. M. Wilamowski, Y. Chen, and M. Aleksander, Efficient Algorithm for Training Neural Networks with one Hidden Layer, Proc Int Jt Conf Neural Networks (IJCNN'99, 1999.

J. Gholamnejad, H. R. Bahaaddini, and M. Rastegar, Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods, J Min Environ, vol.4, pp.35-43, 2013.