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Abstract 
 

 

 

 

A masonry wall is a composite structure characterized by a large variety in geometrical and material 

parameters. The determination of the effective macroscopic properties, through the homogenization 

scheme, depends on a great number of variables. Thus, in order to replace heavy numerical 

simulation, in this paper, the use of artificial neural networks (ANN) is proposed to predict elastic 

membrane and bending constants of the equivalent Love-Kirchhoff plate of hollow concrete blocks 

masonry wall. To model the ANN, a numerical periodic homogenization in several parameters is 

used. To construct the model, five main material and geometrical input parameters are utilized. 

Multilayer perceptron neural networks are designed and trained (with the best selected ANN model) 

by the sets of input-output patterns using the backpropagation algorithm. As a result, in both training 

and testing phases, the developed ANN indicates high accuracy and precision in predicting the 

equivalent plate of a hollow masonry wall with insignificant error rates compared to FEM results. 
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1 Introduction 

The masonry wall represents a composite structure obtained by a regular or irregular repetition of 

bricks or blocks joined by mortar, which is characterized by a large variety of arrangements, 

material, and geometrical parameters. Thus, the study of its anisotropy and its inhomogeneity 

behavior represents a challenging task. Furthermore, the prediction of the average mechanical 

properties of the structure is difficult, in particular for the elastic behavior. Actually, this average 

behavior strongly depends on the properties of the constituent materials. Sophisticated methods are 

then needed to derive the equivalent behavior. In addition, results for one masonry may differ from 

one another. Therefore, the development of an intelligent tool for the determination of equivalent 

orthotropic behavior of a large variety of masonry structures based on their geometrical and material 

properties provides a powerful tool for further studies. In the literature, several numerical and 

analytical models have been developed to study masonry structures using different methods.  

A large number of micro-modelling and macro-modelling approaches have been proposed both in 

linear and nonlinear analyses of masonry structure [1–3]. In the former, the overall masonry wall is 

regarded as a continuum equivalent homogeneous structure without considering any distinction 

between mortar joints and units [4] which makes it suitable for the analysis of complex and large 

structures due to its low computational cost. In the latter approach, the micro-modelling, masonry 

wall is characterized by a discretization at the level of units and joints [5]. Midway between these 

two approaches, there is the computational homogenization method. The use of such a method has 

been successfully implemented to derive the elastic behavior [6, 7] and the strength properties [8–

10]. Generally, the macroscopic characterization is strongly connected to structure geometry (the 

texture), as well as units and joints mechanical behaviour. In the literature when dealing with the 

regular arrangement, the most investigated case using the homogenization method is the running 

bond pattern [11–13]. Recently, different periodic textures have been studied [14], as for instance 

English bond [15] or herringbone bond masonry [16]. Dealing with an irregular pattern, based on 

homogenization concepts, the effective properties in the elastic field was estimated [17–20], also the 

strength domain was estimated [9][21–23]. 

Nevertheless, very limited analytical and numerical models have been proposed to derive the 

equivalent behaviour of masonry structure on parametric analysis. Using a finite-element technique, 

Cecchi and Di Marco [24] carried out a parametric study on the ratio between the mechanical 

characteristics of the blocks and of the joints, defining the ultimate behavior when considering the 

block as infinitely stiff. Following this work, Cecchi et al. [6] presented a study dealing with the 

determination of an analytical expression of the macroscopic overall effective elastic properties of 

masonry considering three intrinsic disruptive parameters. Furthermore, Drougkas et al. [25] 
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presented an analytical model for the analysis of masonry periodic unit cells based on detailed micro-

modeling. However, these suggested methods may require high computational costs since the 

formulation of equivalent models is complex and requires a huge number of simulations. 

Consequently, it seems interesting to use a faster method which reduces the complexity of this study. 

One of the most popular and efficient methods is the use of Artificial Neural Networks (ANNs). The 

latter represents powerful data modeling tools, which are able to predict, classify and represent 

complex nonlinear relationships between independent variables and responses. They have been 

recently employed to solve a variety of civil engineering problems [26–28]. Several researchers have 

successfully used ANNs to estimate the compressive strength and elastic modulus of different types 

of concrete [29, 30]. Added to that, some studies have focused on cement mortar and the influence 

of element strength on compressive mortar strength [31]. To predict and model the compressive 

strength of recycled concrete aggregates, both the ANNs and the responses surface methodology 

(RSM) were used in [32], as a result, both approaches correlate very well with the experimental data. 

However, the ANN model showed better accuracy.  

During the last decades, very few studies have incorporated the use of ANNs for the prediction of 

masonry behavior in general. As an example, ANN was used to approximate the masonry structure 

failure surface under biaxial compressive stress [33]. Furthermore, new studies have been conducted 

on the prediction of masonry behavior using ANN. Asteris et al.[28] put in evidence the ability of 

ANN to solve nonlinear problems by modeling an anisotropy masonry failure criterion under biaxial 

compressive strength. Zhou et al. [34] used ANNs and adaptive neuro-fuzzy networks to predict the 

shear resistance of fully grouted reinforced concrete masonry. Zhang et al. [35] developed an ANN 

model for predicting the cracking patterns of different masonry wallettes subjected to a vertical load. 

Recently, ANN combined with artificial bee colony [36] was presented for solving problems related 

to the safety of retaining walls in geotechnics. In another study, Garzón-Roca et al.[37] adopted 

ANN to predict the maximum axial load capacity of masonry structure, as well as adopted ANNs 

and Fuzzy Logic in [38] to estimate the compressive strength of brick masonry structure. 

Furthermore, optimized ANN with PSO (particle swarm optimization) was successfully used to 

predict the seismic response of a short structure in [39]. Zhou et al. [40] proposed the use of an 

artificial intelligence method to predict the failure of a laterally loaded masonry wall based on the 

experimental analysis. Three ANN models were trained and adjusted to optimize its parameters. 

The results of previous studies have shown the power of statistical methods to establish a 

relationship between critical parameters and complex behavior systems. However, no research has 

been conducted on the application of the well-known artificial intelligent technique to estimate the 

macroscopic equivalent elastic properties of the masonry structure. The current study investigates 
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for the first time the development of the ANN model to predict the properties of the equivalent Love-

Kirchhoff plate of a hollow blocks masonry wall mainly based on five material and geometrical 

parameters. Subsequently, the relationship between responses and different factors is analyzed. 

Additionally, the estimation of capabilities and modeling efficiencies of ANN models are 

statistically proved, using various parameters, such as the coefficient of determination (R2), the mean 

absolute percentage error (MAPE), and the root mean square error (RMSE). 

2 Masonry in-plane and out-of-plane homogenization scheme: influence of bond 

2.1 Geometry description 

Numerical homogenization is applied in this paper to estimate the equivalent behaviour of the 

periodic masonry assemblage, by taking into account the characteristics of different constituents and 

by focusing on the influence of different bond configurations. Indeed, the units and mortar relative 

arrangement have a significant influence on the equivalent elastic properties. Although, the research 

when dealing with the influence of the masonry bond pattern appears still somewhat fragmented 

even if some researches have been proposed [14][41]. It has been demonstrated that significant 

changes occur in the response in terms of stiffness, strength…. 

In what follows to better clarify how the equivalent elastic behaviour is depending on the texture, 

special attention is paid to the influence of bond pattern by studying several commonly used periodic 

arrangements masonry walls. 

In this paper, we consider a running bond, a stack bond and an English bond masonry structures 

denoted by Μ with height H and length L. These walls are formed by periodically arranged hollow 

concrete blocks, between which bed and head mortar are laid with a thickness of ev and eh, 

respectively as depicted in Fig.1. The used units are the most common construction materials, known 

by classification B40 in accordance with NF P 14-402 [42]. The geometric parameters of the latter 

are: (length=500 mm x height= 200 mm x thickness=200 mm). Due to their low cost and their 

durability, they are widely used in masonry structures all over the world such as structural elements 

of large commercial and government buildings like schools, office buildings, and hospitals. Concrete 

blocks are also fireproofing and resist moisture, making it ideal for wet environments, such as a 

house near the ocean or in a basement. To study the behaviour of such a complex structure subjected 

to in-plane and out-of-plane loads by means of Finite Element Modelling (FEM), a very fine mesh 

is needed. Hence, to optimize the computational cost, it is convenient to look for an equivalent plate 

model for this 3D structure by means of the periodic homogenization scheme.  
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The considered walls are regarded as periodic structures in their plane as shown in Fig.1. Therefore, 

thanks to the periodicity of the building arrangement within in-plane directions 
1 2( , )x x , each entire 

wall can be considered as a repetition of a basic cell called the unit-cell and denoted by Y . The 

choice of this basic cell depends strongly on the geometry of the masonry structure. For the above-

described structures, the chosen basic cells for running bond, stack bond, and English bond pattern 

respectively are shown in Fig.2. These chosen unit-cells own all the necessary information to 

describe the geometry of the whole structures M. For the running bond pattern, the unit-cell is 

formed by the equivalent of two hollow blocks rigidly connected by mortar, as illustrated in Fig.2(a). 

For the stack bond pattern, the unit-cell is formed by the equivalent of one hollow blocks surrounded 

by half mortar, as illustrated in Fig.2(b) and for the English bond the unit cell is formed by the 

equivalent of six blocks with different height joined with mortar. Let  1 1,x x x=  be the reference 

frame for the global description of the macroscopic structures (a whole wall), and the unit-cells 

reference frame is  1 2 3, ,e e e  which is associated with the local coordinate  1 2 3, ,y y y y= . These 

unit-cells can be written as ;
2 2

t t
Y 

 
=  − 

 
 where 2R  is their middle planes. The unit-cells 

boundary surface Y is given by 3 3lY Y Y Y + − =     where 3 2
tY    =  

   and 1,2l = as 

shown in Fig.2. To be noted the same notation are adopted for different studied structures. 

 

Fig.1. Periodic masonry walls understudy 

 

 

Fig.2. Chosen unit-cells for masonry walls (a) running bond wall (b) stack bond wall (c) English 

bond wall 

The geometrical parameters of the considered unit-cells are summarized in Table.1. 

 

Table 1. Chosen unit-cells geometrical properties 

 

2.2 Homogenization scheme background 

In brief, the homogenization method represents a convenient approach to study masonry structures, 

both in the linear and non-linear range. It allows establishing constitutive relations in terms of macro 

or average stresses and strains from the microstructure and the constitutive relations of the individual 
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components. The macroscopic stress and strain tensors  and E are defined by the spatial averages 

of the local stress and strain fields over the unit-cell Y of volume V. Indeed, 
1

dv
V Y

 = =    

and 
1

( )E u dv
V Y

= =   ; where   represents the local strain value which is directly dependent on 

the displacement field u ,  is the local stress value and .  is the average operator. 

It is noted that the wall length is much larger than the one size of the unit then it can be considered 

as a Love-Kirchhoff plate as it was demonstrated by Caillerie [43]. This plate occupies a domain 

,
2 2

t t 
 − 

 
where 2  R  represents the middle surface and t  is its thickness.  

Therefore, according to [7] and [44], the homogenization problem in the linear elastic range, in 

presence of coupled flexural and membrane loads (in-plane and out-of-plane loads), and under the 

assumption of the Love-Kirchhoff plate theory, can be written as follows: 

In the previous problem (HP): equation (1a) denotes the micro-equilibrium for the unit-cell with 

zero body forces, where div  is the divergence operator and   is the microscopic Cauchy stress 

tensor. Furthermore, equation (1b) represents the linear elastic behaviour law, where C  is the 

fourth-order elasticity compliance tensor, and the double contraction product is defined as 

: ij jiX Y X Y= . In equation (1c), the micro-strain tensor   is obtained as a linear combination among 

the macroscopic E  and   tensors as well as a periodic strain field, where E  is the macroscopic 

in-plane strain tensor,   is the out-of-plane strain tensor, s
grad  is the symmetric part of the gradient 

operator and 
per

u  is the 2D periodic displacement vector. In equation (1e), n  represents the outer 

normal to the boundary of the unit-cell. The macroscopic tensors are related to the macroscopic 

displacement field components 1 1 2( , )U x x , 2 1 2( , )U x x  and 3 1 2( , )U x x  by means of the classic 

3

3 3 3

0 (1 )

( ) : (1 )

( ) (1 )

. 0 (1 )

. , 1,2 (1 )

(1 )

s Per

l

Per

l

div a

y b

y grad c
H

e on Y and Y d

n skew periodic onlateral bondaries Y l e

periodic on Y f

+ −

=


=


= + +
 
 =  


−  =






 

 





C

E u

u
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relations 
, ,

1 ( )
2

E U U    = +  with 3 0iE = , 3,U  = −  and 3 0i = , with 

α,β = 1,2 and i = 1,2,3 . 

The constitutive law of the macroscopic homogenized Love-Kirchhoff plate subjected to in-plane 

and out-of-plane loads may be written as: 

 = +N = A : E B : 
                                                                                                                       

(2)
 

3

t
y  = +M = B : E D : χ

                                                                                                                
(3) 

where )N = (N is the macroscopic in-plane stress field and )M = (M  is the macroscopic out-

of-plane stress field. Note that both N  and M  follow the symmetry of stress tensor. Moreover, A

, B and D  are the constitute homogenized plates tensors. It is noted that the membrane and bending 

constants can be obtained by solving boundary value problems on the unit-cell. 

The problem (HP) basically imposes the membrane strain E  and curvature   on average on the 

chosen unit-cells while taking into account periodicity in the plane 1 2( , )y y  of the structures and 

traction free conditions on the upper and lower faces of the plate [45], where E  and   are defined 

as: 

11 12

21 22

0

0

0 0 0

E E

E E

 
 

=  
 
 

E  and 

11 12

21 22

0

0

0 0 0

 

 

 
 

=  
 
 

                                                                                    (4) 

In homogenization, it is known that the macroscopic field ( N , M ) and their associated stress-energy 

density varies slowly respecting the size of the unit-cell. Then, to obtain the Love-Kirchhoff stiffness 

tensors, the strain energy approach proposed by [46] is adopted. Using the Hill–Mandel principle, 

the average of the local energy in the unit-cell (microscopic energy) is equal to the whole plate 

energy (macroscopic energy) [45]. The plate strain energy density homogW  is given by:  

hom 1
( , ) ( : : 2 : ( : ) : : )

2

ogW = + +E E A E E B D                                                                                                (5) 

2.3 Finite element derivation of in-plane and out-of-plane homogenized coefficients  

In this section, the homogenized membrane and bending constants of the equivalent plates of the 

studied structures are numerically determined by means of FEM. Anthoine [7] was the first to 

propose the use of standard FEM codes for solving the homogenization problem. In the following, 



8 

the problem (HP) is numerically solved in order to obtain the elastic strain energy of the chosen 

unit-cells. The three studied unit-cells have three planes of symmetry, as depicted in Fig.2. To reduce 

the computational cost, it is possible to solve the problem through the so-called “displacement 

method [47]” by considering only one-eighth of these unit-cells and by imposing specific boundary 

conditions. In this case, the constitutive homogenized plate tensor B = 0 , whereas the symmetries 

lead to the following simplifications of the constitutive homogenized plate in Eqs. (2) and (3) [48] 

as follow: 

11 1111 11 1122 22

22 1122 11 2222 22

12 1212 122

= +

= +

=







N A E A E

N A E A E

N A E
                                                                                                                            

(6) 

11 1111 11 1122 22

22 1122 11 2222 22

12 1212 122

= +

= +

=







M D D

M D D

M D

 

 



                                                                                                                    (7) 

It is noticeable that the elastostatic solution of the periodically arranged heterogenous structure must 

fulfil the average and the periodicity conditions on the strains (the same conditions for all the 

considered unit-cells: the three chosen unit cells have the same translation vectors to describe the 

considered periodic textures). For the previous problem, according to Anthoine [7], a strain periodic 

displacement may be written as:  

11 1 12 2 3 11 1 12 2 1

12 1 22 2 3 12 1 22 2 2

2 2

11 1 12 1 2 22 2 3

( )

( )

1 1( )
2 2

Per

Per

Per

y y y y y u

y y y y y u

y y y y u

 + + + +
 
 = + + + +
 
 − + + +
 

E E

u E E

 

 

  

                                                                               

(8) 

It is noted that the homogenized ijklA  and ijklD  moduli can be computed by separately applying three 

relevant cases for each one [44]: 

11
1 0

0 0
EI 

 
=  
 

,
22

0 0

0 1
EI 

 
=  
 

,
12

0 1

1 0
EI 

 
=  
                                                                                            

(9) 

where I  is the identity for in-plane elasticity with synthetically 1( ) ( )
2

kl

E ij ik jl il jkI     = + , and 
ik  

is the Krönecker symbol ( 1ik = if i k= , 0ik =  otherwise). 

Due to the symmetry of the chosen unit-cells, the periodic boundary conditions required in general 

cases are simplified by symmetric or skew-symmetric boundary conditions on lateral faces. The 

detailed prescribed displacements corresponding to membrane and curvature fields are summarized 

respectively in Fig.3(a) and Fig.3(b). It is worth noting that a home-made Python script coupled with 

ABAQUS is developed for this study to automatically program those periodic boundary conditions, 
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the post-processing stages and the derivation of the homogenized coefficients as done by [49] for 

the numerical periodic homogenization to obtain an equivalent model.  

 

 

Fig.3. Applied boundary conditions on one-eighth unit-cells (a) for symmetric loading, (b) for 

skew-symmetric loading 

 

The FEM software ABAQUS Standard is used to solve the previous problem (HP). Tetrahedral 

quadratic elements (C3D10) are chosen for both blocks and mortar (for all considered unit cells). 

The convergence study, not described here, has led to a mesh with three layers of elements in the 

thickness of the joints, resulting in a total number of 124,567 finite elements for the running bond 

pattern structure,  in a total number of 76,614 finite elements for the stack bond pattern structure and 

in  a total number of 323,140 finite elements for the English bond pattern structure.  

The two constitutive materials, the concrete blocks and the mortar of the chosen unit-cells, are 

considered isotropic elastic and linear. To consider the range of variable elastic characteristics, 

several numerical simulations are performed in the following section (section 3). The first choice of 

those material characteristics is reported in Table 2.  

 

Table 2. Initial mechanical elastic properties of blocks and mortar 

 

 The deformed unit-cell under 12E  in-plane shear strain and 12  out-of-plane torsion strain are 

presented in Fig.4 for the running bond pattern and in Fig.5 for the stack and English bond pattern. 

The colormaps represent the Von Mises stress and the original geometry of the unit-cell is given by 

a wireframe.  

 

Fig.4. Deformed unit-cell for the running bond masonry under membrane loading (shear) (a) and 

under torsion loading(b)  

 

Fig.5. Deformed unit-cell for the stack and English bond masonry under membrane loading (shear) 

(a) and under torsion loading(b)  
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The in-plane and out-of-plane homogenized coefficients of the obtained Love-Kirchhoff plates, 

derived from the three chosen unit-cells corresponding to the different studied arrangements, are 

tabulated in Table.3 for the elastic properties of blocks and mortar resumed in Table.2.  

Table 3. Homogenized coefficients 

To compare these results, the overall representation of the homogenized elastic coefficients is given 

by the Frobenius norm M  applied to the equivalent tensors as following [20]: 

3 3
2

1 1

ij

i j

M M
= =

=                                                                                                                               (10) 

Table 4 provides the equivalent elastic moduli corresponding to the wall arrangements under study. 

The three considered masonry arrangements provide nearly the same membrane and flexural 

homogenized moduli. 

Table 4. Frobenius of the constitute homogenized plates tensors for different bond pattern 

 

This comparison shows a higher stiffness for the running bond pattern wall due to the interlocking 

of blocks. The texture of the masonry wall plays an important role in the homogenized elastic 

behavior, inducing the level of the anisotropy at the macroscopic scale, even though the differences 

are not excessive. In the non-linear range, the influence of the structural arrangement is expected to 

be much more relevant [16]. 

3 Parametric in and out-of-plane homogenized study and data collection 

The studied masonry walls represent composite structures characterized by an overall orthotropic 

behavior from a phenomenological point of view as shown in the previous section. This orthotropic 

behavior of masonry arises from the spatial organization of its constituents, their nature, and the 

complex unit-mortar interaction. Generally, as it was shown [50], the different orthotropic 

homogenized constants depend on a huge number of parameters such as the geometric arrangement, 

dimensions and the properties of the constitutive materials of the structure and, the joint thickness. 

Then, to determine the different homogenized constants, a huge number of masonry typologies 

should be analyzed. After the validation of the numerical model, presented in the previous part, 

compared with a 3D full heterogeneous structure not detailed here, the second objective consists in 

performing a parametric analysis while varying material and geometrical aspects, to understand their 

influence on the homogenized membrane and flexural constants of the equivalent Love-Kirchhoff 

plates of stack bond and running bond masonry wall. Thus, a parameterized finite element model is 

developed. The different factors chosen to be modified in this study are the most influential on the 
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response (homogenized coefficients). These various factors are summarized as follows: the ratio 

between mortar and blocks Yong modulus 

B

M

E

E
 = , the thickness of the mortar joint v he e= (several 

cases are studied considering infinitely thin and thick joints), the Poisson ratios of both constituent 

material blocks and mortar  , the ratio between the height and the length of blocks 
'a
b

, and the 

arrangement of the structure. To be noted, only two commonly used periodic textures masonry walls 

(stack bond and running bond) are considered in the parametrical analysis due to a large number of 

numerical simulations needed. 

 

The homogenized ijklA  moduli are normalized versus the corresponding 
BS

ijklA moduli of the block 

for the unit-cells constituted by solid concrete blocks without holes, where 
21

B
BS

ijkl

b

E
A t


=

−
. It is 

noted that the solid blocks have the same material properties compared to those of the hollow one, 

as well as the same geometrical dimensions. The trend of the normalized homogenized membrane 

moduli 
* 1111

1111

1111

BS

A
A

A
=  of the two masonry wall understudy, varying the ratio   for two cases of the 

thickness of joint mortar (thin and thick joint) is presented in Fig.6 when the Poisson ratios of both 

constituent material block and mortar ( b and m  respectively) are assumed identically equal to 

0.25. It can be noted that the sensitivity of the homogenized membrane coefficient 
*

1111A to mortar 

thickness decreases considerably when   increases and the expected difference tends to vanish for 

1 = , which is quite obvious because of the limit case representing the homogenous plate. In 

conclusion, the overall elastic modulus of the material decreases as the mortar joint deformability 

or thickness increases. 

 

Fig.6. Trend of normalized 
*

1111A  membrane modulus as a function of EB/EM 

Similarly, homogenized ijklD  moduli are normalized versus the corresponding 
BS

ijklD  moduli of the 

block for a unit-cell constituted by solid concrete blocks without holes, where the normalized out-

of-plane factor 
3

212(1 )

B
BS

ijkl

b

E
D t


=

−
 corresponds to a homogeneous plate derived from a structure 

formed by solid concrete blocks. In the same vein, the trend of the normalized homogenized flexural 
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coefficient 
* 1111

1111

1111

BS

D
D

D
=  is presented in Fig.7 varying   for two cases of joint thickness. It can be 

noted that the sensitivity of the homogenized flexural coefficient to mortar thickness goes down 

considerably when   goes up and the expected difference tends to disappear for 1 =  which is quite 

obvious because the limit case represents the homogenous plate. Thus, the mortar thickness and the 

ratio of the Young modulus have a significant effect on the homogenized plate coefficients 

 

Fig.7. Trend of normalized D1111 flexural modulus as a function of EB/EM 

The non-homogeneity in the constituents along with the texture (bond pattern) and the thickness of 

the mortar joints lead to an equivalent structure that is anisotropic in the linear range. 

To summarize the performed parametrical analyze indicates that different levels of orthotropy of the 

elastic equivalent behavior can occur depending on the arrangement, geometry and material 

properties of the two constituent materials (blocks and mortar). These results provide useful 

information in cases where the masonry orthotropic description is necessary. 

After considering these influent factors, a generalization of the derivation of the homogenized 

equivalent material is made by ANNs.  

4 Neural Network modeling 

4.1 Data preparation  

In this section, ANN is used to overcome the problem of requiring expensive numerical simulation. 

To train and test the neural network, we need an expanded database test.  

For selecting the number of combinations, the procedure of the general full factorial design of 

experiments is adopted. Therefore, a total number of 192 numerical simulation runs are needed. The 

domain of variation of different factors is summarized in Table.5. It is noted that the levels of 

different variables are selected through previous realistic data, and only two bond patterns are 

studied due to the height number of parametrical numerical simulation required. The material 

characteristics of both blocks and mortar are taken according to Eurocode 6 [51]. Whereas, the 

dimensions of blocks are modified according to the NF P14-402 requirements [42]. 

 

Table 5.  Factors and levels for factorial design 

 

The data are collected based on the factorial design criterion. This data is obtained after several FEM 

simulations to cover the maximum of material, geometric and arrangement variations. Afterward, 



13 

the obtained data are randomly divided into two groups; 152 data (~80 %) set are selected as training 

sets, and the remaining 40 (20 %) data were selected as testing sets [52, 53]. The output data are 

composed of the different homogenized coefficients of the equivalent plates of the hollow concrete 

block masonry wall.  

4.2 ANN modeling 

ANNs are non-linear statistical data modeling tools inspired from the real human nervous system. 

One of the characteristics of ANNs is the importance to learn and generalize from examples and 

experiences to overcome problems where solutions are complicated or where the relationship 

between input and output data are not evident. ANNs are composed of set interconnected neurons, 

which receive the data from the input layer and provide a response (output layer) through an inside 

layer that processes the information. Fig.8 shows the architecture of ANN model. This network is 

made by a set of neurons acting together. Two steps take place inside each neuron. Firstly, the input 

values are combined linearly, and each one is multiplied by a corresponding coefficient known as 

the weight in addition to independent terms or bias. Then the sum of these combinations is applied 

to a transfer function so as to obtain the output of the neuron. This function can be either linear or 

non-linear, although generally linear or sigmoid functions are the most commonly used, as shown 

in Fig.9. 

 

Fig.8. Single neuron activity 

 

The most used ANN is the feedforward, as depicted in Fig.9. In the latter, the neurons are arranged 

into three groups or layers. The first one represents the input layer, as mentioned above, which 

contains the network input. The last layer contains the output one. Between the two described layers, 

we find an intermediate one known as the hidden layer. The number of neurons in each hidden layer 

depends on the problem to solve [38]. In this presented network, the neurons of each layer are 

connected with those in the next layer, so the information flows from the input layer to the output 

one. As precisely explained, a linear combination is executed in each set. Initially, random weight 

values are used, and then they are corrected through a process known as training. In this process, 

output values are compared with computed outputs and backpropagate the error see Fig.10. Finally, 

the values of the adequate weights are obtained by minimizing the ratio between the target output 

and the measured ones. The most frequently used algorithm with a feedforward multilayers network 

is the Back-Propagation (BP) algorithm.  
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Fig.9. ANN architecture with input, sum function, log-sigmoid activation function, and output 

 

 

The BP algorithm is the most popular ANN, which is employed for efficient generalization 

competence. This algorithm represents an iterative gradient one used generally to compute the 

connection weights minimizing the total mean-square error between the actual output of the multi-

layer network and the desired output [54, 55]. Generally, it is the most suitable algorithm for treating 

nonlinear problems and it is applied to train a feed-forward neural network. The neural- network-

based modeling process involves five main aspects [56]: (1) data acquisition, (2) architecture 

determination, (3) learning process determination, (4) training of networks and finally (5) validation 

and testing of the trained one. 

The training step is used to activate the network. It consists of two stages: forward and backward 

stages as presented in Fig.10. In the former stage, the input data pass from the input layer into the 

hidden one. In the last step, the error between the predicted and the known value is propagated 

backward from the output layer to the input one. The aim of the “training” function is to learn the 

relationship between inputs and their corresponding outputs to establish different weights and biases. 

For the BP algorithm, initially, a random value of biases and weights are used then the networks are 

compiled with examples provided by getting value for the output that will be different from its real 

value [38].  

 

Fig.10. Architecture of used back-propagation algorithm 

 

 

4.3 Network architecture 

The architecture of the proposed method is summarized in Fig.11. In this research, an in-house ANN 

program written in FORTRAN is applied. The chosen BP networks have three layers of neurons, as 

shown in Fig.11.  

 

Fig.11. Flowchart of the proposed ANN  

 

 

The three layers are summarized in an input layer, a hidden layer, and an output layer. In the first 

one, no operations are performed on the input data, which are known by the L neurons. These values 
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are directly transmitted to the hidden neurons of the hidden layer affected by weights ijw . The single 

neuron performs a weighted sum of inputs ix  that are generally the outputs of the neurons of the 

previous layer jz  adding the threshold value bi and producing an output given by the weighted sum 

equation (11): 

   

                                                                                                                   (11) 

Input signals cumulated in the neuron block are activated by a linear or nonlinear function to have 

only one input jz given by:  

( )j jy f z=                                                                                                                                                 (12) 

The hidden layer activation function is chosen as the sigmoid one given in equation (13): 

1
( )

1 exp( )
j

i

f z
z

=
+ −

                                                                                                                          (13) 

where   represents a parameter defining the slope of the function [57]. 

4.3. 1. Preparation of data  

As mentioned above, from the total studied data, 80 % is used to train the networks, and the 

remaining data are used for testing. The obtained data from FEM are not entered directly in the 

neural networks but were previously scaled in order to improve the stability of the training process 

and to obtain a higher degree of accuracy. The scaling of the input to the [0,1] range may improve 

the training speed, as these normalized values fall in the region of the sigmoid transfer function [58]. 

The algorithm of the data normalization is given by Eq.14: 

max min
min min

max min
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y y
x x x y

x x

−
= − +

−
                                                                                                            (14) 

where nx is the normalized value of the variable x , maxx  and minx  are respectively the maximum and 

minimum value of x , maxy and miny are respectively the maximum and minimum value of the 

normalized target. Since the chosen normalized target is scaled in the [0,1] range, the normalization 

function can be expressed as: 
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max min
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4.3. 2. Training algorithm  

The training process in ANNs involves presenting a set of examples acquired from experiments or 

numerical calculation (input patterns) with known outputs (target output). As mentioned previously, 

the chosen networks for this paper is BP. The learning used algorithm can be summarized as follows 

[57]: the first step consists in selecting the learning rate defined by 0.01 =  and the momentum 

coefficient 0.01 = . After that, a group of random numbers within (-1,1) is taken as the initial value 

of the weight. Next, the outputs of all neurons layer by layer are computed starting with the input 

layer and using Eq. (10) and (11). The fourth step consists of computing the mean square error MSE 

between the value of the output of the network and that desired according to the next relationship: 

2

1 1

1 1
( )

2

P N

ij ij

j i

MSE D y
P = =

= −                                                                                                                             (16) 

where N is the number of output nodes, P is the total number of patterns, Dij represents the desired 

outputs (numerical values) and yij is the predicted output of networks. Afterward, if the MSE is small 

enough, then stop learning. Then the learning errors for every neuron is computed layer by layer, as 

given in Eq.17. 

( )j j j jD y z = −                                                                                                                                    (17) 

Step 7 is dedicated to updating the weight along the negative gradient of error and finally, repeat the 

third step. It is that noted the number of epochs affects the rentability of networks, where the epoch 

represents the entire set of training patterns to the network. 

In order to guarantee the efficiency of the considered neural networks, a series of trails should be 

made varying some intrinsic parameters that minimize the MSE of the training data. For the 

performance evaluation of the trained model, other indicators can be used, such as the root mean 

square error (RMSE) expressed by Eq.18, the coefficient of determination (R2) expressed by Eq.19 

and the mean absolute percentage error (MAPE) expressed by Eq.20: 

RMSE statistics compares the measured values to the predicted one and computes the square root of 

the average residual error. It falls when performance rises. A lower RMSE value indicates a good 

prediction performance of the model. The prediction performance is considered perfect when the 

latter is equal to 0,  the RMSE gives more weightage to large errors [58].  

2

1 1

1 1
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P N
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= −                                                                                                                       (18) 
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The coefficient of determination computes the strength of similarity between the two considered 

variables. It depends on the linear relationship between the measured values and the predicted ones. 

A value close to unity indicates the accuracy of the model.  

 

                                                                                                                      

(19) 

where yavg represents the average of measured values. 

The MAPE is a nondimensional statistics coefficient that provides an effective way of comparing 

the residual error for each data point with respect to the target value. Smaller MAPE values indicate 

a better performance of the model and vice versa. 

1
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4.3. 3. Network selection 

It can be stated that the prediction performance of a network largely depends on its parameters and 

chosen architecture [59]. Obtaining the best network for a particular case is a difficult task that 

generally requires successive trials as well as extensive parametric studies. Network architecture 

consists of different numbers of hidden layers, and processing elements are created and trained with 

various network parameters. The performance is mainly associated with the minimum square error 

in the tested set [53]. In this way, a lot of networks that are capable of generalization at different 

levels are obtained, and the best network is selected from these many network candidates. In the 

current study, the network performance in terms of RMSE is measured and plotted after every 

iteration, and the lowest training error is at 10,000 iterations (epochs), as shown in Fig.12. It can be 

demonstrated that after this number of training cycles, the networks curve is in good agreement with 

the FEM ones.  As a conclusion, this ANN has been sufficiently trained where the maximum error 

is less than 1.5 %.  

 

Fig.12. RMSE for training datasets versus the number of iterations for ANN model 

 

 

For statistical modeling, only one hidden layer is often satisfactory [60]. One of the key issues in 

designing a multilayer network is to find the optimum number of neurons in the hidden layer. 

Therefore, the performance of the model with a system of one hidden layer is studied, by varying 
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the number of neurons. Unfortunately, there is no direct method available to estimate the number of 

hidden layers and the number of neurons in each hidden layer. A network having too many numbers 

of neurons may cause overfitting. The optimal number of neurons in the hidden layers is also 

predicted by the trial and error method based on the minimum RMSE [61]. Fig.13 presents the 

RMSE trend versus a variable number of neurons in the hidden layer. The lowest training error is 

obtained for 14 neurons in the hidden layer.  

 

Fig.13. Influence of the number of hidden neurons on RMSE 

 

After a series of trails, the values of the parameters that minimize the MSE of the training data are 

selected as follows:  

Number of input layer units: 5 

 Number of hidden layers: 1 

 Number of hidden layer units: 14 

 Number of output layer units: 8 

Activation function: sigmoid function 

 Momentum rate: 0.1 

 Learning rate: 0.01 

 Error after learning: 0.0129 

 Learning cycle: 10,000 

4.4. Network results and discussion 

Once the ANN model satisfies the desired error, the performance of the selected ANN network 

models for training and testing can be seen in Fig. 14 and Fig. 15, respectively. It is worth noting 

that the process responses of interest presented in this study are only two equivalent coefficients: the 

normalized membrane elastic constant 
*

1111A  and the normalized flexural elastic constant 
*

1111D  of 

the homogenized equivalent plate. For both figures: (a) represents the curves for the normalized 

membrane elastic constant and (b) represents the curves for the normalized flexural elastic constant. 

In Fig. 14 and Fig. 15, a superposition of the results of the ANN model output and the actual finite 

element data for the equivalent elastic constant is presented. The horizontal axis stands for the 

sample numbers, and the vertical one is their corresponding normalized elastic responses. For both 

chosen constants, it can be clearly seen that the predicted values of the training and testing sets in 

the constructed ANN model are very close to the target values, indicating that the ANN model can 

successfully learn the nonlinear relationship between the input and output variables with a high level 
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of accuracy. More precisely, for the training result, the maximum error between the ANN results 

compared to that calculated by FEM is 0.058 for the normalized membrane elastic constant and is 

0.067 for the normalized flexural elastic constant as shown Fig.14. 

 

 

Fig.14. Evaluation of numerical and predicted coefficient by ANN for training phase: (a) 

Normalized membrane elastic constant; (b) Normalized flexural elastic constant 

 

For the testing data, the maximum error between the ANN results compared to that calculated by 

FEM remains less than 0.12 for all homogenized constants. Therefore, the selected model shows 

good potential for predicting the homogenized constant of equivalent masonry structures. 

 

Fig.15. Evaluation of numerical and predicted coefficient by ANN for testing phase: (a) 

Normalized membrane elastic constant; (b) Normalized flexural elastic constant 

 

 

Another way to present this comparison between the two models is illustrated in Fig. 16 and Fig. 

17. Likewise, for both figures, (a) represents the curves for the normalized membrane elastic 

constant and (b) represents the curves for the normalized flexural elastic constant. These figures 

present the linear regression between the predicted results of the best-selected network model. The 

theoretical 1:1 line is also drawn to show the overall trend. We can see that all the points are scattered 

around this line. This could be explained by the robustness and effectiveness of the neural algorithm 

to the prediction of results very close to those calculated by FEM. From Fig. 15 and Fig. 17, it can 

be noted that the constructed ANN model is well learned and is able to generate other responses for 

other input parameters different from those applied in the learning phase. The performance indicator 

is evaluated using the coefficient of determination (R2). The results show a better fit in the training 

set than in the testing set. It can be seen that the coefficient of determination value R2 is 0.998 for 

the training set and 0.977 for the testing set. 

 

Fig.16. Comparison of ANN output with numerical values for training phase: (a) Normalized A1111 

(b) Normalized D1111 

In terms of cost and calculation time, it can be noted that computation by the developed algorithm 

is faster than the FEM simulation for predicting such a response. The time required to carry out the 

FEM calculation lasts 50 minutes (for only one test) while by applying the ANN model the 
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prediction time of the responses is of the order of a few seconds. This demonstrates that the proposed 

algorithm is a good estimator, which is able to predict the results obtained by FEM in a very short 

time. 

 

Fig.17. Comparison of ANN output with numerical values for testing phase: (a) Normalized A1111; 

(b) Normalized D1111 

 

The results of these figures indicate that the ANN model can successfully learn and establish the 

relationship between different input parameters and desired outputs. Table 6 provides the results of 

the model of the back-propagation network measured by R2, RMSE, and MAPE for all the equivalent 

plate coefficients. It can be seen that the coefficient of determination R2 value in the training set 

varies from 0.9956 to 0.9982. On the other hand, it barely gets down for the testing phase varying 

from 0.94 to 0.982. The highest values of MAPE and RMSE, in the testing phase, are 5.41% and 

5.8%, respectively. Therefore, the constructed ANN model is able to provide the prediction of the 

homogenized plate coefficients with high precision.  

 

Table 6. Coefficients of determination of normalized responses  

 

5 Conclusions 

In this paper, a new and efficient intelligent approach is proposed to estimate the different 

homogenized coefficients of the equivalent Love-Kirchhoff plates of different bond pattern masonry 

walls formed by hollow concrete blocks bonded by mortar. The database used to construct the ANNs 

is collected from a numerical periodic homogenization in several parameters. Firstly, the 

homogenized elastic properties are numerically derived. The membrane and bending elastic moduli 

of the equivalent Love–Kirchhoff plates are determined by the homogenization scheme on a periodic 

adequately chosen unit-cells. A specific Python program using Abaqus software is developed to 

automatically program the applied periodic boundary conditions and the post-processing stages. 

Since the studied walls are characterized by an overall orthotropic behavior, the different derived 

orthotropic homogenized constants are a function of a huge number of parameters such as the 

geometric arrangements, dimensions and the material properties of both blocks and mortar. Then, a 

statistical analysis is conducted to investigate the number of finite-element simulation and to ensure 

all the combinations between different studied parameters.  
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Based on the previously collected database, ANN is trained and tested to predict the equivalent 

behavior of the studied structures. The network was trained by the back-propagation algorithm. 

Network architecture with a different number of nodes in hidden layers and of iterations has been 

examined. It has been indicated that the learning and prediction performances of the networks 

depend on the number of neurons in the hidden layer as well as the appropriate network parameters. 

The minimum square error was obtained for fourteen neurons in the hidden layer. Once the network 

is trained properly, the results showed a good agreement with respect to the finite element data. This 

efficiency can be proven in terms of higher coefficient of determination and lower RSME and MAPE.  

In general, the proposed ANN can predict the effective properties of the equivalent Love-Kirchhoff 

plate of different bond pattern masonry walls with satisfactory accuracy, reliability, and low 

computational effort. 

Future work may be extended to predict the surface failure of different masonry structures 

constituted by hollow blocks using ANNs. 
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Fig.1. Periodic masonry walls understudy 

 

 

Fig.2. Chosen unit-cells for masonry walls (a) running bond wall (b) stack bond wall (c) English 

bond wall 
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(a) Symmetric loading 

 
(b) skew-symmetric loading 

 

Fig.3. Applied boundary conditions on one-eighth unit-cell (a) for symmetric loading, (b) for 

skew-symmetric loading 

 
(a) 

 
(b) 

 

 

Fig.4. Deformed unit-cell for the running bond masonry under membrane loading (shear) (a) and 

under torsion loading(b)  

 

 

 

       +     )
    

 

         
       +     )

     

 

  

  

  

    

    

      
 

 
     

 +
 

 
     

 )

Planes of 

symmetry

The one-eighth unit cell 

         

  

  

  

Planes of 

symmetry

The one-eighth unit cell 

 
    
    

 
    
    

12
E

12




4 

 
(a) 

 
(b) 

 

Fig.5. Deformed unit-cells for the stack bond and English bond masonry under membrane loading 

(shear) (a) and under torsion loading(b)  

 

 

 

 

Fig.6. Trend of normalized 
*

1111A  membrane modulus as a function of EB/EM 
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Fig.7. Trend of normalized 
*

1111D  flexural modulus as a function of EB/EM 

 
 

Fig.8. Single neuron activity 
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Fig.9. ANN architecture with input, sum function, log-sigmoid activation function, and output 

 

 
 

Fig.10. Architecture of used back-propagation algorithm 
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Fig.11. Flowchart of the proposed ANN  

 

Fig.12. RMSE for training datasets versus the number of iterations for ANN model 
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Fig.13. Influence of the number of hidden neurons on RMSE 
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                                                                                          (a) 

 

             (b) 

Fig.14. Evaluation of numerical and predicted coefficient by ANN for training phase: (a) 

Normalized membrane elastic constant; (b) Normalized flexural elastic constant 
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 (b) 

 Fig.15. Evaluation of numerical and predicted coefficient by ANN for testing phase: 

(a) Normalized membrane elastic constant; (b) Normalized flexural elastic constant 
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(a) 

 

(b) 

Fig.16. Comparison of ANN output with numerical values for training phase: (a) Normalized 

A1111; (b) Normalized D1111 
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                                                                                        (a) 

 

(b) 

Fig.17. Comparison of ANN output with numerical values for testing phase: (a) Normalized A1111; 

(b) Normalized D1111 
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Table captions 

Table 1. Chosen unit-cells geometrical properties  

Table 2. Initial mechanical elastic properties of blocks and mortar 

Table 3. Homogenized coefficients 

Table 4. Frobenius of the constitute homogenized plates tensors for different bond pattern 

Table 5. Factors and levels for factorial design 

Table 6. Coefficients of determination of normalized responses 
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Table 1. Chosen unit-cells geometrical properties 

Description Geometrical parameters Running bond 

value (mm) 

Stack bond 

value (mm) 

 English bond 

value (mm) 

Length vb e  510 510  510 

Height ' ha e  410 210  420 

Thickness t  200 200  410 

Mortar thickness v he e  10 10  10 

Concrete block width c  15 15  15 

 

Table 2. Initial mechanical elastic properties of blocks and mortar 

Variables  Designation Value 

Block Young modulus BE  44 (GPa) 

Mortar Young modulus ME  22 (GPa) 

Block Poisson ratio 
b  0.25 

Mortar Poisson ratio 
m  0.25 

 

 

Table 3. Homogenized coefficients 

Homogenized 

coefficients 
1111A

(N/mm) 
2222A

(N/mm) 

1122A

(N/mm) 

1212A

(N/mm) 

1111D

(N.mm) 

2222D

(N.mm) 

1122D

(N.mm) 

1212D

(N.mm) 

Running bond 

value 

57.49 10  56.98 10  50.34 10  51.74 10  91.92 10  91.82 10  90.1 10  90.57 10  

Stack bond value 57.016 10  57.23 10  50.3 10  51.58 10  91.81 10  91.895 10  90.089 10  90.513 10  

English bond 

value 

57.32 10  56.82 10  50.325 10  51.66 10  91.89 10  91.72 10  90.096 10  90.54 10  
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Table 4. Frobenius of the constitute homogenized plates tensors for different bond pattern 

Homogenized 

coefficients 
A  D  

Running bond value 510.39 10  92.7 10  

Stack bond value 510.2 10  92.67 10  

English bond value 510.146 10  92.613 10  

 

 

Table 5.  Factors and levels for factorial design 

Numerical factors  Level 1 Level 2 Level 3 Level 4 

Ratio 
B

M
E

E
 =  

1 5 10 30 

Thickness of mortar h ve e  (mm) 5 10 20 30 

Ratio 
'a
b  

0.4 0.5 0.6 - 

Poisson ratios   0.15 0.25 - - 

Masonry texture Running Bond (RB) Stack bond (SB) - - 
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Table 6. Coefficients of determination of normalized responses  

 

 

Normalized 

Homogenized Love-

Kirchhoff constants 

                  R2              RMSE              MAPE (%) 

Training Testing Training Testing Training Testing 

*
1111A  

0.998 0.977 0.012 0.041 3.191 4.1 

*
2222A  

0.9981 0.982 

 

0.01 0.058 2.19 3.21 

*
2211A  

0.9972 0.971 

 

0.0038 0.01 2.86 3.73 

*
2 21 1A  

0.997 0.965 0.0076 0.023 3.82 4.51 

*
1111D  

0.9982 0.98 0.0137 0.045 2.93 3.94 

*
2222D  

0.9981 0.973 0.009 0.043 2.15 3.11 

*
2211D  

0.996 0.947 0.0045 0.013 4.62 5.31 

*
2 21 1D  

0.9956 0.94 0.0076 0.023 4.7 5.41 


