Long-term thermo-mechanical behaviour of energy piles in clay
van Tri Nguyen, Nanwangzi Wu, Yixiang Gan, Jean-Michel Pereira, Anh Minh Tang

To cite this version:

HAL Id: hal-02879341
https://hal-enpc.archives-ouvertes.fr/hal-02879341
Submitted on 23 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Long-term thermo-mechanical behaviour of energy pile in clay

V. T. NGUYEN 1, N. WU 2, Y. GAN 2, J. M. PEREIRA 1, A. M. TANG 1

1 Laboratoire Navier, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRS, UPE, France
2 School of Civil Engineering, The University of Sydney, NSW 2006, Australia

Corresponding author:
Dr. Anh Minh TANG

Ecole des Ponts ParisTech
Laboratoire Navier/Géotechnique (CERMES)
6-8 avenue Blaise Pascal
77455 MARNE-LA-VALLEE
France
Tel: +33.1.64.15.35.63
http://navier.enpc.fr
Email: anhminh.tang@enpc.fr
ABSTRACT

In engineering practice, energy pile foundations are often designed for the lifetime of the building. Thermal exchange between a pile and the surrounding soil depends on the annual energy needs of the building, as heating mode in winter and cooling mode in summer. Thus, energy pile foundations will undergo a heating-cooling cycle per year. In the present work, an experimental method based on a small-scale pile model installed in saturated clay was used to study the thermo-mechanical behaviour of energy pile under thermal cycles. 30 cycles were applied (to represent a 30-year period if we neglect the daily cycles) while the pile head load was maintained constant. Four tests were performed corresponding to pile head loads equal to 0, 20%, 40% and 60% of pile resistance. The results obtained show the increase of irreversible pile head settlement with the thermal cycles. In order to better interpret the experimental results, the finite element method is used to simulate numerically the experiments. That allows highlighting the important role of pile thermal contraction/expansion in the pile/soil interaction under thermo-mechanical loading.

KEYWORDS: energy pile, numerical modelling, physical modelling, saturated clay, thermal cycles, thermo-mechanical behaviour.

INTRODUCTION

Pile foundations are used to erect a structure on an underground with poor load bearing properties. The energy piles (also called “heat exchanger piles”) are the foundation piles that are used also as heat exchangers. A system of heat exchanger pipes is embedded in such piles allowing the exchanges of thermal energy between the ground and the building via a fluid circulating in the pipes. This system combined with a heat pump allows extracting heat from the soil in winter and re-injecting back heat to the soil in summer (Abuel-Naga et al., 2015;
Thus, energy pile foundation is subjected to a heating-cooling cycle per year, which reflects seasonal temperature variations. These annual thermal cycles would then modify the soil/pile interaction from the thermo-mechanical point of view. In spite of various studies on the thermo-mechanical behaviour of energy piles, few works have investigated their long-term behaviour. Actually, to deal with this aspect, some studies investigated the mechanical behaviour of energy piles subjected to numerous thermal cycles, which represent the seasonal pile temperature variations (Ng et al., 2014; Pasten and Santamarina, 2014; Suryatriyastuti et al., 2014; Di Donna and Laloui, 2015; Olgun et al., 2015; Saggu and Chakraborty, 2015; Ng et al., 2016; Bidarmaghz et al., 2016; Vieira and Maranha, 2016; Nguyen et al., 2017). In these studies, numerical methods are usually used and experimental methods are mainly based on physical modelling.

Among the numerical methods, the conventional load transfer method is the simplest one. Suryatriyastuti et al. (2014) used this method, combined with additional mechanisms for predicting degradation behaviour of pile-soil interface under thermal cycles, and investigated the behaviour of free- and restraint-head pile in loose sand. The results show a ratcheting of pile head settlement under a constant working load and a decrease in pile head force for the restraint-head pile after 12 thermal cycles. Pasten and Santamarina (2014) developed a modified one-dimensional load transfer model to predict the displacement of pile elements. The results show that the axial force changes mainly in the middle of pile length when the pile works under a heating phase. But in a cooling phase the axial force changes are negligible. Besides, the irreversible settlement of pile reaches a plateau after several thermal cycles.

Besides the load transfer method, the finite element method is also used to investigate long-term thermo-mechanical behaviour of energy piles. Saggu and Chakraborty (2015)
investigated the behaviour of a floating and end-bearing pile in loose and dense sand under various thermal cycles by using the finite element method. The result shows an important settlement of the pile after the first thermal cycle. A similar result can be found in the numerical study of Olgun et al. (2015) where pile head displacement and axial stress were investigated under three different climatic conditions for 30 years. After 30 annual thermal cycles, even if the pile was progressively cooled, the axial stress along the pile tended to increase. A decrease in axial stress was observed during heating. This was explained by the difference in the thermal dilation between the pile and the soil during the thermal loading process. Ng et al. (2016) studied the horizontal stress change of soil element close to the pile when the pile is subjected to 50 heating-cooling cycles. The results show that the horizontal stress along the pile depth decreased with thermal cycles. In addition, the irreversible settlement of pile due to the decrease of the shaft resistance leads to the densification of soil below the pile toe and thus the decrease of the rate of pile’s settlement.

Few studies have investigated the long-term thermo-mechanical behaviour of energy pile in clay. Di Donna and Laloui (2015) have developed a numerical model to estimate the additional displacement of pile and stress-strain state at the soil-pile interface. The result indicates that the upper part of pile heaves in the heating phase and settles in the cooling phase. The irreversible settlement of the pile is observed in the first cycle, but in the following cycles the vertical displacement of the pile is almost reversible. A greater plastic strain was obtained within the soil mass at points located close to the soil-pile interface. Vieira and Maranha (2016) investigated the behaviour of a floating pile model in clay soil under different constant static loads and seasonal temperature variations during five years using the finite element method. The considered soil is saturated and normally consolidated. The results indicate that when the pile works with a high factor of safety, its displacement is
reversible during the thermal cycles. However, a low factor of safety induces an increase in axial stresses while the rate of irreversible settlement reduces with the number of cycles.

Beside the numerical studies mentioned above, few experimental studies have been performed to investigate the long-term behaviour of energy piles in clay. Ng et al. (2014) used centrifuge modelling to study the thermo-mechanical behaviour of energy piles constructed in lightly and heavily over-consolidated clay under five thermal cycles. The results show that the most irreversible settlement of pile was observed in the first thermal cycle, and then in the following cycles the settlement increases at a lower rate. After 5 cycles the cumulative settlement was about 3.8%·D (D being the pile diameter) for a pile in the lightly over-consolidated clay, and 2.1%·D in the case of heavily over-consolidated clay.

In the present work, the long-term thermo-mechanical behaviour of an energy pile in clay is investigated both by physical and numerical modelling. First, a small-scale pile model installed in saturated clay was used. 30 thermal cycles were applied while the pile head load was maintained constant at 0, 20%, 40% and 60% of pile bearing capacity. Second, the finite element method is used to simulate numerically the experiments. The results of the two methods are finally analysed simultaneously to better identify the main mechanisms controlling the thermo-mechanical behaviour of energy pile under several thermal cycles. The novelty of the work consists in integrating results of a small-scale pile model (physical modelling) with those obtained by numerical modelling (finite element numerical model). As referred above few (and very recent) works can be found in the literature dealing with the long-term mechanical effect on energy geostructures (energy piles, in the present case) under thermal cycles.
The pile model is made of an aluminium tube with internal and external diameters of 18 mm and 20 mm, respectively. The length of the tube is 800 mm and it is sealed at the bottom. Its external surface was coated with sand to imitate the roughness of a full-scale bored pile. 600 mm of the pile was embedded in saturated clay (see Figure 1).

Figure 1. Experiment setup
The pile temperature is controlled by a metallic U-tube inserted inside it and connected to a cryostat. A temperature sensor (accuracy equals ±0.01°C) is embedded inside the pile, at 300-mm depth, to monitor its temperature during the experiments. The axial load applied to the pile head is controlled by deadweight (more details can be found in Yavari et al., 2014 on a similar setup) and measured by a force sensor. The pile head displacement is measured by a displacement sensor (LVDT) with an accuracy of ±0.001 mm. Temperature in soil is measured by three sensors embedded at 300-mm depth and 20, 40, 80 mm from the pile axis.

Speswhite Kaolin clay was used in this study. It has a clay fraction of 30%, a liquid limit of 57%, a plastic limit of 33% and a particle density of 2.60 Mg/m³. Clay powder was mixed with water by using a soil mixer to achieve a water content of 29%. It is then stored in a sealed box for one month for moisture homogenization. Compaction was performed, by layer of 50-mm thickness, using an electrical vibratory hammer. The soil mass used for the compaction of each layer was controlled to obtain a dry density of 1.45 Mg/m³ (degree of saturation equals 95% and void ratio equals 0.79). After the compaction of the first six layers, the model pile was installed in place, and the remaining soil layers were completed. At the vicinity of the pile model, a small metal hammer was used to avoid damaging the pile.

To control the quality of the compaction procedure, soil samples (20 mm in diameter) were cored from the compacted soil mass for the determination of dry density and water content. The created hole was refilled afterwards prior to the test with energy pile. Results show that the dry density and the water content are relatively uniform with depth and they are close to the target values (Figure 2).
In the work of Yavari et al. (2016a), re-saturating a similar soil mass from the bottom took several months. In the present work, to speed up this phase, a porous plastic plate was installed at the bottom of the soil container and a thin geotextile layer was installed between the container internal surface and the soil mass (see Figure 1). Thus, water from the container can easily flow through the small holes at the bottom of the soil container and diffuse into the soil mass via the porous plastic plate and the surrounding geotextile. The water level in the water container was kept 100-mm below the soil surface to avoid water overflow on the soil surface. During the saturation, a tensiometer T8 (T8-UMS, 2008) was used to control the soil suction at 300-mm depth and 110-mm far from the pile’s axis (see Figure 1). Result in the Figure 3 shows that after 18 days of saturation the soil suction at the tensiometer position is

Figure 2. Dry density and water content of compacted soil
very close to zero. The tensiometer was then removed and the resulting hole was refilled to avoid its influence on the thermo-mechanical behaviour of the pile. The saturation process was kept for 45 days in total to ensure the full saturation of the soil mass. It should be noted that, during the saturation, the soil container was covered on its surface to avoid water evaporation and heat exchange. Moreover, the saturation system was maintained during the subsequent thermo-mechanical experiment to ensure that the soil is always saturated.

Figure 3. Evolution of soil suction during the saturation process (measured by tensiometer)

Before conducting the experiment, temperature of soil and pile was kept at 20 °C for one week. This temperature is close to the room temperature during that period. After the saturation process, the pile was initially subjected to a mechanical load (test A1) to determine its ultimate bearing capacity. A series of load steps was applied to the pile head with increments of 50 N, each loading step being maintained for one hour, following the French Standard (Afnor, 1999). The results, shown in Figure 4, are similar to those obtained by Yavari et al. (2016a). That confirms the repeatability of the applied experimental procedure.
In the test A1, the pile was loaded up to 500 N, which corresponds also to the pile’s bearing capacity. After this test, the pile head load was removed. In the test A2, 30 thermal cycles were performed while no load was applied to the pile head. Afterward, the pile head was loaded up to 20% of the pile’s capacity prior to the application of 30 thermal cycles (test A3 shown in Figure 4). At the end of these cycles, the pile head load was removed and then a load corresponding to 40% of the pile’s capacity was applied. 30 thermal cycles were then performed under this load (test A4). A similar procedure was applied for test A5 corresponding to 60% of pile’s capacity. This procedure is similar to that applied by Yavari et al. (2016a) where only one thermal cycle was applied per load step. All the five tests were performed on the same soil mass. The mechanical test (A1) was performed at first to identify the pile’s capacity. That allowed better define the programme for the subsequent thermo-mechanical tests (A2-A5). Yavari et al. (2016a) found that loading the pile to its ultimate bearing capacity and then unload it did not modify its behaviour during the subsequent tests.
Figure 4. Pile head load displacement curve: A1 is a purely mechanical test; A2, A3, A4 and A5 are thermo-mechanical tests.

For each thermal cycle, the pile temperature is increased and then decreased with a variation of ±1°C around the initial value (shown later as the thermal sensor S1 in Figure 8). This range is much smaller than the temperature variation of the energy piles which can reach up to ±20°C (Di Donna and Laloui, 2015; Olgun et al., 2015). Actually, in this small-scale model, the dimension of the pile is 20 times smaller than a full-scale pile of 0.4 m in diameter and 12 m length. As a consequence, the strain related to the mechanical load is 20 times smaller than...
that at the full scale (Laloui et al., 2006; Ng et al., 2014). For this reason, the temperature variation was reduced 20 times in order to have a thermal strain of the pile 20 times smaller than that at the full scale. Each thermal cycle is completed within 24 hours, which started with a heating period of 4 hours, and followed by a cooling period of 4 hours, finally the remaining time corresponded to active heating to return to the initial temperature.

NUMERICAL MODELING

Axisymmetric finite element model

The finite element analysis was performed by using the commercial FEA software, ABAQUS V6.16. To model the physical experiment, two-dimensional axisymmetric model is established (as shown in Figure 5) and fully coupled 4-node temperature-pore pressure-displacement element (CAX4PT) and 4-node bilinear displacement-temperature element (CAX4T) are used for the regions of soil and pile, respectively. Soil is assumed fully saturated throughout the loading cycles and the top 100 mm capillary zone in physical model is ignored. Pore pressure at top surface of soil is opened to air but no heat flow escapes from top surface. Circular hollow section aluminium pile is modelled by solid pile with the equivalent mass density. Soil is modelled by the modified Cam-clay model and the pile is described by linear-elasticity model. For contact properties, the friction coefficient at the soil-pile interface is assumed to be $\tan \phi$, where ϕ is the soil friction angle. Note that a relatively large thermal conductance is chosen at pile-soil interface to reduce the interfacial thermal contact resistance. Lateral pressure coefficient is assumed based on the Meyerhof correlation, $K_0 = (1 - \sin \phi) \text{OCR}^{0.5}$, by taking the pressure at 2/3 depth of pile for averaging pressure along the pile to estimate K_0, and OCR is approximately 160. The calculation of OCR is based on the ratio of the historical maximum pressure and the current experienced pressure. The former is calculated based on the Cam-Clay model parameters from Lv et al. (2017), for
NCL, *i.e.*, 560 kPa with the experimentally measured void ratio of 0.79. As a result, $K_0=8$ is adopted for the numerical simulation and it is within a reasonable range since preparation of physical model involves pre-compaction process. All parameters in simulation are summarized in Table 1 and Table 2, and the constitutive parameters of soil can be referred to *Lv et al.* (2017). Initial temperature for the entire numerical model is assumed 20°C as the case of the physical model. Bottom and side boundaries are set as the constant temperature of 20°C. Deformation of soil is fully fixed at the bottom and only horizontally fixed at the side, while the top surface is free to deform. Finite sliding formulation is used at soil-pile interface. Temperature variation with time in physical experiment is deemed to be an input parameter to investigate settlement occurring under the cyclic thermal loading condition. To simplify the model, the entire pile is going to experience temperature variation uniformly instead of the water circulation process in experiment. Thirty heating and cooling cycles are applied in every thermal loading stage after the given mechanical load. One complete thermal cycle includes four different thermal phases: initial, heating, cooling, and reheating, which will induce settlement fluctuation.

Table 1. Parameters of pile and soil in numerical modelling

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pile (CHS aluminium)</th>
<th>Clay (Speswhite Kaolin Clay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitutive model</td>
<td>Linear-elastic</td>
<td>Modified Cam-clay</td>
</tr>
<tr>
<td>Dry density (Mg/m^3)</td>
<td>1.32</td>
<td>1.45</td>
</tr>
<tr>
<td>Volumetric weight at saturated state (kN/m^3)</td>
<td>N/A</td>
<td>18.53</td>
</tr>
<tr>
<td>Young’s modulus E (kPa)</td>
<td>1.3E7</td>
<td>N/A</td>
</tr>
<tr>
<td>Poisson’s ratio ν^*</td>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td>Slope of critical state line M^*</td>
<td>N/A</td>
<td>0.98</td>
</tr>
<tr>
<td>Slope of virgin consolidation line</td>
<td>N/A</td>
<td>0.14</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>λ*</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>Slope of swelling line κ*</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Initial void ratio e_0^*</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Void ratio after compaction e_1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Friction angle ϕ^*</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Permeability k (m/s)*</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Thermal expansion ($/^\circ$C)</td>
<td>2.3E-5</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity (W/m°C)</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>Specific heat capacity (J/kg°C)</td>
<td>9E2</td>
<td></td>
</tr>
</tbody>
</table>

* Soil properties are adopted from Lv et al. (2017).

Table 2. Other relevant parameters in numerical modelling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetric weight of water (kN/m³)</td>
<td>9.81</td>
</tr>
<tr>
<td>Friction coefficient $\tan\phi$</td>
<td>0.47</td>
</tr>
<tr>
<td>Interfacial thermal conductance (W/°C*m²)</td>
<td>500</td>
</tr>
<tr>
<td>Lateral earth coefficient, K_0</td>
<td>8</td>
</tr>
</tbody>
</table>
249

Figure 5. Geometry and boundary conditions of the numerical model

250

Mesh sensitivity study

251

Five different mesh convergence analyses were performed to study mesh dependency of the numerical model. For the pile, uniform 1 mm, 2 mm and 3 mm seed size are applied in the pile region respectively with unchanged 1mm mesh size at soil side of soil-pile interface to find appropriate pile mesh size. It is found that 2 mm mesh size for the pile was sufficient and then, mesh sizes of 1 mm, 1.5 mm and 2 mm are applied into soil side of soil-pile interface region which enables in total 5 different types of mesh size combinations. At the far end, bottom and side of soil, the mesh seed size was set to a fixed 20 mm value for all simulations. Here only the purely mechanical loading condition, A1, was considered for this mesh convergence study, which was similar to Wehnert et al. (2004) work. In Figure 6, load and
settlement curves for different mesh size combinations are given. The mesh “Pile 2 mm, Soil 1 mm” is selected since it is above the threshold (i.e. Pile 2 mm, soil 1.5 mm) compared with the experimental data for the pure mechanical loading. This finer mesh provides a better confidence for the results from later thermo-mechanical analyses, while only slightly increases the demand on computational resources.

![Figure 6. Mesh dependency results (A1)](image_url)

RESULTS

Mechanical behaviour of pile

Experiment result (Exp.) of test A1 is shown in Figure 4. This load-settlement curve is based on the settlement value at the end of each load step. After loading to 500 N the pile is unloaded and the irreversible settlement of pile head is about 1.42 mm. The relationship between the axial load and the pile head settlement during the loading is almost linear when
the axial load is smaller than 350 N. For axial load higher than this value, pile head settlement increases significantly with the increase of axial load.

The numerical result (Num.) gives a similar behaviour of pile by using the parameters of pile and soil shown in Tables 1 and 2. Analysis on the plastic points shows that during the loading path, when the axial load is lower than 350 N, only few plastic points can be observed at the pile toe. Interfacial friction is approaching maximum shear stress. Loading above this value induces development of plastic zones, and this phenomenon can be observed by the quick increase of pile head settlement.

Thermo-mechanical behaviour of pile

In this section, the results of the tests from A2 to A5 are presented. Figure 7 shows the temperature distribution corresponding to four phases of one thermal cycle: initial, heating, cooling, and re-heating. These results confirm that the heat transfer between the pile and the surrounding soil is mainly radial along the pile. Temperature measured at 300-mm depth (in the middle of the pile) should be then representative to study the heat transfer in this study.
Figure 7. Temperature distribution during one thermal cycle obtained from numerical modelling.

Actually, the Figure 8 presents the temperatures measured at different locations at 300-m depth during one thermal cycle. These measurements evidence that the soil temperature increases when the pile is heated and decreases when the pile is cooled. The effect of pile heating/cooling is more significant for sensors located closer to the pile. The numerical results obtained in the soil are in good agreement with the experimental ones. This agreement confirms that the thermal parameters and the heat transfer mechanisms (heat conduction) used in the numerical model are appropriate. Note that the thermal parameters have been determined separately in laboratory by a thermal probe.

Figure 8. Temperature of pile and surrounding soil during one thermal cycle.

Figure 9 shows the results of temperature and displacement of the pile over the 30 thermal cycles under different loads. It can be seen that the target temperature (20°C – 21°C – 19°C – 20°C) in each thermal cycle could not be strictly respected during the first test (A2). This is related to the variation of temperature in the room. For this reason, in the subsequent tests
(A3, A4, A5) the thermal isolation of the tube connecting the cryostat and the pile was improved, that allowed reducing significantly the influence of room temperature on the pile temperature. In Figure 9, the pile head settlement of each test is set to zero at the beginning of the thermal cycles. The results show generally a pile head heave during heating and settlement during cooling. However, the relation between the pile head displacement and the pile temperature is not strictly reversible. Note that the temperature was controlled manually and for some cycles corresponding to weekend periods the active heating phase took longer than two days. Nevertheless, it seems that these longer phases do not influence significantly the results.

In the numerical model, the pile temperature measured in the experiment is imposed to the whole pile to simulate the thermal cycles under constant pile head load. The pile head settlement obtained by the simulation is also shown in Figure 9. The numerical results show equally a pile head heave during heating and settlement during cooling. More details on pile head displacement during each thermal cycle and the irreversible pile head displacement are shown in Figure 10 and 11.
To better analyse the pile head displacement during each thermal cycle, in the Figure 10, it is plotted versus pile temperature for the first and the last cycles only. The free expansion curve, obtained with the assumption of a pile restrained at its toe, is also plotted. In each thermal cycle, heating induces pile head heave and cooling induces pile head settlement. For the tests A3, A4, and A5 (under constant head load), the first thermal cycle induces a significant irreversible settlement. For the case of test A2 where not head load was applied, the behaviour during the first thermal cycle is quite reversible. For the last thermal cycle, a reversible behaviour can be observed for all the tests. Besides, it can be noted that the slope of the pile head displacement versus temperature change during the cooling phase is slightly smaller than that of the free expansion curve.

The results obtained by the numerical simulation are generally in agreement with the experimental ones. Actually, the behaviour obtained during the last thermal cycles is strictly reversible and the first thermal cycle in the tests A3, A4 and A5 (under constant pile head load)
load) induces significant reversible settlement. Only the behaviour of the first cycle of test A2 (without pile head load) show a difference. In the numerical model, an irreversible pile head heave was obtained after the first thermal cycle.

Figure 10. Pile head settlement versus pile temperature during the first and the 30th cycles. The irreversible pile head displacement is plotted versus the number of cycles in the Figure 11. For a better comparison with full-scale experiments, it is also normalised with the pile...
diameter. For the test A2, the first cycle induces pile head heave up to 0.15% of pile diameter with the numerical model. Afterward, the pile behaviour remains reversible during thermal cycles. However, with the physical model, the first cycle induces only very small pile heave (0.03% of pile diameter). But pile heave continues to increase during the subsequent cycles and reaches 0.20% of pile diameter after four cycles. For the tests A3 and A4, the first thermal cycles induce significant irreversible settlement. This latter become negligible for the subsequent cycles. The behaviour of the pile in the test A5 is also similar to that of tests A3 and A4. However, after the tenth cycle, the irreversible settlement increases continuously with the increase of the number of cycles. Besides, it can be noted that the irreversible settlement depends on the pile head load; the higher the pile head load the higher the irreversible settlement. For the test A5, the sudden increase of irreversible settlement from the 10th cycle should be related to some technical problems. The possible causes of problems occurred could be: tilting of the pile at high cumulative settlement, failure of soil around the pile toe, or other physico-chemical phenomena that occur in soil after a long period (several months).

The results obtained by the numerical simulation are generally in good agreement with the experimental ones. The only difference is related to the test A5 where the pile head irreversible displacement remains constant event after the tenth cycle in the numerical simulation.
The long-term performance of the pile is further illustrated according to the numerical results. Vertical displacement of pile length on heating phase (H), cooling phase (C) and reheating phase (R) are plotted in Figure 12. The first, second, twentieth and thirtieth thermal cycles are selected here because simulation results show that the majority of irreversible settlement happens within the first-three cycles and is relatively stable in the rest of thermal cycles. Note that the vertical displacement of pile is assumed zero at the beginning of first cycle in order to be consistent with Figure 11. It is obvious that heating and cooling the pile cause displacement distribution to be mirror-reflecting each other and vertical displacement remains constant along pile length in reheating phase. The time evolution of displacement profile is stabilised over a few cycles with a null point at about 430 mm beneath the top surface.
The total vertical stress along the pile length under different thermal cycles obtained from the numerical simulation is presented in Figure 13. Only the results obtained from the first and the last cycles are presented for clarity. Generally, heating the pile induces a slight increase of vertical stress and cooling causes a decrease in vertical stress distribution along the pile length. The behaviour obtained during the first cycle of test A2 is slightly different; heating induces a decrease of vertical stress and cooling decreases again this latter. Besides, the
vertical stress is observed to slightly increase from the first to the last thermal cycles in all heating, cooling and reheating phases.

Figure 13. Thermal effect on the total vertical stress along the pile length (numerical results)

DISCUSSION

In the mechanical test paths (test A1), the material parameters for the numerical simulation are adopted from Lv et al. (2017). From the results, it is obvious that the estimated bearing capacity is in agreement with the experimental results (Figure 4). A carefully estimated lateral stress coefficient \((K_0)\) is important to consider the compaction process in physical model.
In the test A2, the upward displacement of pile (as shown in Figure 9) during heating/cooling cycles, observed on both physical and numerical models, can be explained by the stress state shown in Figure 13. Actually, the test A2 starts after the mechanical unloading path of test A1. At the end of the unloading path, the pile is still subjected to compressive stress (up to 300 kPa at its toe). Thermal cycles in test A2 induce thermal dilation/contraction of the pile. This movement would release this compressive stress and heave the pile. The results shown in Figure 13 evidence this stress release after thermal cycles.

In the subsequent tests (A3, A4, A5), irreversible settlement was observed during the first thermal cycles. These results are in agreement with those observed by Ng et al. (2014) (using centrifuge modelling) and Vieira & Maranha (2016) by using the finite element method. However, only five thermal cycles were investigated in these works. Actually, the axial stress profiles plotted in Figure 13 show that these thermal cycles increase the axial stress along the pile. That means the thermal dilation/contraction of the pile facilitate the transmission of axial pile head load to the pile toe. In the present works, both numerical and physical models show that the pile settlement becomes reversible under thermal cycles at high number of cycles (except for the test A5).

The numerical model shows behaviour similar to that obtained by physical model; the pile settlement progressively achieves stable state due to densification process in each thermal cycle. Especially the first thermal cycle shows good agreement with the experimental result (Figure 10). The explanation of why numerical simulation is able to predict progressive settlement owes to the use of the modified Cam-clay model as the constitutive model for soil. The Cam-clay criterion follows the poro-plasticity rule that could more effectively simulate
densification process during thermal cyclic loads. Whereas Mohr-Coulomb model may not well describe such soil behaviour (Yavari et al., 2014). Therefore, the present numerical prediction of long-term thermal cyclic settlement of energy pile is able to predict experimental data with relatively good agreement.

The results of Figure 10 show that the slope of the pile head displacement versus temperature change during the cooling phase is slightly smaller than that of the free expansion curve. Actually, similar tests on dry sand have shown that this slope is similar to the free expansion curve (Kalantidou et al., 2012; Yavari et al., 2014). The behaviour observed in the present work can be explained by the results shown in Figure 12. Actually, the null-point does not locate at the pile toe but at 400 – 450 mm depth. For this reason, the pile head displacement does not correspond to the free expansion of the whole pile length.

In the present work, the numerical model was able to reproduce correctly the thermo-mechanical behaviour of a small-scale energy pile under several thermal cycles. Note that the range of the temperature variation in the physical model was limited to ±1 °C. This value is much smaller than full-scale application (up to ±20 °C) in order to respect the scale effect. Within this limited range of temperature variation, the soil parameters can be assumed to be independent of temperature. However, for a higher temperature variation, the temperature change can slightly modify the soil properties (Tang et al., 2008; Vega & McCartney, 2015; Hong et al., 2016; Yavari et al., 2016b; Jacinto & Ledesma, 2017; Ghorbani et al., 2019). The use of the present numerical model to predict the behaviour of real-scale energy foundations should consider this aspect.
Results obtained in the present study would be helpful for studies on various types of thermo-active geostructures (Hoyos et al., 2015; Narsilio et al., 2017; Sanchez et al., 2017; Angelotti and Sterpi, 2019; Baralis et al., 2019)

CONCLUSIONS

The long-term thermo-mechanical behaviour of energy pile is investigated in the present work by using a small-scale model pile (physical modelling) and the finite element method (numerical modelling). The following conclusions can be drawn:

- Thermal cycles applied to the pile under constant pile head load induce stress redistribution inside the pile. That can induce irreversible pile heave in the case without pile head load and irreversible pile settlement in the case with pile head load.
- The irreversible pile head settlement/heave is more important within the first thermal cycles; it becomes negligible at high number of cycles.
- The main mechanism that controls the soil/interaction during thermal cycles under constant pile head load is the pile thermal contraction/dilation. The numerical model can capture correctly the experimental result without considering the temperature effect on soil’s parameters.
- The preliminary results shown in this paper could warrant future numerical studies for the serviceability design of geothermal energy piles.

ACKNOWLEDGEMENT

Dr. Gan acknowledges the financial support of Labex MMCD for his stay at Laboratoire Navier. Labex MMCD benefits from a French government grant managed by ANR within the frame of the national program Investments for the Future ANR-11-LABX-022-01.

