P. J. Bourne-webb, B. Amatya, K. Soga, T. Amis, C. Davidson et al., Energy pile 644 test at Lambeth College, London: geotechnical and thermodynamic aspects of pile 645 response to heat cycles, Géotechnique, vol.59, pp.237-285, 2009.

B. L. Amatya, K. Soga, P. J. Bourne-webb, T. Amis, and L. Laloui, Thermo-mechanical 647 behaviour of energy piles, Geotechnique, vol.62, pp.503-522, 2012.

T. Mimouni and L. Laloui, Behaviour of a group of energy piles, Canadian Geotechnical 649 Journal, vol.52, pp.1913-1942, 2015.

A. Gens, M. Sanchez, L. D. Guimaraes, E. E. Alonso, A. Lloret et al., A full-651 scale in situ heating test for high-level nuclear waste disposal: observations, analysis 652 and interpretation, Geotechnique, vol.59, pp.377-99, 2009.

X. C. Liu, Y. M. Xiao, K. Inthavong, and J. Y. Tu, A fast and simple numerical model for a 654 deeply buried underground tunnel in heating and cooling applications, Applied Thermal 655 Engineering, vol.62, pp.545-52, 2014.

R. Campanella and J. Mitchell, Influence of temperature variations on soil behavior, 657 Journal of Soil Mechanics & Foundations Div, 1968.

L. Eriksson, Temperature effects on consolidation properties of sulphide clays

G. Baldi, T. Hueckel, A. Peano, and R. Pellegrini, Developments in modelling of 663 thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials 664, Commission of the European Communities, vol.2, 1991.

P. Delage, N. Sultan, and Y. J. Cui, On the thermal consolidation of Boom clay, Canadian, vol.666
URL : https://hal.archives-ouvertes.fr/hal-00723062

, Geotechnical Journal, vol.37, issue.2, pp.343-354, 2000.

N. Yavari, A. M. Tang, J. M. Pereira, and G. Hassen, Mechanical behaviour of a small-scale 668 energy pile in saturated clay, Géotechnique, vol.66, pp.878-87, 2016.

C. Ng, C. Shi, A. Gunawan, and L. Laloui, Centrifuge modelling of energy piles 670 subjected to heating and cooling cycles in clay, Géotechnique Letters, vol.4, pp.310-316, 2014.

T. Hueckel and R. Pellegrini, Thermoplastic modeling of undrained failure of saturated 672 clay due to heating. Soils and Foundations, vol.31, pp.1-16, 1991.

T. Hueckel and G. Baldi, Thermoplasticity Of Saturated Clays -Experimental 674

, Constitutive Study. J Geotech Eng-Asce, vol.116, pp.1778-96, 1990.

T. Hueckel and M. Borsetto, Thermoplasticity Of Saturated Soils And Shales: 676 Constitutive equations, J Geotech Eng-Asce, vol.116, pp.1765-77, 1990.

J. C. Robinet, A. Rahbaoui, F. Plas, and P. Lebon, A constitutive thermomechanical model 678 for saturated clays, Engineering Geology, vol.41, pp.145-69, 1996.

Y. Cui, N. Sultan, and P. Delage, A thermomechanical model for saturated clays
URL : https://hal.archives-ouvertes.fr/hal-01515787

, Canadian Geotechnical Journal, vol.37, issue.3, pp.607-620, 2000.

J. Graham, N. Tanaka, T. Crilly, and M. Alfaro, Modified Cam-Clay modelling of 682 temperature effects in clays, Canadian Geotechnical Journal, vol.38, pp.608-629, 2001.

H. M. Abuel-naga, D. T. Bergado, A. Bouazza, and G. V. Ramana, Volume change behaviour 684 of saturated clays under drained heating conditions: experimental results and 685 constitutive modeling, Canadian Geotechnical Journal, vol.44, pp.942-56, 2007.

Y. P. Yao and A. N. Zhou, Non-isothermal unified hardening model: a thermo-elasto-687 plastic model for clays, Géotechnique, vol.63, pp.1328-1373, 2013.

L. Laloui and B. François, ACMEG-T: soil thermoplasticity model, Journal of 689 engineering mechanics, vol.135, issue.9, pp.932-944, 2009.

P. Y. Hong, J. M. Pereira, Y. J. Cui, and A. M. Tang, A two-surface thermomechanical model 691 for saturated clays, International Journal for Numerical and Analytical Methods in 692 Geomechanics, vol.40, pp.1059-80, 2016.

P. Y. Hong, J. M. Pereira, A. M. Tang, and Y. J. Cui, On some advanced thermo-mechanical 694 models for saturated clays, International Journal for Numerical and Analytical Methods 695 in Geomechanics, vol.37, pp.2952-71, 2013.

K. Demars and R. D. Charles, Soil volume changes induced by temperature cycling

, Canadian Geotechnical Journal, vol.19, issue.2, pp.188-194, 2011.

R. Plum and M. I. Esrig, Some temperature effects on soil compressibility and pore 699 water pressure, Special Report-Highway Research Board, issue.103, 1969.

D. Donna, A. Laloui, and L. , Response of soil subjected to thermal cyclic loading: 701 Experimental and constitutive study, Engineering Geology, vol.190, pp.65-76, 2015.

C. Ng, C. Shi, A. Gunawan, L. Laloui, and H. L. Liu, Centrifuge modelling of heating 703 effects on energy pile performance in saturated sand, Canadian Geotechnical Journal, vol.704, pp.1045-57, 2015.

A. Vega and J. S. Mccartney, Cyclic heating effects on thermal volume change of silt

, Environmental Geotechnics, vol.2, pp.257-68, 2015.

C. Zhou, K. Y. Fong, and C. Ng, A new bounding surface model for thermal cyclic 708 behaviour, International Journal for Numerical and Analytical Methods in 709 Geomechanics, vol.41, pp.1656-66, 2017.

Q. J. Ma, C. Ng, D. Masin, and C. Zhou, An approach for modelling volume change 711 of fine-grained soil subjected to thermal cycles, Canadian Geotechnical Journal, vol.712, pp.896-901, 2017.

O. Coussy, , 2004.

G. R. Mcdowell and K. W. Hau, A generalised Modified Cam clay model for clay and 715 sand incorporating kinematic hardening and bounding surface plasticity, Granular 716 Matter, vol.6, pp.11-17, 2004.

S. Zhang, W. Leng, and F. Zhang, A simple thermo-elastoplastic model for 718 geomaterials, International Journal of Plasticity, vol.34, pp.93-113, 2012.

I. Collins and G. T. Houlsby, Application of thermomechanical principles to the 720 modelling of geotechnical materials, Proceedings of the Royal Society A: Mathematical, p.721

, Physical and Engineering Sciences, vol.453, pp.1975-2001, 1964.

G. Lebon and . Jou, Understanding non-equilibrium thermodynamics, 2008.

B. Spang, Excel add-in for properties of water and steam in si-units, p.724

Y. Yao, D. Sun, and H. Matsuoka, A unified constitutive model for both clay and 726 sand with hardening parameter independent on stress path

, Computers &, vol.727

. Geotechnics, , vol.35, pp.210-222, 2008.

Y. Yao, D. Sun, and T. Luo, A critical state model for sands dependent on stress 729 and density, International Journal for Numerical and Analytical Methods in, p.730

. Geomechanics, , vol.28, pp.323-337, 2004.

T. Lê, Comportement thermo-hydro-mécanique de l'argile de boom, p.732

, École Nationale des Ponts et Chaussées, 2008.

R. Borja, C. Tamagnini, and A. Amorosi, Coupling plasticity and energy-conserving 734 elasticity models for clays, Journal of Geotechnical and Geoenvironmentol Engineering, vol.735, issue.10, pp.948-957, 1997.

C. Pastén, E. Castillo, and S. H. Chong, Thermo-mechanical ratcheting in soil-structure 737 interfaces, Acta Geotechnica, vol.14, pp.1561-1569, 2019.

D. M. Zymnis, A. Whittle, and X. Cheng, Simulation of long-term thermo-mechanical 739 response of clay using an advanced constitutive model, Acta Geotechnica, vol.14, p.740, 2019.