R. Abraham and J. Delmas, Exact simulation of the genealogical tree for a stationary branching population and application to the asymptotics of its total length, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01413614

D. Aldous and L. Popovic, A critical branching process model for biodiversity, Adv. Appl. Probab, vol.37, issue.4, pp.1094-1115, 2005.

G. Alsmeyer and U. Rösler, On the existence of ?-moments of the limit of a normalized supercritical Galton-Watson process, J. Theor. Probab, vol.17, issue.4, pp.905-928, 2004.

K. B. Athreya and P. Ney, Branching processes, 1972.

J. Berestycki, N. Berestycki, and J. Schweinsberg, Beta-coalescents and continuous stable random trees, Ann. Probab, vol.35, issue.5, pp.1835-1887, 2007.

J. Berestycki, N. Berestycki, and J. Schweinsberg, Small-time behavior of Beta coalescents, Ann. Inst. Henri Poincaré Probab. Stat, vol.44, issue.2, pp.214-238, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00292057

N. Berestycki, Recent progress in coalescent theory, Ensaios Matematicos, vol.16, issue.1, pp.1-193, 2009.

J. Bertoin and J. Gall, The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probability Theory and Related Fields, vol.117, pp.249-266, 2000.

H. Bi and J. Delmas, Total length of the genealogical tree for quadratic stationary continuous-state branching processes, Ann. Inst. Henri Poincaré Probab. Stat, vol.52, issue.3, pp.1321-1350, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01024986

N. H. Bingham, Continuous branching processes and spectral positivity, Stochastic Processes Appl, vol.4, issue.3, pp.217-242, 1976.

E. Bolthausen and A. Sznitman, On Ruelle's probability cascades and an abstract cavity method, Communications in Mathematical Physics, vol.197, issue.2, pp.247-276, 1998.

Y. Chen and J. Delmas, Smaller population size at the MRCA time for stationary branching processes, Ann. Probab, vol.40, issue.5, pp.2034-2068, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00515090

A. Dress, V. Moulton, and W. Terhalle, T -theory: an overview, European J. Combin, vol.17, issue.2-3, pp.161-175, 1996.

T. Duquesne and J. Gall, Random trees, Lévy processes and spatial branching processes, Astérisque, issue.281, p.147, 2002.

T. Duquesne and J. Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields, vol.131, issue.4, pp.553-603, 2005.

S. N. Evans, Lectures from the 35th Summer School on Probability Theory, Lecture Notes in Mathematics, vol.1920, 2005.

S. Feng, The Poisson-Dirichlet distribution and related topics. Probability and its Applications, 2010.

C. Foucart, C. Ma, and B. Mallein, Coalescences in continuous-state branching processes, Electron. J. Probab, vol.24, p.52, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01944043

C. Goldschmidt and J. B. Martin, Random recursive trees and the Bolthausen-Sznitman coalescent, Electron. J. Probab, vol.10, issue.21, pp.718-745, 2005.

D. R. Grey, Asymptotic behaviour of continuous time, continuous state-space branching processes, J. Appl. Probability, vol.11, pp.669-677, 1974.

R. C. Griffiths and S. Tavare, Sampling theory for neutral alleles in a varying environment, Phil. Trans. R. Soc. Lond. B, vol.344, 1994.

S. C. Harris, S. G. Johnston, and M. I. Roberts, The coalescent structure of continuous-time Galton-Watson trees, Ann. Appl. Probab, 2019.

S. Ho and B. Shapiro, Skyline-plot methods for estimating demographic history from nucleotide sequences, Molecular Ecology Resources, vol.11, pp.423-434, 2011.

L. F. James, Lamperti-type laws, Ann. Appl. Probab, vol.20, issue.4, pp.1303-1340, 2010.

S. G. Johnston, The genealogy of Galton-Watson trees, Electronic Journal of Probability, vol.24, issue.4, pp.1-35, 2019.

S. G. Johnston and A. Lambert, The coalescent structure of branching processes: a unifying Poissonization approach, 2019.

K. Kawazu and S. Watanabe, Branching processes with immigration and related limit theorems, Teor. Verojatnost. i Primenen, vol.16, pp.34-51, 1971.

J. F. Kingman, Random discrete distributions, Journal of the Royal Statistical Society: Series B (Methodological), vol.37, issue.1, pp.1-15, 1975.

A. Lambert, Coalescence times for the branching process, Adv. in Appl. Probab, vol.35, issue.4, pp.1071-1089, 2003.

A. Lambert, Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct, Electron. J. Probab, vol.12, issue.14, pp.420-446, 2007.

A. Lambert, The contour of splitting trees is a Lévy process, Ann. Probab, vol.38, issue.1, pp.348-395, 2010.

Z. Li, Measure-valued branching Markov processes, Probability and its Applications, 2011.

Z. Li, Continuous-state branching processes with immigration, 2019.

S. Nee, R. M. May, and P. H. Harvey, The reconstructed evolutionary process, Phil. Trans. R. Soc. Lond. B, vol.344, 1994.

M. Perman, J. Pitman, and M. Yor, Size-biased sampling of Poisson point processes and excursions, vol.92, pp.21-39, 1992.

J. Pitman, Coalescents with multiple collisions, The Annals of Probability, vol.27, issue.4, pp.1870-1902, 1999.

J. Pitman, Poisson-Kingman partitions, Statistics and science: a Festschrift for Terry Speed, vol.40, pp.1-34, 2003.

J. Pitman and M. Yor, The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann. Probab, vol.25, issue.2, pp.855-900, 1997.

S. Sagitov, The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab, vol.36, issue.4, pp.1116-1125, 1999.

J. Schweinsberg, Coalescent processes obtained from supercritical Galton-Watson processes. Stochastic Processes and their Applications, vol.106, pp.107-139, 2003.

H. Wang, L. Li, and H. Yao, Coalescence for supercritical Galton-Watson processes with immigration, 2019.

R. Abraham,

J. Delmas, C. , and E. Des-ponts, France Email address: delmas@cermics.enpc.fr

, P.R