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Abstract5

The present manuscript presents a framework for automating the formulation and resolution of limit analysis
problems in a very general manner. This framework relies on FEniCS domain-specific language and the rep-
resentation of material strength criteria and their corresponding support function in the conic programming
setting. Various choices of finite element discretization, including discontinuous Galerkin interpolations, are
offered by FEniCS, enabling to formulate lower bound equilibrium elements or upper bound elements includ-
ing discontinuities for instance. The numerical resolution of the corresponding optimization problem is carried
out by the interior-point solver Mosek which takes advantage of the conic representation for yield criteria.
Through various illustrative examples ranging from classical continuum limit analysis problems to generalized
mechanical models such as plates, shells, strain gradient or Cosserat continua, we show that limit analysis
problems can be formulated using only a few lines of code, discretized in a very simple manner and solved
extremely efficiently. This paper is accompanied by a FEniCS toolbox implementing the above-mentioned
framework.

Keywords: limit analysis, yield design, convex optimization, conic programming, FEniCS, generalized6

continua7

1. Introduction8

Limit analysis [27], or more generally yield design theory [59, 60], is an efficient method for computing9

the ultimate load, or bearing capacity, of a structure based on the sole knowledge of a given local strength10

criterion (or plasticity criterion for limit analysis) and applied external loads. Its main advantage is that it11

is a direct method i.e. it solves directly for the limit load instead of relying on incremental elasto-plastic12

analysis and requires only few mechanical information to solve the limit load problem. More precisely, limit13

analysis theory can be formulated as a convex optimization problem and therefore benefits from variational14

approximations on the primal and associated dual problem yielding the so-called lower bound static and15

upper bound kinematic approaches. The exact collapse load can therefore be bracketed by the bounding16

status of the static and kinematic solutions. This method has found tremendous applications in mechanical17

and civil engineering problems since analytical upper bounds can be obtained very efficiently by considering18

simple collapse mechanisms but also because lower bounds provide a safe approximation to the exact collapse19

load. Typical fields of application include soil slope stability, footing bearing capacity or other geotechnical20

problems [17], rigid-block masonry structures, design of reinforced-concrete structures [16, 55], especially21

through strut-and-tie methods [63] or yield-line analysis [31], collapse loads of frame, plate or shell structures22

[61, 62], etc.23

In all the above-mentioned applications, hand-based solutions are quite easy to compute and can be24

found in different design codes. However, limit analysis techniques have been somehow limited to hand-based25

solutions for quite a long time because of the difficulties encountered in the past when automating their26

resolution in a finite-element discrete setting for instance. Indeed, the corresponding optimization problems27

are inherently non-smooth and large-scale which makes them challenging to solve. Standard gradient-based28

optimizers for instance are not a good candidate for their resolution due to the highly non-smooth aspect.29

The major breakthrough in this field is associated with the development of efficient optimization algorithms30

particularly well-suited for this class of optimization problems. The first progress has been made with the31

simplex algorithm [19] for solving linear programming (LP) problems. However, limit analysis problems32

fall into the LP category only when the strength criterion is a polytope i.e. when it can be written as a33
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collection of linear inequalities [1, 64], whereas the majority of strength/plasticity criteria are non-linear. The34

second progress has been achieved with the advent of so-called interior-point (IP) solvers which improved35

the complexity of solving LP problems [33], the simplex algorithm has exponential complexity compared36

to polynomial (and, in practice, quasi-linear) complexity for interior-point solvers. More importantly, the37

interior-point method has been extended to more complex convex programs [53] such as second-order cone38

programs (SOCP) or semi-definite programs (SDP). Combining the weak complexity of IP solvers and the39

fact that most strength criteria can be expressed using second-order cone or semi-definite constraints [3, 45]40

now enables to solve complex and large-scale limit analysis problems [40, 48, 57, 67]. Obviously, a few other41

alternative methods have been proposed but, to the authors’ opinion, none of them have been shown to42

exhibit a performance similar to state-of-the-art IP solvers.43

As regards numerical discretization techniques for limit analysis problem, the vast majority of works relies44

on the finite-element method [44, 1, 56]. The specificity of limit analysis problems, compared to more standard45

nonlinear computations with displacement-based FE discretizations, lies in the use of static equilibrium-based46

finite-elements for obtaining true lower bound [64, 34] (and therefore safe) estimates of the limit load but also47

in the use of discontinuous finite-elements for the kinematic upper bound approach [65, 47, 46]. Indeed, most48

hand-based upper bound solutions have been obtained considering rigid-block mechanisms, thus involving49

no deformation but only displacement jumps in the plastic dissipation computation. Despite the higher50

computational cost compared to equivalent continuous interpolations, discontinuous interpolations provide51

more accurate limit load estimates [56, 65, 39, 47], especially if finite-element edges are well-oriented. They52

are also more robust for certain problems since they do not suffer from locking issues, see for instance [51]53

for volumetric locking in pressure-insensitive materials or [9] for shear-locking in thin plates.54

Due to the specific nature of the optimization problems, formulating a discretized version of a limit55

analysis (either static or kinematic) approach requires forming matrices representing, for instance, equilib-56

rium, continuity or boundary conditions but also other linear relations coupling mechanical variables (such57

as stress or strain) with auxiliary variables used to express the strength conditions in a LP/SOCP or SDP58

format. Besides, depending on the specific choice made for the optimization solver, the standard input59

format of the problem may differ. As a result, discrete limit analysis problems require access to matrices that60

are not readily available from standard displacement-based FE solver and must therefore be implemented61

in an external program before calling the optimizer. Combining this aspect with the various types of FE62

discretizations and mechanical models makes the automation of limit analysis problem a challenge. As63

a result, limit analysis codes are usually limited to specific situations, sometimes with specific strength criteria.64

65

In the present manuscript, we describe a general framework for the formulation of limit analysis problems66

for different mechanical models (2D/3D continua, plates/shells or generalized continua). Relying on the67

FEniCS finite-element library and symbolic representation of operators and code-generation capabilities,68

different FE discretization schemes (including discontinuous or equilibrium elements) can be easily formulated69

and generalized to more advanced mechanical models. The proposed framework therefore offers four levels70

of generality in the problem formulation:71

• choice of a mechanical model : limit analysis problems possess the same structure and can be formulated72

in a symbolic fashion through generalized stress/strain definitions (section 2).73

• choice of a strength criterion: the formulation of its conic representation at a local point suffices to74

completely characterize the strength criterion, its translation to the global optimization problem being75

automatically performed (section 3).76

• choice of a FE discretization: including element type, interpolation degree or quadrature rule, all77

compatible for a variable number of degrees of freedom related to the choice of the mechanical model78

(section 4).79

• choice of the optimization solver : although the accompanying FEniCS toolbox relies extensively on the80

Mosek optimization solver [49], once formulated in a standard conic programming form, the problem81

can then be written in a specific file format appropriate for another solver.82

This versatility is further illustrated by considering homogenization theory in a limit analysis setting (section83

5), plate and shell problems (section 6) and generalized continua such as Cosserat or strain gradient models84

(section 7).85
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As regards numerical implementation, the present paper is accompanied by a Python module86

fenics optim.limit analysis implemented as a submodule of the FEniCS convex optimization package87

fenics optim [6] described in [5].88

Notations. A : B = AijBji, A ...B = AijkBkji.89

2. A general framework for limit analysis problems90

In this section, we consider a material domain Ω ⊂ Rd (with d = 1, 2, 3) associated with a specific91

mechanical model. In the subsequent applications, we will consider classical continuum theories such as 2D92

or 3D Cauchy continua or Reissner-Mindlin plate models for instance but also generalized continuum models93

encompassing higher-grade or higher-order theories. For this reason, the subsequent presentation will be94

made in a generalized continuum framework in which the mechanical stress or strain measures, equilibrium95

or continuity equations and boundary conditions will be written in an abstract fashion, their precise expression96

remaining to be specified for each particular mechanical theory. In particular, the presentation will be in the97

line of Germain’s construction through the virtual work principle [24, 23].98

2.1. Virtual work principle for generalized continua99

Let us therefore consider a generalized virtual velocity field u(x) of dimension n and a set of strain100

measures Du of dimension m with D being a generalized strain operator. Following [24, 23], such strain101

measures must be objective i.e. null for any rigid body motion. The virtual power of internal forces is102

assumed to be given by an internal force density depending linearly upon the strain measures:103

P(i)(u) = −
∫

Ω

Σ ·Du dx (1)

in which Σ denotes the generalized stress measure associated with Du by duality. The above expression104

must in fact be understood in the sense of distributions i.e. u may exhibit discontinuities Ju (consistent105

with the definition of operator D) across some internal surface Γ. The power of internal forces therefore106

writes more explicitly as:107

P(i)(u) = −
(∫

Ω\Γ
Σ ·Du dx +

∫

Γ

Σ · JudS

)
(2)

The power of external forces is assumed to consist of two contributions: long-range interaction forces described108

by a volume density F and boundary contact forces described by a surface density T acting on the exterior109

boundary ∂Ω. Each power density depends linearly upon the generalized velocity so that the total power is110

given by:111

P(e)(u) =

∫

Ω

F · u dx +

∫

∂Ω

T · udS (3)

According to the virtual power principle, the system is in equilibrium if and only if the sum of the internal112

and external virtual powers is zero for any virtual velocity field:113

P(i)(u) + P(e)(u) = 0 ∀u (equilibrium)

2.2. General formulation of a limit analysis problem114

Limit analysis (or yield design) theory amounts to finding the maximum loading a system can sustain115

considering only equilibrium and strength conditions for its constitutive material. The latter can be generally116

described by the fact that the generalized stresses Σ(x) must belong to a strength domain G(x) for all point117

x ∈ Ω:118

Σ(x) ∈ G(x) ∀x ∈ Ω (strength condition)

The strength domain G ⊆ Rm is assumed to be a convex set (it may be unbounded and non-smooth) which119

usually contains the origin 0 ∈ G.120

121
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Finding the maximum loading will be achieved with respect to a given loading direction i.e. by assuming
that both volume and surface forces depend upon a single load factor λ in an affine manner:

F (λ) = λf + f0 (4)

T (λ) = λt+ t0 (5)

where f , t are given loading directions and f0, t0 are fixed reference loads. In such a case, the power of122

external forces can also be written in an affine manner with respect to λ:123

P(e)
λ (u) = λP(e)(u) + P(e)

0 (u) (6)

with obvious notations. Let us mention that if one wants to describe the set of ultimate loads defined by124

multiple loading parameters (see for instance section 5), the ultimate load factor λ+ must be computed125

independently for each fixed loading direction in the multiple loading parameter space. When repeating this126

process for different loading directions, one obtains the corresponding set of ultimate loads.127

128

The limit analysis problem can finally be formulated as finding the maximum load factor λ such that129

there exists a generalized stress field Σ(x) in equilibrium with (F (λ),T (λ)) and complying with the material130

strength properties i.e. satisfying both (equilibrium) and (strength condition) which can also be written131

as:132

λ+ = sup
λ,Σ

λ

s.t. P(i)(u) + λP(e)(u) + P(e)
0 (u) = 0 ∀u

Σ(x) ∈ G(x) ∀x ∈ Ω

(7)

Let us mention that for the infinite-dimensional convex problem (7) to have a solution, the fixed loading133

(f0, t0) must be a sustainable loading i.e. there must exist a stress field in equilibrium with (f0, t0) and134

satisfying (strength condition).135

Formulation (7) will be the basis of the mixed finite-element formulation discussed in section 4.3 when136

choosing proper interpolation spaces for Σ and u. We now turn to the general formulation of the static and137

kinematic approaches.138

2.2.1. Static approach139

Starting from the weak formulation of equilibrium given by (equilibrium), strong balance equations,
continuity conditions and boundary conditions can be obtained for the generalized stresses Σ. These will
generally take the following form:

EΣ + λf + f0 = 0 in Ω (8)

CΣ = 0 on Γ (9)

T Σ = λt+ t0 on ∂Ω (10)

where E is an equilibrium operator (adjoint to D) and C and T are some continuity and trace operators140

related to E. A generalized stress field Σ(x) satisfying these conditions will be termed as statically admissible141

with a given loading (λf + f0, λt+ t0).142

The pure static formulation can therefore be generally written as:143

λ+ = sup
λ,Σ

λ

s.t. EΣ + λf + f0 = 0 in Ω
CΣ = 0 on Γ
T Σ = λt+ t0 on ∂Ω
Σ(x) ∈ G(x) ∀x ∈ Ω

(SA)

Obviously Σ must belong to an appropriate functional space W consistent with the nature of the above144

operators. If one restricts to a (finite-dimensional) subset Wh ⊂ W such that all constraints of (SA) can145

be satisfied exactly, the corresponding solution λs of the corresponding (finite) convex optimization problem146

will therefore be a lower bound to the exact limit load: λs ≤ λ+.147
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2.2.2. Kinematic approach148

The kinematic formulation of a limit analysis problem can be obtained from an equivalent formulation of149

(7):150

λ ≤ λ+ ⇐⇒ ∃Σ s.t.

{
λP(e)(u) + P(e)

0 (u) = −P(i)(u) ∀u
Σ(x) ∈ G(x) ∀x ∈ Ω

(11)

One therefore has that:151

λP(e)(u) + P(e)
0 (u) ≤ sup

Σ(x)∈G(x)

{−P(i)(u)} = P(mr)(u) ∀u (12)

where we introduced the maximum resisting power as:152

P(mr)(u) =

∫

Ω\Γ
πG(Du) dx +

∫

Γ

πG(Ju) dS (13)

in which πG is the support function of the convex set G:153

πG(d) = sup
Σ∈G
{Σ · d} (14)

One can conclude that:154

λ ≤ λ+ =⇒ λ ≤ P
(mr)(u)− P(e)

0 (u)

P(e)(u)
∀u (15)

Minimizing the right-hand side of the above relation therefore gives an upper bound to the exact maximal155

load λ+. Under appropriate mathematical assumptions [52, 22] (non-restrictive in practice), it can be shown156

that the minimum is in fact λ+ so that one has:157

λ+ = inf
u

P(mr)(u)− P(e)
0 (u)

P(e)(u)
(16)

Observing that the above quotient is invariant when rescaling u by a positive factor, a normalization con-158

straint can in fact be considered to remove the denominator so that, one finally has for the kinematic159

approach:160

λ+ = inf
u
P(mr)(u)− P(e)

0 (u)

s.t. P(e)(u) = 1
(KA)

Similarly to the static approach (SA), u must belong to an appropriate functional space V. If one restricts161

to a (finite-dimensional) subset Vh ⊂ V, the corresponding solution λu of the corresponding (finite) convex162

optimization problem will therefore be an upper bound to the exact limit load: λ+ ≥ λu.163

3. Conic representation of strength criteria164

This section deals with the representation of material strength criteria or associated support functions in165

the framework of conic programming. The first subsection describes the standard conic programming format166

used by the Mosek solver although other solvers (e.g. CVXOPT, Sedumi, SDPT3) use a format which is167

quite similar. We then discuss how the conic programming framework is used for limit analysis problems.168

3.1. Conic programming169

Optimization problems entering the conic programming framework can be written as:170

min
x

cTx

s.t. bl ≤ Ax ≤ bu
x ∈ K

(17)

where vector c defines a linear objective functional, matrix A and vectors bu,bl define linear inequality (or171

equality if bu = bl) constraints and where K = K1 × K2 × . . . × Kp is a product of cones Ki ⊂ Rdi so that172

x ∈ K ⇔ xi ∈ Ki ∀i = 1, . . . , p where x = (x1,x2, . . . ,xp). These cones can be of different kinds:173
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• Ki = Rdi i.e. no constraint on xi174

• Ki = (R+)di is the positive orthant i.e. xi ≥ 0175

• Ki = Qdi the quadratic Lorentz cone defined as:176

Qdi = {z ∈ Rdi s.t. z = (z0, z̄) and z0 ≥ ‖z̄‖2} (18)

• Ki = Qrdi the rotated quadratic Lorentz cone defined as:177

Qrdi = {z ∈ Rdi s.t. z = (z0, z1, z̄) and 2z0z1 ≥ ‖z̄‖22, z0, z1 ≥ 0} (19)

• Ki = S+
ni

is the cone of semi-definite positive matrices of dimension ni.178

• Ki = Pαdi is the (primal) power cone parametrized by α s.t. 0 < α < 1:179

Pαdi = {z ∈ Rdi s.t. z = (z0, z1, z̄) and zα0 z
1−α
1 ≥ ‖z̄‖2, z0, z1 ≥ 0} (20)

• Ki = Kexp is the (primal) exponential cone:180

Kexp = {z ∈ R3 s.t. z = (z0, z1, z2) and z0 ≥ z1 exp(z2/z1), z0, z1 ≥ 0} (21)

181

If K contains only cones of the first two kinds, then the resulting optimization problem (17) belongs to182

the class of Linear Programming (LP) problems. If, in addition, K contains quadratic cones Qdi or Qrdi , then183

the problem belongs to the class of Second-Order Cone Programming (SOCP) problems. When cones of the184

type S+
ni

are present, the problem belongs to the class of Semi-Definite Programming (SDP) problems. LP,185

SOCP and SDP are extremely important classes of convex optimization problems for which a tremendous186

number of applications can be found. When a conic optimization problem contains a power (resp. exponential187

cone), one obtains a power (resp. exponential) cone programming problem. Such problems have not been188

investigated much until recently due to the difficulty of developing efficient solvers. Only a few solvers now189

provide efficient algorithms for solving power and exponential cone programs, including ECOS [21] and Mosek190

(since version 9).191

3.2. Conic-representable functions and sets192

In order to use conic programming solvers for our application, limit analysis problems must therefore be193

formulated following format (17). Inspecting the structure of (SA), it can be seen that all constraints and194

the objective functions are linear, except for the strength condition (strength condition). As a result, in195

order to fit format (17), only (strength condition) must be reformulated in a conic sense. Similarly for196

problem (KA), only the support function πG must be expressed in conic form to fit the standard format (17).197

This reformulation step therefore depends on the specific choice of a strength criterion. To do so, we define198

a generic form of conic-representable functions and sets. The fenics optim package [6] relies on this specific199

notion for automating the formulation of generic convex problems. The fenics optim.limit analysis200

module accompanying this paper uses these notions and particularizes them for limit analysis problems.201

Conic-representable functions are defined as the class of convex functions which can be expressed as202

follows:203

F (x) = min
y

cT
xx + cT

y y

s.t. bl ≤ Ax + By ≤ bu
y ∈ K

(22)

with x ∈ Rn and in which K is again a product of cones of the kinds detailed in section 3.1. As a by-204

product of the previous definition, conic-representable convex sets correspond to sets for which the indicator205

function is conic-representable. If K contains only second-order cones (SOC), then we will speak about a206

SOC-representable function. A SDP-representable function corresponds to the case when K contains SDP207

cones, whereas linear-representable functions correspond to the case when the conic constraint y ∈ K is208

absent or contains only positive constraints yi ≥ 0.209
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It is easy to see that if F is SOC-representable (resp. SDP-representable, resp. linear-representable),210

then its Legendre-Fenchel conjugate F ∗ is also SOC-representable (resp. SDP-representable, resp. linear-211

representable). For limit analysis applications, this means that if a strength criterion (expressed as a convex212

set) is SOC-representable (resp. SDP-representable, resp. linear-representable), then so will be its support213

function, and vice-versa.214

As already mentioned in [3, 37, 45], a large class of classical strength criteria can be formulated in terms215

of second-order cone (SOC) constraints or semi-definite positive (SDP) matrix constraints so that their216

expression or their support function expressions can be expressed in the form (22). For some more advanced217

strength criteria, their conic representation may involve power or exponential cones. This is the case, for218

instance, for the Generalized Hoek-Brown [41] or the Hosford yield criterion which are both power-cone219

representable. Below, we give an example on how conic-representation is used for the case of a 2D plane-220

strain Mohr-Coulomb criterion and for the plane-stress Hosford criterion. Many generic conic reformulations221

can be found in [42, 2, 12] and especially in the Mosek Modeling Cookbook [50].222

3.3. Example of the plane-strain Mohr-Coulomb criterion223

In plane-strain conditions, the Mohr-Coulomb criterion with cohesion c and friction angle φ writes as:224

σ ∈ MC2D(c, φ)⇐⇒
√

(σxx − σyy)2 + 4σ2
xy ≤ 2c cosφ− (σxx + σyy) sinφ (23)

which can be also written as:
√
y2

1 + y2
2 ≤ y0 ⇔ y ∈ Q3 (24)

with




y0

y1

y2



 =



− sinφ − sinφ 0

1 −1 0
0 0 2






σxx
σyy
σxy



+





2c cosφ
0
0



 (25)

This expression shows that the criterion is SOC-representable in the sense of format (22).225

226

Similarly, its support function is given by:

π(d) = sup
σ∈MC2D(c,φ)

σijdij (26)

=

{
c cotanφ tr(d) if tr(d) ≥ sinφ

√
(dxx − dyy)2 + 4d2

xy

+∞ otherwise

which can be expressed as:

π(d) = min
y

c cotanφ tr(d) (27)

s.t.




1 1 0
sinφ − sinφ 0

0 0 2 sinφ






dxx
dyy
dxy



 = y

y ∈ Q3

which also fits format (22). Note that the representation is by no means unique since, for instance, we could
have equivalently replaced the linear objective term by c cotanφ y0 or we could also have inverted the linear
relation between d and y and introduced ỹ = y/ sinφ so that:

π(d) = min
ỹ

c cosφ ỹ0 (28)

s.t.




dxx
dyy
dxy



 =




(sinφ)/2 1/2 0
(sinφ)/2 −1/2 0

0 0 1/2


 ỹ

ỹ ∈ Q3

This expression has the advantage over (27) of being still well-defined when φ = 0, enabling to recover the227

Tresca/von Mises case.228
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3.4. Example of the plane-stress Hosford criterion229

The isotropic Hosford yield criterion [28] can be seen as a generalization of the von Mises or Tresca criteria230

which writes in plane-stress conditions as follows:231

σ ∈ GHosford ⇐⇒
1

2
(|σI |n + |σII |n + |σI − σII |n) ≤ σn0 (29)

where σI ≥ σII are the principal stresses, σ0 the uniaxial strength and n ≥ 1 a material parameter. In232

particular, one retrieves the plane-stress von Mises criterion for n = 2 and the Tresca criterion for n = 1 and233

n → ∞. This criterion is often used to model metallic materials, Hosford suggesting to use n = 8 for fcc234

metals (e.g. aluminum) and n = 6 for bcc metals (e.g. ferritic steel) [29].235

Apart from the special cases n ∈ {1, 2,∞}, the previous criterion cannot be represented using simple236

second-order cone constraints for any n. We now show that it can be modeled efficiently using power cones.237

Let us first write:238

σ ∈ GHosford ⇐⇒





z1 + z2 + z3 ≤ 2σn0
|σI | ≤ (z1)1/n

|σII | ≤ (z2)1/n

|σI − σII | ≤ (z3)1/n

zi ≥ 0

⇐⇒





z1 + z2 + z3 ≤ 2σn0
|z̄i| ≤ (zi)

1/n i = 1, 2, 3

σI ≤ z̄1

−σII ≤ z̄2

σI − σII ≤ z̄3

zi ≥ 0

(30)

where we introduced auxiliary variables zi, z̄i. Let us now remark that the constraints |z̄i| ≤ (zi)
1/n with

zi ≥ 0 can be expressed using the three-dimensional power-cone constraint (zi, 1, z̄i) ∈ P1/n
3 . Besides, the

principal stresses in 2D can be expressed as follows:

σI =
σxx + σyy

2
+

1

2

√
(σxx − σyy)2 + 4σ2

xy (31)

σII =
σxx + σyy

2
− 1

2

√
(σxx − σyy)2 + 4σ2

xy (32)

Introducing ‖ȳ‖2 =
√

(σxx − σyy)2 + 4σ2
xy with ȳ =

{
σxx − σyy

2σxy

}
, (30) can be rewritten as:239

σ ∈ GHosford ⇐⇒





z1 + z2 + z3 ≤ 2σn0
(zi, 1, z̄i) ∈ P1/n

3 i = 1, 2, 3

‖ȳ‖2 ≤ y0

(σxx + σyy + y0)/2 = z̄1

(−σxx − σyy + y0)/2 = z̄2

y0 = z̄3

(33)

where one can see that the Hosford criterion can be formulated using 3 power-cone constraints, 1 second-order240

cone constraint, 1 linear inequality and 3 equality constraints.241

242

Finally, note that anisotropic versions (e.g. the Logan-Hosford yield criterion [43]) of the form:243

A|σI |n +B|σII |n + C|σI − σII |n ≤ σn0 (34)

can also be easily adapted from (33).244

3.5. A gallery of conic-representable strength criteria245

The fenics optim.limit analysis module provides access to a large class of usual strength criteria246

through the conic formulation of the criterion indicator and support functions, the latter being provided247

both in terms of strains and velocity discontinuities, see section 4. Table 1 provides a list of currently248

available material strength criteria.249
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Strength criterion Mechanical model Representation type
vonMises 2D/3D SOC

DruckerPrager 2D/3D SOC
Tresca2D 2D SOC

MohrCoulomb2D 2D SOC
Rankine2D 2D SOC
Tresca3D 3D SDP

MohrCoulomb3D 3D SDP
Rankine3D 3D SDP
TsaiWu 3D SOC
Hosford 2D Power

Table 1: List of available conic-representable strength criteria for 2D/3D continua

4. Finite-element limit analysis of 2D and 3D continua250

In this section, we consider the standard continuum model where Σ = σ is the classical Cauchy symmetric251

stress tensor, u a 2D or 3D velocity field and the associated strain is its symmetric gradient Du = ∇su. For252

simplicity, we will consider the case where there is no fixed loading f0 = t0 = 0.253

4.1. Kinematic-based formulation254

Let us now consider the finite-element discretization of the kinematic limit analysis approach (KA) for a255

continuous velocity field and imposed tractions on some part ∂ΩT of the boundary:256

λ+ ≤ inf
u∈Vh

∫

Ω

πG(∇su) dx

s.t.
∫

Ω
f · udx +

∫
∂ΩT

t · udS = 1
(35)

where Vh is a finite-element subspace of Lagrange elements based on a given mesh of typical mesh size h. In257

the above problem, the computed objective function is an upper bound of the exact limit load factor λ+ only258

if the integral of the objective function term is evaluated exactly. In general, this is not possible because259

of the non-linearity of function πG, except in the special case of u being interpolated with P1-Lagrange260

elements so that the gradient is cell-wise constant and the integral becomes trivial.261

262

As explained in [46], keeping an exact upper-bound estimate of λ+ requires this integral to be estimated263

by excess. This is possible for a mesh consisting of simplex (straight edges) triangles and a P2-Lagrange264

interpolation for u when using the following so-called vertex quadrature scheme:265

∫

T

F (r(x)) dx .
|T |
d+ 1

d+1∑

i=1

F (r(xi)) (36)

where F is a convex function and r is an affinely-varying function over the mesh cell T (either a triangle in266

dimension d = 2 or a tetrahedron for d = 3 of area/volume |T |) with r(xi) being its value at the d+1-vertices.267

In this case, we have:268

λ+ ≤ λu = inf
u∈Vh

∑

T∈Th

|T |
d+ 1

d+1∑

i=1

πG(∇su(xi))

s.t.

∫

Ω

f · udx +

∫

∂ΩT

t · udS = 1

(37)

As discussed in [5], the fenics optim package enables to solve convex variational problem of the form:269

inf
u∈V

∫

Ω

(j1 ◦ `1(u) + . . .+ jp ◦ `p(u)) dx

s.t. u ∈ K
(38)
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where ji are conic-representable convex functions and `i are linear operators which can be expressed using UFL270

symbolic operators. Each individual term ji can be specified independently along with its conic representation271

and the quadrature scheme used for the computation over Ω so that (38) is in fact of the form:272

inf
u∈V

p∑

i=1

Ng,i∑

gi=1

ωgiji (`i(u;xgi))

s.t. u ∈ K
(39)

where `i(u;xgi) denotes the evaluation of `i(u) at a quadrature point xgi .273

Local auxiliary variables y of the conic representation (22) for each ji will be added to the optimization274

problem for each quadrature point xgi . More details can be found in [5].275

276

Obviously, problem (35) is a problem of the form (38) in which j1 = πG, `1 = ∇s and j2 is the indi-277

cator function of the linear constraint
∫

Ω
f · udx +

∫
∂ΩT

t · u dS = 1 with `2 being the identity. Ignoring278

import statements and mesh generation, we now give a few lines of Python script to illustrate how the279

fenics optim.limit analysis module enables to formulate an upper bound limit analysis problem for a280

2D Mohr-Coulomb material using a P2-Lagrange interpolation for u ∈ Vh. First, the corresponding function281

space V is defined and fixed boundary conditions are imposed on the part named ”border” of the boundary.282

A MosekProblem object is instantiated and a first optimization field u belonging to function space V is added283

to the problem and is constrained to satisfy the Dirichlet boundary conditions:284

1 V = VectorFunctionSpace(mesh, "CG", 2)
2 bc = DirichletBC(V, Constant((0.,0.)), border)
3

4 prob = MosekProblem("Upper bound limit analysis")
5 u = prob.add_var(V, bc=bc)

The external work normalization constraint is then added by defining the function space for the Lagrange285

multiplier corresponding to the constraint (here it is scalar so we use a "Real" function space) and passing286

the corresponding constraint in its weak form as follows (here t = 0):287

1 R = FunctionSpace(mesh, "R", 0)
2 def Pext(lamb):
3 return [lamb*dot(f,u)*dx]
4 prob.add_eq_constraint(R, A=Pext, b=1)

Now, a Mohr-Coulomb material is instantiated and provides access to its convex support function. The input288

arguments are the strain ∇su written in terms of UFL operators as well as the choice for the quadrature289

scheme used for its numerical evaluation. Here the vertex scheme (36) is chosen. This convex function is290

then added to the problem before asking for its optimization by Mosek.291

1 mat = MohrCoulomb2D(c, phi)
2 strain = sym(grad(u))
3 pi = mat.support_function(strain, quadrature_scheme="vertex")
4 prob.add_convex_term(pi)
5

6 prob.optimize()

4.2. Static-based formulation292

Conversely, a lower bound estimate of the limit load factor λ+ can be obtained by considering a statically293

admissible discretization of the stress field σ. For this purpose, we consider the lower bound element of294

[44, 64], which includes statically admissible discontinuities between facets. The problem we aim at solving295
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is the following:296

λ+ ≥ λs = sup
λ∈R,σ∈Wh

λ

s.t. divσ + λf = 0 in Ω
[[σ]] · n = 0 through Γ
σ · n = λt on ∂ΩT
σ(x) ∈ G ∀x ∈ Ω

(40)

where Γ is the set of internal facets and [[σ]] the stress discontinuity across this facet of normal n.297

298

For this problem, we have as optimization variables one real λ and a discontinuous piecewise-linear field299

σ represented by a vector of dimension 3 in 2D (6 in 3D),Wh being the associated discontinuous P1
d function300

space:301

1 prob = MosekProblem("Lower bound limit analysis")
2 R = FunctionSpace(mesh, "R", 0)
3 W = VectorFunctionSpace(mesh, "DG", 1, dim=3)
4 lamb, Sig = prob.add_var([R, W])
5 sig = as_matrix([[Sig[0], Sig[2]],
6 [Sig[2], Sig[1]]])

Assuming piecewise constant body force over each cell, the first local equilibrium equation can be equiv-302

alently written weakly using P0 velocity fields as Lagrange multipliers:303

1 V_eq = VectorFunctionSpace(mesh, "DG", 0)
2 def equilibrium(u):
3 return [dot(u,f)*lamb*dx, dot(u,div(sig))*dx]
4 prob.add_eq_constraint(V_eq, A=equilibrium)

Note that in the equilibrium function each block respectively corresponds to the optimization variable λ304

then σ, in the order they have been initially defined. See more details in [5] on the underlying block-structure305

of the problem.306

Similarly, discontinuous affine displacements v defined on the mesh facets only1 are used as Lagrange307

multipliers for the second and third constraints (here t = 0):308

1 V_jump = VectorFunctionSpace(mesh, "Discontinuous Lagrange Trace", 1)
2 def continuity(v):
3 return [None, dot(avg(v),jump(sig,n))*dS
4 + dot(v, dot(sig,n))*ds(0)]
5 prob.add_eq_constraint(V_jump, A=continuity)

where the dS term corresponds to the integral over all internal facets Γ and ds(0) corresponds to the integral309

over ∂ΩT in this case.310

Finally, the problem objective function is added to the problem as well as the strength criterion condition.311

The latter is treated as a convex function through its indicator function. A quadrature scheme is still needed312

since quadrature points will correspond to points at which the strength condition will be enforced. In the313

present case, the vertex scheme will enforce the strength condition at the triangle vertices so that it will be314

satisfied everywhere inside the cell by convexity. The maximization problem is then solved by Mosek:315

1 prob.add_obj_func([1, None])
2

3 crit = mat.criterion(Sig, quadrature_scheme="vertex")
4 prob.add_convex_term(crit)
5

6 prob.optimize(sense="maximize")

1They are called Discontinuous Lagrange Trace elements in FEniCS
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Note that Mosek solutions give access to dual variables (Lagrange multipliers) so that a pseudo velocity316

field can be obtained from u for instance.317

4.3. Mixed finite-element discretizations318

The kinematic formulation (35) is sometimes difficult to use because the support function expression may319

be cumbersome to derive. As a result, a static-based formulation as in (40) is usually more attractive as it320

requires only the expression of the strength criterion itself. Formulation (7) enables to produce upper bounds321

equivalent to (35), provided a proper choice of interpolation spaces for u and Σ and quadrature rules. In the322

general case, such a formulation forms the basis of mixed finite-element interpolations for which the bounding323

status is lost in general [14, 1, 15, 18]. This formulation reads here as:324

λm = sup
λ∈R,σ∈Wh

λ

s.t.

∫

Ω

σ : ∇sudx = λ

(∫

Ω

f · udx +

∫

∂ΩT

t · udS

)
∀u ∈ Vh

σ(x) ∈ G ∀x ∈ Ω

(41)

in which the static equilibrium conditions have been replaced by their weak counterpart using the virtual325

work principle for a class of kinematically admissible continuous velocity fields u ∈ Vh. As mentioned in [5],326

if Vh corresponds to a continuous P1-Lagrange interpolation, Wh to a discontinuous P0 interpolation of the327

stress field and the strength criterion is enforced at one point in each cell (this is enough since σ is cell-wise328

constant), then (41) is equivalent, it is even the dual problem, to (35) for the same Vh.329

For other cases, such as Vh being P2-Lagrange andWh discontinuous P1
d-Lagrange, quadrature rules must330

be specified both for the equilibrium constraint as well as for the strength criterion (criterion enforcement331

points). If both quadrature rules are identical, then problem (41) is equivalent to problem (35) for the chosen332

quadrature rule. Upon choosing a vertex scheme, the objective value λm will be an upper-bound to λ+. Other333

choices such as quadrature points located at the mid-side points do not produce rigorous upper bounds but334

are usually observed to converge from above in practice. When both quadrature rules are different, one335

obtains a true mixed-interpolation and again the bounding status is lost.336

The FEniCS formulation for the first case P1/P0 for Vh/Wh would read as (here quadrature rules are337

trivial one-point rules by default):338

1 prob = MosekProblem("Upper bound from static formulation")
2 R = FunctionSpace(mesh, "R", 0)
3 W = VectorFunctionSpace(mesh, "DG", 0, dim=3)
4 lamb, Sig = prob.add_var([R, W])
5

6 V = VectorFunctionSpace(mesh, "CG", 1)
7 bc = DirichletBC(V, Constant((0, 0)), border)
8

9 sig = as_matrix([[Sig[0], Sig[2]],
10 [Sig[2], Sig[1]]])
11 def equilibrium(u):
12 return [lamb*dot(u, f)*dx, -inner(sig, sym(grad(u)))*dx]
13 prob.add_eq_constraint(V, A=equilibrium, bc=bc)
14

15 prob.add_obj_func([1, None])
16

17 crit = mat.criterion(Sig)
18 prob.add_convex_term(crit)
19

20 prob.optimize(sense="maximize")
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4.4. Discontinuous velocity fields339

As mentioned in the introduction, the use of discontinuous velocity fields is interesting in a limit analysis340

context due to a higher accuracy and the absence of volumetric or shear locking effects.341

In case of discontinuous velocity fields across a set Γ of discontinuity surfaces, the kinematic limit analysis342

formulation (35) now becomes:343

λ+ ≤ λu = inf
u∈Vh

∫

Ω

πG(∇su) dx +

∫

Γ

ΠG([[u]];n) dS

s.t.
∫

Ω
f · udx +

∫
∂ΩT

t · u dS = 1
(42)

where the second term of the objective function denotes the dissipated power contribution of the velocity344

jumps [[u]] through a surface Γ of normal n. It is computed from the discontinuity support function:345

ΠG(v;n) = sup
σ∈G
{(σ · n) · v} = πG

(
v
s
⊗ n

)
(43)

i.e. the jump operator is here Ju = [[u]]
s
⊗n. As a result, the second term will also be conic-representable and346

will be treated similarly. Despite this relation, the conic representation of ΠG(v;n) is usually implemented347

explicitly in the material library due to the potential savings in terms of auxiliary variables compared to calling348

directly πG

(
v
s
⊗ n

)
. A local projection of [[u]] on the facet (n, t)-plane is performed as ΠG functions are in349

general naturally expressed in this local frame. Finally, adding the discontinuity term to the optimization350

problem is similar to the first term, one must just specify the integration measure (the inner facets) and the351

quadrature rule which must be used to perform the facet integration.352

4.5. Mesh refinement353

For improving the quality of the computed limit load estimates, a mesh refinement procedure is also354

implemented based on the contribution of each cell to maximum resisting work P(mr) in the context of a355

kinematic approach. The cell contributions are sorted in descending order and we compute the cumulated356

contribution to P(mr) until reaching a user-specified threshold ηP(mr) (with a ratio η of 0.5 typically) of357

the total dissipation. The first k cells whose total contribution is at least ηP(mr) are then marked for mesh358

refinement. In the case of discontinuous elements, the facet contribution to P(mr) is computed for each facet,359

split evenly between the two sharing cells and added to the cell contributions. For the lower bound approach,360

a similar procedure is used except that we use the dual variable associated with the local equilibrium equation361

to reconstruct a piecewise linear velocity field from which we compute a cell-wise contribution to the total362

dissipation.363

4.6. Vertical cut-off stability364

The different discretization choices are illustrated on the stability of a vertical slope under its self-weight365

γ. The rectangular domain, of height H, is clamped on both bottom and left boundaries and traction-free366

on the remaining boundaries (see Figure 1-right). The soil is modelled as a Mohr-Coulomb material with367

cohesion c and friction angle φ = 30◦ under plane strain conditions. The slope factor of safety is given by368

the maximum value of the non-dimensional quantity (γH/c)+. Convergence of he factor of safety estimates369

for various finite-element discretizations are reported on Figure 1-left as a function of the total number of370

elements, the concentration of the local dissipation πG(∇su) along the slip-line is represented on Figure371

1-right. The comparison between continuous and discontinuous upper bound finite elements is reported in372

Figure 2. Similarly, the comparison between uniform and adaptive mesh refinement is reported in Figure 3373

along with the final adapted mesh.374

In order to assess the computational effort required for solving this problem, problem statistics as well375

as optimization computing times have been reported in Table 2 for the lower-bound (LB) element and the376

quadratic upper-bound (UB2) element for various mesh sizes (uniform mesh refinement). It can be observed377

that, for the same mesh size, the lower-bound element involves more optimization variables (including auxil-378

iary variables involved in the conic reformulation) than the upper-bound element. However, total optimization379

times are comparable between both approaches, most likely due to a smaller number of iterations required380

to reach convergence with the lower-bound element. Interestingly, the computing time scales almost linearly381

with the number of elements.382
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Figure 1: Left: Convergence of the vertical slope factor of safety for various finite element discretization: UB1 (resp. UB2) are the
P1 (resp. P2) Lagrange upper bound elements, LB the lower bound element and Disp1, Disp2, Mixed correspond to non-upper
bound elements considered in [37]. Analytical upper bound from Chen [17]. Right: local dissipation map
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Nel Nvar Ncon Niter CPU time (s)
16 289 288 12 0.03
100 1,801 1,740 12 0.08
400 7,201 6,880 15 0.20

1,600 28,801 27,360 16 0.82
10,000 180,001 170,400 13 4.21
40,000 720,001 680,800 13 20.82
160,000 2,880,001 2,721,600 17 99.87

(a) Lower-bound (LB) static approach

Nel Nvar Ncon Niter CPU time (s)
16 226 163 15 0.06
100 1,342 943 12 0.08
400 5,282 3,683 16 0.26

1,600 20,962 14,563 18 0.66
10,000 130,402 90,403 18 4.50
40,000 520,802 360,803 22 19.56
160,000 2,081,602 1,441,603 39 168.94

(b) Upper-bound (UB2) kinematic approach

Table 2: Problem statistics and optimization computing time for the vertical cut-out stability problem using the lower-bound
(LB) element and quadratic upper-bound (UB2) element. Nel: total number of elements; Nvar: total number of optimization
variables; Ncon: total number of linear optimization constraints; Niter: total number of iterations.

15



Figure 4: Grooved plate under tension

4.7. Tensile strength of a grooved metallic plate383

We consider here the problem of a grooved rectangular plate made (see Figure 4) of a metallic material384

obeying the Hosford criterion in plane-stress conditions. This problem has been previously investigated385

analytically or numerically using the von Mises and Tresca criterion. For the Tresca criterion, the exact386

analytical solution if known to be p+ = 0.5σ0. For the von Mises criterion, a simple upper-bound obtained387

from the Tresca solution is p+ ≤ σ0/
√

3 ≈ 0.577σ0 whereas various more accurate numerical estimates are388

reported in [54]. Most of them seem to estimate p+ ≈ 0.558σ0 such as [68].389

We computed the corresponding estimates in the case of Hosford material using the power-cone formula-390

tion (33) and a kinematic approach using P2-elements (we relied on a static-based formulation as discussed391

in section 4.3). The evolution of the computed limit load as a function of the Hosford exponent n has been392

reported in Figure 5. As expected, we retrieve the von Mises numerical estimate of [68] in the case p = 2 and393

the Tresca solution p+ = 0.5σ0 when n is approaching 1 and +∞. For all values of n, the IPM algorithm of394

Mosek v.9 exhibited good convergence properties, requiring an average of 36 s of optimization (35 iterations)395

for a problem involving approximately 350,000 optimization variables and 250,000 linear constraints (mesh396

of 8047 elements). However, it must be noted that solving directly a plane-stress von Mises problem using397

a single second-order cone constraint on the same mesh (Nvar = 170, 000 and Ncon = 130, 000) requires only398

5 s (13 iterations). Using a finer mesh yielding a similar number of variables and constraints as the Hosford399

problem required less than 8 s. As a result, even though power-cone constraints are now available and can be400

solved in reasonable times, the computational effort is still larger than for SOCP problems, even for problems401

of similar sizes.402

5. Computation of macroscopic strength properties through homogenization theory403

In this section, we show how to adapt the above-described framework to compute macroscopic strength404

properties of heterogeneous materials. Indeed, limit analysis can be combined to homogenization theory405

[66, 13] to compute macroscopic strength criteria of heterogeneous materials by solving an auxiliary limit406

analysis problem formulated on a representative elementary volume or a periodic unit-cell for periodically het-407

erogeneous materials. We will consider here the latter case and denote A the unit cell domain. The strength408

conditions are described by a spatially varying strength criterion G(x). The main goal of homogenization in409
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Figure 5: Limit load of the grooved plate example using a Hosford material of exponent n. The case n = 2 corresponds to the
von Mises criterion with the numerical solution p+ ≈ 0.558σ0 from [68].

limit analysis is to compute the macroscopic strength domain Ghom defined as follows:410

Σ ∈ Ghom ⇐⇒





divσ = 0 in A
[[σ]] · n = 0 through Γ

σ · n antiperiodic

σ(x) ∈ G(x) ∀x ∈ A
1

|A|

∫

A
σ dx = Σ

(44)

Upon choosing a given loading direction Σ0 of arbitrary magnitude, one can look for an estimate to the411

maximum load factor λ+ such that λ+Σ0 ∈ Ghom, yielding the following maximization problem:412

λ+ ≥ λs = sup
λ∈R,σ∈Wh

λ

s.t. divσ = 0 in A
[[σ]] · n = 0 through Γ
σ · n antiperiodic
σ(x) ∈ G(x) ∀x ∈ A
1

|A|

∫

A
σ dx = λΣ0

(45)

Definition (45) correspond to the static formulation of a limit analysis problem formulated on A with413

loading being parametrized by Σ0. Its dual counter-part (kinematic formulation) can be shown to be given414

by2:415

λ+ ≤ λu = inf
D∈R6,u∈Vh

∫

Ω

π(D +∇su;x) dx

s.t. |A|Σ0 : D = 1
u periodic

(46)

Let us remark that:416

Πhom(D) = λ+Σ0 : D ≤ 1

|A|

∫

Ω

π(D +∇su;x) dx (47)

2This formulation can obviously be easily extended to take into account discontinuous velocity fields.
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(a) Porous 3D medium unit cell (b) Unit-cell response to a pure-shear loading

Figure 6: Homogenization of a 3D porous medium

where Πhom(D) := sup
Σ∈Ghom

{Σ : D} is the macroscopic support function.417

In (46), the macroscopic strain is considered as an additional optimization variable since the loading418

direction Σ0 is fixed. It is also possible to prescribe directly the macroscopic strain direction D, leaving free419

the loading direction, by removing the first constraint in (46).420

421

Formulation (46) is applied to a 3D periodic porous medium with pores following a face-centered cubic422

system (see Figure 6a) made of a Drucker-Prager material (c = 1, φ = 30◦). The unit cell response U(x) =423

D ·x+u(x) to a pure shear loading Σxy,0 = 1 is represented on Figure 6b. The macroscopic strength domain424

in the (Σxx,Σyy) plane and in the (Σxx,Σxy) with other Σij = 0 have been represented on Figure 7. It can425

be observed how much the presence of the pores reduces the original Drucker-Prager criterion of the skeleton.426

6. Plates and shells427

6.1. Thin and thick plates428

In this section, we show how limit analysis of thin and thick plates can be tackled by following exactly the429

general format described in section 2 and implemented easily by taking advantage of the high-level symbolic430

representation of operators in FEniCS. First, let us recall that the kinematic limit analysis of thin plates431

obeying a Love-Kirchhoff kinematics corresponds to the following minimization problem:432

inf
w

∫

Ω

πG(∇2w) dx +

∫

Γ

ΠG([[∂nw]]n;n) dS

s.t.

∫

Ω

fw dx = 1
(48)

for a distributed loading f . It can be seen that (48) complies with (KA) where the generalized velocity is433

only the virtual deflection w, the strain operator is the curvature Du = ∇2w and the velocity jump is434

given by a normal rotation jump Ju = [[∂nw]]n ⊗ n. In the above, πG and ΠG are the support functions435

of the corresponding thin plate strength criterion Gbend, expressed solely on the bending moment tensor436

M =

[
Mxx Mxy

Mxy Myy

]
with ΠG([[∂nw]]n;n) = πG([[∂nw]]n ⊗ n). As a result, thin plate strength criteria and437

their support functions are treated exactly as 2D continua with the only difference coming from the definition438

of the strain and discontinuity operators. We refer to [5] for an implementation example of thin plate limit439

analysis using the fenics optim package. Let us also remark that implementing the corresponding lower440
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Figure 7: Homogenized strength criterion

bound static approach is more involved due to the more complicated continuity conditions involving equivalent441

Kirchhoff shear forces (see [34, 7]).442

As regards thick plates involving shear and bending strength conditions and following Reissner-Mindlin443

kinematics, the main difference with respect to 2D/3D continua or thin plates is that two unknown fields must444

be considered instead of one: bending moments M and shear forces Q = (Qx, Qy) for the static approach445

and out-of-plane deflection w and plate rotations θ = (θx, θy) for the kinematic approach. We now discuss446

only the latter since the former will be discussed in the more general case of shells in the next subsection.447

Following [10], kinematic limit analysis of thick plates can be written as:448

inf
w,θ

∫

Ω

πG((∇θ,∇w − θ)) dx +

∫

Γ

ΠG(([[θ]], [[w]]);n) dS

s.t.

∫

Ω

fw dx = 1
(49)

Again, the structure is the same as before with u = (w,θ), the (generalized) strain Du = (χ,γ) consisting449

of the curvature χ = ∇θ and the shear strain γ = ∇w − θ. In the above, the support functions πG and450

ΠG are defined with respect to a thick plate strength criterion involving both the bending moment tensor451

M and the shear force vector Q i.e. Σ = (M ,Q). In [8, 10], different choices of thick plate criteria are452

discussed, especially regarding the bending/shear interaction. For the sake of simplicity, we consider here453

only the case of no interaction between bending and shear, meaning that the thick plate strength criterion is454

in fact decoupled between bending and shear, taking the following form:455

(M ,Q) ∈ Gthick plate ⇐⇒
{
M ∈ Gbend

Q ∈ Gshear

(50)

where typically Gshear = {Q s.t. ‖Q‖2 ≤ Q0} with Q0 being the plate pure shear strength. Since typical
thin plate criteria are SOC-representable, so will be the thick plate criterion (50). We also have the following
expression for the corresponding support function:

πGthick plate
((χ,γ)) = sup

(M ,Q)∈Gthick plate

{M : χ+Q · γ}

= sup
M∈Gbend

{M : χ}+ sup
Q∈Gshear

{Q · γ}

= πGbend
(χ) + πGshear

(γ) (51)
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Figure 8: Normalized limit load q+L2/M0 of a square clamped plate as function of plate slenderness L/h: comparison with pure
shear and pure bending failure mechanisms

with πGshear
(γ) = Q0‖γ‖2 and πGbend

depending on the choice of the bending strength criterion. Finally, the456

(generalized) velocity jump consisting of the rotation and velocity jumps Ju = ([[θ]]
s
⊗ n, [[w]]n) so that we457

also have:458

ΠG (([[θ]], [[w]]);n) = πG

((
[[θ]]

s
⊗ n, [[w]]n

))
(52)

As discussed in [10], finite-element discretization for the upper bound limit analysis of thick plates must be459

chosen with care. Indeed, continuous Lagrange interpolations for both the deflection w and the rotation field θ460

will exhibit shear locking in the thin plate limit. Reference [10] considered fully discontinuous interpolation of461

both fields and showed extremely good performances. To illustrate the versatility of the proposed framework,462

we consider here a small variant, namely a continuous P2-Lagrange interpolation for the deflection w and463

a discontinuous P1
d-Lagrange interpolation for the rotation θ. This interpolation choice is expected to yield464

similar performances, although slightly higher, as the fully discontinuous P2
d/P1

d interpolation of [10]. The465

problem of a uniformly distributed (intensity q) clamped square plate of side length L and thickness h is466

considered with a von Mises bending strength criterion (bending strength M0 = σ0h
2/4). The shear strength467

is taken as Q0 = σ0h/
√

3. As already observed in [8, 10], for the case of no bending/shear interaction, the468

limit load for this problem is well approximated by:469

q+ = min{q+
shear; q

+
bending} (53)

where q+
shear = (2 +

√
π)Q0/L is the pure shear solution for a square plate (see the Cheeger set example of470

[5]) and q+
bending ≈ 44.2M0/L

2 is the pure bending thin plate solution. This is indeed what is also observed471

for the present interpolation with a 50×50 mesh, see Figure 8. The correct pure shear (Figure 9) and pure472

bending (Figure 10) mechanisms are also retrieved.473

6.2. Shells and multilayered plates474

Let us now briefly consider the case of shells, for which we will discuss here a lower bound implementation
only. We refer to [9] and references therein for more details concerning limit analysis of shells, especially the
upper bound kinematic approach. The shell geometry will be approximated by a plane facet discretization
into triangular elements and will be described locally by a unit normal ν and a tangent plane spanned by two
unit vectors a1 and a2. This local frame is therefore constant element-wise. The generalized internal forces
of the shell model are described by a symmetric membrane force tensor N = Nijai⊗aj , a symmetric bending
moment tensor M = Mijai ⊗ aj and a shear force vector Q = Qiai (i, j = 1, 2), the components of which
are expressed in the local tangent plane. We will consider only thin shells, meaning that the shell strength
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(a) Collapse mechanism (b) Norm of the shear strain ‖γ‖

Figure 9: Pure shear collapse solution for a thick plate (h/L = 0.5)

(a) Collapse mechanism (b) Norm of the curvature ‖χ‖

Figure 10: Pure bending collapse solution for a thin plate (h/L = 0.01)
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criterion Gshell is a convex set in the 6-dimensional (N ,M) space (infinite shear strength assumption).
Introducing T = N + ν ⊗Q, the local equilibrium equations in a plane facet are given by:

divT T + λf = 0 (54)

divT M +Q = 0 (55)

where divT is the tangent plane divergence operator and λf a distributed loading with an amplification factor
λ. In addition to local equilibrium, continuity equations of the force resultant R = T · n and the normal
bending moment M = M · n× ν must be satisfied where n is the in-plane normal to a facet edge:

[[R]] = 0 (56)

[[M]] = 0 (57)

Finite-element discretization relies on a discontinuous P1
d interpolation for both membrane forces N and475

shear forces Q and a discontinuous P2
d interpolation for the bending moments M . Considering cell-wise476

uniform distributed loadings, local force equilibrium (54) is uniform and can therefore be satisfied exactly477

using a cell-wise constant Lagrange multiplier u. Local moment equilibrium (55) can be satisfied exactly using478

a cell-wise linear Lagrange multiplier θ. Force and moment continuity equations (56)-(57) are respectively479

satisfied by considering facet-wise linear and quadratic Lagrange multipliers v and ϑ. We again give below480

the main part of the corresponding Python code for formulating this rather complex problem:481

1 prob = MosekProblem("Shell lower bound limit analysis")
2 R = FunctionSpace(mesh, "R", 0)
3 Ne = VectorElement("DG", mesh.ufl_cell(), 1, dim=3)
4 Me = VectorElement("DG", mesh.ufl_cell(), 2, dim=3)
5 Qe = VectorElement("DG", mesh.ufl_cell(), 1, dim=2)
6 W = FunctionSpace(mesh, MixedElement([Ne, Me, Qe]))
7

8 lamb, Sig = prob.add_var([R, W])
9 prob.add_obj_func([1, None])

10

11 (N, M, Q) = split(Sig)
12 T = as_matrix([[N[0], N[2]],
13 [N[2], N[1]],
14 [Q[0], Q[1]]])
15 M = to_mat(M)

where the different unknown fields Σ = (N ,M ,Q) have been defined and collected into a global vector.482

Equilibrium and continuity equations are then defined as in section 4.2 for continua by specifying the Lagrange483

multiplier function space and writing the weak form of the constraint:484

1 V_f_eq = VectorFunctionSpace(mesh, "DG", 0, dim=3)
2 def force_equilibrium(u):
3 u_loc = dot(Ploc, u)
4 return [dot(u, f)*lamb*dx, dot(u_loc, divT(T))*dx]
5 prob.add_eq_constraint(V_f_eq, A=force_equilibrium)
6

7 V_m_eq = VectorFunctionSpace(mesh, "DG", 1, dim=2)
8 def moment_equilibrium(theta):
9 return [None, dot(theta, divT(M)+Q)*dx]

10 prob.add_eq_constraint(V_m_eq, A=moment_equilibrium)
11

12 V_f_jump = VectorFunctionSpace(mesh, "Discontinuous Lagrange Trace", 1, dim=3)
13 Tglob = dot(Ploc.T, T)
14 def force_continuity(v):
15 return [None, dot(avg(v),jump(Tglob, n_plan))*dS]
16 prob.add_eq_constraint(V_f_jump, A=force_continuity)
17
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18 V_m_jump = VectorFunctionSpace(mesh, "Discontinuous Lagrange Trace", 2, dim=3)
19 Mglob = dot(Ploc_plane.T, M)
20 def moment_continuity(vtheta):
21 return [None, dot(avg(vtheta), cross(jump(Mglob, n_plan), avg(nu)))*dS]
22 prob.add_eq_constraint(V_m_jump, A=moment_continuity)

where the Ploc (resp. Ploc plane) variable corresponds to a rotation matrix transforming fields expressed485

in the global (ex, ey, ez) into the local (a1,a2,ν) (resp. (a1,a2)) frame. Note that we approximated the486

bending moment continuity equation by [[M · n]]× ν̂ using an average normal vector ν̂ = (ν+ + ν−)/2.487

If the previous snippets illustrate the efficiency of FEniCS high-level symbolic formulations for this kind488

of complex problem, the conic representation framework will also be extremely beneficial for formulating the489

shell strength criterion. Indeed, as discussed in length in [9], even for the simple case of a homogeneous von490

Mises thin shell, the strength condition expressed in terms of (N ,M) stress-resultant becomes extremely491

complicated [30] so that simple SOC-representable approximations have been proposed in the past for the492

von Mises shell [58]. In [9], we proposed a general way of formulating an (N ,M) shell strength criterion for493

a general multilayered shell through an up-scaling procedure. It is given by:494

(N ,M) ∈ Gshell ⇐⇒





∃ σ(z) ∈ Gps ∀z ∈ [−h/2;h/2] and s.t.

N =

∫ h/2

−h/2
σ(z) dz

M =

∫ h/2

−h/2
(−z)σ(z) dz

(58)

where h is the shell thickness and Gps is the material local plane-stress criterion, which may potentially495

depend on coordinate z for a multilayered shell. To make formulation (58) usable in practice, the local496

plane-stress distribution σ(z) is replaced by a discrete set of plane-stress states σg = σ(zg) expressed at497

quadrature points zg which are used to approximate the two integrals:498

(N ,M) ∈ Gapprox
shell ⇐⇒





∃ σg ∈ Gps ∀g = 1, . . . , nz and s.t.

N =

nz∑

g=1

ωgσg

M =

nz∑

g=1

(−zg)ωgσg

(59)

where ωg are the corresponding quadrature weights of the nz-points quadrature rule. As discussed in [9],499

the precise choice of the quadrature rule leads to different kinds of approximations to Gshell: e.g. an upper500

bound approximation is obtained with a trapezoidal quadrature rule, a Gauss-Legendre quadrature leads to an501

approximation with no lower or upper bound status, a rectangular rule will give a lower bound approximation.502

In the following, we choose the latter to be consistent with the lower bound status of the static approach.503

From (59) it can readily be seen that if Gps is SOC-representable, so will be Gapprox
shell . For instance, in the504

case of a plane-stress von Mises criterion of uniaxial strength σ0, it can be shown that:505

σ ∈ Gps von Mises ⇔





σ = Jy

y0 = σ0

‖y‖ ≤ y0

where J =




1 1/
√

3 0

0 2/
√

3 0

0 0 1/
√

3


 (60)

in which the last constraint is a Q4 quadratic cone. Choosing a rectangular quadrature rule with ωg = h/nz506

23



2L

R

q

(a) Limit load results: reference LB and UB limit loads from [9]

(b) Cylindrical shell pseudo-collapse mechanisms and nor-
malized normal force magnitude ‖N‖/N0. Top: slenderness
2L/R = 10, bottom: slenderness 2L/R = 30.

Figure 11: Cylindrical shell under self-weight

and zg = −h2 + h
nz

(g − 1
2 ) for g = 1, . . . , nz, we therefore have:507

(N ,M) ∈ Gapprox
shell ⇐⇒





∃ yg = (y0g,yg) ∈ Q4 ∀g = 1, . . . , nz and s.t.

y0g = σ0

N =

nz∑

g=1

h

nz
Jyg

M =

nz∑

g=1

(−zg)
h

nz
Jyg

(61)

which obviously fits format (22). Let us finally remark that the approximation will converge to the shell508

criterion Gshell when increasing nz. In the following we took nz = 6.509

As an illustrative application, we consider the problem of a cylindrical shell of length 2L, radius R510

and thickness h = 0.01R, clamped at both extremities and loaded by a self-weight uniform vertical loading511

f = −qez (see Figure 11a). The shape of the collapse mechanism varies depending on the cylinder slenderness512

2L/R. For sufficiently long cylinders, the computed limit load q+ is well described by the one obtained when513

representing the cylinder as a 1D beam q+
beam = 32

π N0

(
R

2L

)2

with N0 = σ0h being the membrane uniaxial514

strength. The obtained limit loads agree very well with the lower bound result of [9]. Having access to the515

Lagrange multiplier u, we reconstructed a pseudo-collapse mechanism by performing a projection of u on a516

continuous P1 space. The obtained deformations have been represented in Figure 11b along with the normal517

force magnitude distribution. It can be seen that the mechanisms agree well with those obtained from an518

upper bound kinematic approach in [9], with a beam-like mechanism involving plastic hinges at the clamped519

supports and mid-span for the case 2L/R = 30.520

7. Generalized continua521

In this last section, we further illustrate the proposed framework on two generalized continuum models,522

namely a strain gradient and a Cosserat continuum. We would like to point out that the numerical imple-523

mentation of limit analysis for these kinds of model is almost non-existent whereas we will show that it can524

now be easily formulated with the proposed framework.525

7.1. Strain-gradient material526

In this subsection, we consider the extension of limit analysis to strain gradient materials. We do not527

attempt at providing physical justifications for using this kind of model but let us just mention that it can,528
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for instance, be obtained when considering the elastically rigid version of a strain-gradient plasticity model.529

We therefore consider the following strain-gradient generalization of the kinematic limit analysis theorem:530

inf
u∈Vh

∫

Ω

πGSG
((∇su,∇2u)) dx

s.t.
∫

Ω
f · udx +

∫
∂ΩT

t · udS = 1
(62)

where we considered only classical loadings (body forces or surface tractions) and where the strain operator531

Du = (∇su,∇2u) now includes both the first and second displacement gradient of u with (∇2u)ijk = ui,jk.532

We do not consider here the equivalent static formulation but let us just point out that the generalized stress533

Σ = (σ, τ ) includes both the standard Cauchy stress σ and the third-rank couple stress tensor τ = (τijk)534

which is associated by duality with the second gradient ∇2u. The generalized strength criterion therefore535

depends both on σ and τ . For simplicity, we will consider the following extended von Mises criterion:536

(σ, τ ) ∈ GSG ⇔
√

1

2
(s : s+ `−2τT ... τ ) ≤ k (63)

where s = devσ, τT ... τ = τijkτijk and ` is an internal length scale. The associated support function is:537

πGSG
((d,η)) = sup

(σ,τ )∈GSG

{σ : d+ τT ... η} =

{
k
√

2(d : d+ `2ηT ... η) if trd = 0

+∞ otherwise
(64)

where d = ∇su and η = ∇2u.538

Restricting to a plane strain situation, one has ηij3 = ηi3j = η3ij = 0 and:

η111 = u1,11 η211 = u2,11

η122 = u1,22 η222 = u2,22 (65)

η112 = η121 = u1,12 η212 = η221 = u2,12

Introducing D = (d11, d22,
√

2d12, `η111, `η122,
√

2`η112, `η211, `η222,
√

2`η212), one has DTD = d : d+ `2ηT ...η539

so that πGSG
((d,η)) = k

√
2‖D‖2. Since πGSG

involves a L2-norm on a 9-dimensional vector, it can be540

represented using a 10-dimensional quadratic cone Q10 (see [5]).541

As regards the finite-element discretization, we choose a P2-Lagrange interpolation for u. In formulation542

(62), it is implicitly assumed that both u and ∇u are continuous. The latter condition will not be achieved543

easily by a standard FE discretization so that we supplement (62) by a discontinuity term for ∂nu = ∇u ·n,544

similarly to thin plates:545

inf
u∈Vh

∫

Ω

πGSG
((∇su,∇2u)) dx +

∫

Γ

πGSG
((0, [[∂nu]]⊗ n⊗ n)) dS

s.t.
∫

Ω
f · udx +

∫
∂ΩT

t · udS = 1
(66)

with πGSG((0, ∂nu ⊗ n ⊗ n)) = k
√

2`‖[[∂nu]]‖2 for (64). Again, this can be easily implemented in very few546

lines of code, regarding the problem complexity:547

1 prob = MosekProblem("Strain gradient limit analysis")
2 u = prob.add_var(V, bc=bc)
3

4 D = as_vector([u[0].dx(0), u[1].dx(1), (u[0].dx(1)+u[1].dx(0))/sqrt(2),
5 l*u[0].dx(0).dx(0), l*u[0].dx(1).dx(1), sqrt(2)*l*u[0].dx(0).dx(1),
6 l*u[1].dx(0).dx(0), l*u[1].dx(1).dx(1), sqrt(2)*l*u[1].dx(0).dx(1)])
7 pi = L2Norm(D, quadrature_scheme="vertex")
8 prob.add_convex_term(k*sqrt(2)*pi)
9

10 isochoric = EqualityConstraint(div(u), quadrature_scheme="vertex")
11 prob.add_convex_term(isochoric)
12
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Figure 12: Evolution of the normalized uniaxial strength for the strain-gradient perforated traction as function of the internal
length scale `/L for two mesh sizes (dashed lines correspond to standard continuum limit analysis results ` = 0).

13 n = FacetNormal(mesh)
14 pi_d = L2Norm([jump(k*sqrt(2)*l*grad(u), n)], on_facet=True)
15 prob.add_convex_term(pi_d)
16

17 prob.optimize()

As an illustrative application, we consider a rectangular domain of dimensions L × 1.5L perforated at548

its center by a circular hole of radius R = 0.2L. The bottom boundary is fully clamped and the top one549

is displaced vertically u = (0, U). No other loading is applied and the computed objective value of (66)550

will be Q+U where Q =
∫
y=H

σyy dS is the resultant force on the top boundary. The evolution of the551

normalized uniaxial strength Q+/(kL) is plotted for various values of the internal length parameter `/L552

in Figure 12 for two different mesh sizes. As expected, the plate apparent strength is size-dependent and553

exhibits a strengthening behaviour for larger values of ` or, equivalently, smaller sample size L. The standard554

continuum limit analysis results (dashed lines) are retrieved when `/L→ 0. Collapse mechanisms along with555

dissipation fields πSG are represented in Figure 13. Broadening of the plastic dissipation slip zones can clearly556

be observed for increasing values of `/L.557

7.2. A Cosserat-continuum model for jointed rocks558

We further illustrate the ability of the proposed framework to tackle generalized continua by considering
a Cosserat (or micropolar continuum) model for jointed rocks, initially proposed in [20]. The governing

equations of the model, in plane strain conditions, involve a non-symmetric stress tensor Σ =

[
Σ11 Σ12

Σ21 Σ22

]

and a couple stress vector H = (H1, H2) both expressed in the local reference frame (e1, e2) of the jointed
rock mass (see Figure 14). The corresponding equilibrium equations read as:

div Σ + f = 0 (67)

divH + Σ21 − Σ12 = 0 (68)

the corresponding weak form obtained from the virtual work principle being:559

∫

Ω

(
ΣT : (∇u− skewω) +H · ∇ω

)
dx =

∫

Ω

f · udx (69)

for any continuous test function u and ω with skewω = ω(e2 ⊗ e1 − e1 ⊗ e2) and where we considered only560

body forces as loading parameters.561
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(a) `/L = 0 (standard contin-
uum)

(b) `/L = 0.001 (c) `/L = 0.01 (d) `/L = 0.1

Figure 13: Collapse mechanism and plastic dissipation as function of internal length scale ratio `/L

As regards strength properties, the rock mass is assumed to obey a Mohr-Coulomb criterion of cohesion cm562

and friction angle φm. The joints are represented as an orthogonal array, spaced by a length ` and making an563

angle θ with the horizontal axis. They are assumed to also obey a Mohr-Coulomb condition with parameters564

(cj , φj). The generalized strength condition for a jointed rock mass modelled as a Cosserat continuum is565

expressed as [20]:566

(Σ,H) ∈ GCosserat ⇐⇒





Σ11 tanφj + |Σ21| ≤ cj
Σ22 tanφj + |Σ12| ≤ cj
`

2
Σ11 + |H1| ≤

`

2

cj
tanφj

`

2
Σ22 + |H2| ≤

`

2

cj
tanφj

|H1| ≤
`

2

cj
cosφj

|H2| ≤
`

2

cj
cosφj

sym Σ ∈ GMC,2D(cm, φm)

(70)

where the last condition expresses the rock mass Mohr-Coulomb criterion on sym Σ = (Σ + ΣT)/2 and567

where all other conditions involve the joints resistance. Let us point out that the case ` = 0 induces Hi = 0568

and thus Σ = ΣT due to (68), one therefore retrieves a Cauchy model with a strength criterion described569

by the first, second and last conditions of (70). Finally, GCosserat involves only linear inequality constraints570

in addition to the Mohr-Coulomb criterion GMC,2D. It is, therefore, SOC-representable, the part involving571

joints only being linear-representable.572

573

A mixed approach for this model has been implemented in the spirit of (41) which avoids the need to574

compute the support function expression associated with (70). Continuous P2 (resp. P1) Lagrange elements575

have been used for u (resp. ω) and discontinuous P1
d-Lagrange elements for both Σ and H. The strength576

conditions have been imposed at the vertices of each element. We considered the stability problem of an577

excavation of height H, making a 25◦ angle with the vertical and subjected to its self-weight of intensity γ.578

The problem amounts to find the maximum value of the non-dimensional stability factor K+ =

(
γH

cm

)+

.579

For numerical applications, we took cj = 0.5cm, φj = 20◦, φm = 40◦, θ = 10◦ and varied the joint spacing580

`. The evolution of the stability factor estimates as a function of `/H has been represented in Figure 15581
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Figure 14: Stability of a jointed rock excavation
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Figure 15: Evolution of the stability factor as function of the joints spacing `/H for two mesh sizes (dashed lines correspond to
standard continuum limit analysis results ` = 0).

for two different mesh sizes. As for the strain gradient model, strengthening is observed for increasing `/H582

ratios. Interestingly, size-effects are much stronger for this problem than those of Figure 12. The obtained583

value in the standard Cauchy (` = 0) case is quite close to the analytical upper bound of K+ ≤ 1.47 derived584

for the same problem in [20]. Finally, collapse mechanisms and a measure of the pure Cosserat contribution585

(Σ21 −Σ12)(u2,1 − u1,2 − ω) +H · ∇ω to the total dissipation have been represented in Figure 16. It can be586

observed that the shape of the collapse mechanism and the location of ”shearing” zones involving Cosserat587

effects is quite dependent on the joint spacing. For ` = 0, a triangular sliding block with a concentrated slip588

zone is obtained, approximately corresponding to the merging of the two slip bands of Figure 16a.589

8. Conclusions590

This paper proposed a way to easily formulate and solve limit analysis problems by taking advantage of591

three essential ingredients:592

• the FEniCS finite element library with its high-level domain specific language and large choice of593

finite-element interpolations;594

• the representation of limit analysis criteria and associated support functions in a conic programming595

format, including the use of recently available power and exponential cones;596

28



(a) `/H = 0.001 (b) `/H = 0.01 (c) `/H = 0.1

Figure 16: Collapse mechanism of the jointed rock excavation and pure Cosserat contribution to the total dissipation

• the resolution of the corresponding conic optimization problems by a dedicated and efficient interior-597

point solver implemented in the Mosek software package.598

The first two ingredients offer an extremely large versatility in the problem definition, giving access to an ex-599

tremely large range of applications. In particular, various finite-element interpolations can be easily defined,600

giving access to traditional continuous displacement-based upper-bound formulations but also their discon-601

tinuous counterpart through Discontinuous Galerkin function spaces. Equilibrium lower-bound elements602

are therefore also accessible through such spaces as well as mixed formulations through different choices of603

quadrature rules. We also showed that plates and shells problems could also be discretized without effort.604

The conic representation format (22) offers a unified way of defining strength conditions and associated sup-605

port functions for different mechanical models, ranging from classical 2D/3D continuum mechanics to plate606

bending criteria including potential shear conditions, shell criteria with membrane/bending interaction or607

even generalized continua such as Cosserat or strain gradient models. If the conic representation format608

is large enough to encompass many strength criteria, it is also sufficiently disciplined to yield optimization609

problems of the conic programming class for which dedicated solvers like Mosek have been designed. Mosek is610

indeed known to be a state-of-the-art optimizer for this class of problems and therefore offers efficiency and611

robustness of the solution procedure.612

Obviously, the present work could still improve upon some aspects, in particular regarding computational613

efficiency. For instance, many additional auxiliary variables are usually introduced when complying with614

the conic programming format. Some of them may be handled and eliminated by Mosek during its pre-615

processing phase, although this is not entirely clear since it is used as a black-box. Devising an interior-point616

solver specific to limit analysis problems can take advantage of the problem structure and may be more617

efficient. Besides, there are two points which prevent solving extremely large-scale 3D problems. The first618

one is related to the use of direct solvers in the interior-point inner iterations which requires large memory619

capacities for 3D problems. The use of iterative solvers is still an active research topic due to the difficulty620

of efficiently preconditioning the interior-point linear systems. The second one concerns the need to solve621

SDP problems when SDP-representable criteria like Mohr-Coulomb, Tresca or Rankine are used in 3D. Even622

though interior-point solvers efficiency has greatly improved for SDP problems over the last decade, it is still623

more difficult to solve than an SOCP problem of similar size. Improving even more their efficiency or finding624

alternate strategies would be a great benefit for such 3D problems.625

If mathematical programming (and more particularly conic programming) tools for solving limit analysis626

has now emerged as the state-of-the art method, some extensions have already been proposed in the literature627

to apply them also to closely related problems. One can mention, for instance, elastoplasticity [38, 37],628

viscoplasticity for yield stress fluids [11, 4], contact in granular materials [36, 70], limit analysis-based topology629

optimization [32, 26], etc. The present framework is sufficiently general to also extend to these related630

problems, see for instance the application to viscoplastic fluids in [5]. Other situations appear however more631

difficult to include such as non-associative behaviours or geometrical non-linearities since such problems632

cannot be formulated as convex optimization problems anymore. Nonetheless, some works have already633

proposed some iterative strategies for tackling non-associativity [25, 35, 57] or geometrical changes using634

sequential limit analysis [69]. These strategies rely on an iterative resolution of classical associated limit635

analysis problems and could be implemented with the proposed framework without any difficulty.636
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[1] Anderheggen, E., Knöpfel, H., 1972. Finite element limit analysis using linear programming. Interna-638

tional Journal of Solids and Structures 8, 1413–1431.639

[2] Ben-Tal, A., Nemirovski, A., 2001. Lectures on modern convex optimization: analysis, algorithms, and640

engineering applications. volume 2. Siam.641

[3] Bisbos, C., Pardalos, P., 2007. Second-order cone and semidefinite representations of material failure642

criteria. Journal of Optimization Theory and Applications 134, 275–301.643

[4] Bleyer, J., 2018. Advances in the simulation of viscoplastic fluid flows using interior-point methods.644

Computer Methods in Applied Mechanics and Engineering 330, 368–394.645

[5] Bleyer, J., 2019. Automating the formulation and resolution of convex variational problems: applications646

from image processing to computational mechanics. arXiv preprint arXiv:1911.13185 .647

[6] Bleyer, J., 2020. fenics-optim – Convex optimization interface in FEniCS. Version 1.0. Zenodo,648

https://doi.org/10.5281/zenodo.3604086. doi:10.5281/zenodo.3604086.649

[7] Bleyer, J., de Buhan, P., 2014a. A computational homogenization approach for the yield design of650

periodic thin plates. Part I: Construction of the macroscopic strength criterion. International Journal651

of Solids and Structures 51, 2448–2459.652

[8] Bleyer, J., de Buhan, P., 2014b. Lower bound static approach for the yield design of thick plates.653

International Journal for Numerical Methods in Engineering 100, 814–833.654

[9] Bleyer, J., de Buhan, P., 2016. A numerical approach to the yield strength of shell structures. European655

Journal of Mechanics-A/Solids 59, 178–194.656

[10] Bleyer, J., Le, C.V., de Buhan, P., 2015a. Locking-free discontinuous finite elements for the upper bound657

yield design of thick plates. International Journal for Numerical Methods in Engineering 103, 894–913.658

[11] Bleyer, J., Maillard, M., De Buhan, P., Coussot, P., 2015b. Efficient numerical computations of yield659

stress fluid flows using second-order cone programming. Computer Methods in Applied Mechanics and660

Engineering 283, 599–614.661

[12] Boyd, S., Vandenberghe, L., 2004. Convex optimization. Cambridge university press.662

[13] de Buhan, P., 1986. A fundamental approach to the yield design of reinforced soil structures. Ph.D.663
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[69] Yang, W.H., 1993. Large deformation of structures by sequential limit analysis. International journal of773

solids and structures 30, 1001–1013.774

[70] Zhang, X., Krabbenhoft, K., Sheng, D., 2014. Particle finite element analysis of the granular column775

collapse problem. Granular Matter 16, 609–619.776

33


	Introduction
	A general framework for limit analysis problems
	Virtual work principle for generalized continua
	General formulation of a limit analysis problem
	Static approach
	Kinematic approach


	 Conic representation of strength criteria
	Conic programming
	Conic-representable functions and sets
	Example of the plane-strain Mohr-Coulomb criterion
	Example of the plane-stress Hosford criterion
	A gallery of conic-representable strength criteria

	Finite-element limit analysis of 2D and 3D continua
	Kinematic-based formulation
	Static-based formulation
	Mixed finite-element discretizations
	Discontinuous velocity fields
	Mesh refinement
	Vertical cut-off stability
	Tensile strength of a grooved metallic plate

	Computation of macroscopic strength properties through homogenization theory
	Plates and shells
	Thin and thick plates
	Shells and multilayered plates

	Generalized continua
	Strain-gradient material
	A Cosserat-continuum model for jointed rocks

	Conclusions

