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Abstract The asymptotic behaviour of the distribution of the squared singular values of the sample
autocovariance matrix between the past and the future of a high-dimensional complex Gaussian uncorre-
lated sequence is studied. Using Gaussian tools, it is established the distribution behaves as a deterministic
probability measure whose support S is characterized. It is also established that the singular values to
the square are almost surely located in a neighbourhood of S.

1 Introduction.

1.1 The addressed problem and the results.

In this paper, we consider a sequence of integer (M (NN))n>1, and positive definite M (IN)x M (N) hermitian
matrices (Ry)ny>1. For each N, we define an independent identically distributed sequence (yy,)n>1 (de-
pending on N) of zero mean complex Gaussian M (N )—dimensional random vectors such that y,, = R}f{n
where the components of the M—dimensional vector &, are complex Gaussian standard i.i.d. random vari-
ables (i.e. their real and imaginary parts are i.i.d. and A(0,1/2) distributed). If L is a fixed integer, we
consider the 2 block-Hankel ML x N matrices W), v and Wy y defined by

Y1 Y2 YN-1 YN
Y2 Y3 YN YN+1
1 1 . . .
W, N = Y, N = —F— 1.1
D, N D, \/N ( )
yr Yr+1 .-+ YN+L-2 YN+L-1
and
Yyr+1 Yr+2 --- YN-—-1+L YN+L
yr+2 Yr+3 --- YN+L YN+L+1
1 . . . . .
Win = Vi Yin= Vi (1.2)
Yar, Y2041 .-+ YN42L—2 YN+2L-1



and study the behaviour of the empirical eigenvalue distribution 7y of the M L x M L matrix Wy, NW; NWp, NW}: N
in the asymptotic regime where M and N converge towards +o0o in such a way that
ML

CN = ~ — Cy, G >0 (1.3)
Using Gaussian tools, we evaluate the asymptotic behaviour of the resolvent Qn(z) = (Wy n W NWp nW i v —
2I)~!, and establish that the sequence () ~>1 has the same almost sure asymptotic behaviour than a
sequence (vy)n>1 of deterministic probability measures. In the following, vy will be referred to as the
deterministic equivalent of . We evaluate the Stieltjes transform of vy, characterize its support, study
the properties of its density, and eventually establish that almost surely, for N large enough, all the
eigenvalues of Wy W7 yWp nW;  are located in a neighbourhood of the support of vy.

1.2 Motivation

. Y NY > .. . . . . .
Matrix Wy yW> = w represents the traditional empirical estimate of the autocovariance matrix
R]ﬁp y between the past and the future of y defined as

Yn+L

Yn+L+1
L
Rfjpy =E : (y:’y;kl-i-l’ e ’yZ+L—1)

Yn+2L—1

This matrix plays a key role in statistical inference problems related to multivariate time series with
rational spectrum. In order to explain this, we consider a M—dimensional multivariate time series (v, )nez
generated as

Up = Up + Yn (1.4)

where (yp,)nez is as above a Gaussian "noise” term such that E(y,ry)) = R for some unknown positive
definite matrix R, and where (uy,)nez is a "useful” non observable Gaussian signal with rational spectrum.
u, can thus be represented as

Tpy1 = Az, + Bwy,, u, = Cx, + Dw, (1.5)

where (wp)nez is a K < M—dimensional white noise sequence (E(w,4rw.) = Ik d;), A is a deterministic
P x P matrix whose spectral radius p(A) is strictly less than 1, and where B,C, D are deterministic
matrices. The P-dimensional Markovian sequence (x,,)nez is called the state-space sequence associated
to (1.5). The state space representation (1.5) is said to be minimal if the dimension P of the state
space sequence is minimal. Given the autocovariance sequence (R, n)nez of u (ie. Ry = E(uk+nu,’;) for
each n), the so-called stochastic realization problem of (u,),ez consists in characterizing all the minimal
state space representations (1.5) of u, or equivalently in identifying all the minimum Mac-Millan degree
! matrix-valued function ®(z) = D + C(zI — A)~' B such that p(A) < 1 and

Su(e2i7rf) _ ZRu,n6_2mnf _ (I)(e2i7rf)(1)(e2i7rf)* (1.6)
neL

for each v. Such a function ® is called a minimal degree causal spectral factorization of .S,,. We refer the
reader to [24] or [36] for more details.

The Mac-Millan degree of a rational matrix-valued function ® is defined as the minimal dimension of the matrices A for
which ®(z) can be represented as D + C(2I — A)"'B



The identification of P and of matrices C' and A is based on the observation that the autocovariance
sequence of u can be represented as

Run = E(uppul,) = CA™'@ (1.7)

for each n > 1, where the 3 matrices (A,C,G) are unique up to similarity transforms, thus showing
that the matrices C' and A associated to a minimal realization are uniquely defined (up to a similarity).
Moreover, the autocovariance matrix Rﬁp ,, between the past and the future of u can be written as

R _ o)) (1.8)

flpu
where matrix OL) is the ML x P ”observability” matrix

C

CA
o) = _ (1.9)

C A‘L—l
and matrix C(&) is the P x ML ”controllability” matrix

B = (AF7lG, ARG, G) (1.10)

For each L > P, the rank of R remains equal to P, and each minimal rank factorization of R can

flp,u flp,u

be written as (1.8) for some particular triple (A, C,G). In particular, if R%J;u = OI'©* is the singular

value decomposition of R}ig ,» matrix OI''/2 coincides with the observability matrix QL) of a pair (C,A).

C and A are immediately obtained from the knowledge of the structured matrix @), This discussion
shows that the evaluation of P, C' and A from the autocovariance sequence of u is an easy problem.
We mention that, while C' and A are essentially unique, there exist in general more than 1 pair (B, D)
for which (1.5) holds because the minimal degree spectral factorization problem (1.6) has more than 1
solution. We refer the reader to [24] or [36].

We notice that as (yn)nez in (1.4) is an uncorrelated sequence, it holds that R,, = E(v,;4v})
coincides with R, , for each n > 1. Therefore, P and matrices C' and A can still be identified from
the autocovariance sequence of the noisy version v of u. In practice, however, the exact autocovariance
sequence (R, )n>1 is in general unknown, and it is necessary to estimate P and (C, A) from the sole

knowledge of N samples v1 = uy+y1,v2 = us+yo,..., vy = uy +yn. For this, P is first estimated as the
number of significant singular values of the empirical estimate R?‘p’v of the true matrix R]ﬁpm = R]]:|p7u
defined by
RL  — VinVo
flpw N

where Vy v and V, y are defined in the same way than Yy x and Y, y. If (4;)p=1,...p and 6 = (él, . ,ép)

are the P largest singular values and corresponding left singular vectors of matrix IA%%IZU, and if I is the

P x P diagonal matrix with diagonal entries (9p)p=1,.. p, ML x P matrix OWL) = OI'Y/2 is an estimator
of an observability matrix Q). O(X) has not necessarily the structure of an observability matrix, but it
is easy to estimate A by finding the minimum of the quadratic fuction

down

ot-oi|

3



where the operator "down” (resp. ”up”) suppresses the last (resp. the first) M rows from ML x P
matrix O, This approach provides a consistent estimate of P,C, A when N — +oo while M, L and P
are fixed parameters. We refer the reader to [10] for a detailed analysis of this statistical inference scheme.

If M is large and that the sample size N cannot be arbitrarily larger than M, the ratio M L/N may
not be small enough to make reliable the above statistical analysis. It is thus relevant to study the be-
haviour of the above estimators in asymptotic regimes where M and N both converge towards 400 in
such a way that % converges towards a non zero constant. In this context, the truncated singular value
decomposition of R;‘Lgv does not provide a consistent estimate of an observability matrix O, and it

L)

appears relevant to study the largest singular values and corresponding singular vectors of JA%}W when

M and N both converge towards +o0, and to precise how they are related to an observability matrix O®).

Without formulating specific assumptions on u, this problem seems very complicated. In the past, a
number of works addressed high-dimensional inference schemes based on the eigenvalues and eigenvectors
of the empirical covariance matrix of the observation (see e.g. [30], [28], [31], [17], [37], [38], [11], [35])
when the useful signal lives in a low-dimensional deterministic subspace. Using results related to spiked
large random matrix models (see e.g. [3] [4], [33]), based on perturbation technics, a number of important
statistical problems could be addressed using large random matrix theory technics. Our ambition is to
follow the same kind of approach to address the estimation problem of P, A, C' when u satisfies some low
rank assumptions. The first part of this program is to study the asymptotic behaviour of the singular

values of the empirical autocovariance matrix in the absence of signal Wy NWyN = w As the
singular values of W, NW; n are the square roots of the eigenvalues of Wf,NW ~NWp, NWf n» this is
precisely the topic of the present paper. Using the obtained results, it should be possible to use a
perturbation approach in order to evaluate the behaviour of the largest singular values and corresponding
left singular vectors in the presence of a useful signal, and to deduce from this some improved performance
scheme for estimating P, C, A.

1.3 On the literature.

The large sample behaviour of high-dimensional autocovariance matrices was comparatively less stud-
ied than the high-dimensional covariance matrices. We first mention [21] which studied the asymp-
totic behav1our of the eigenvalue distribution of the hermitian matrix R, + R* where R, is defined as
f? N Zn 1 TntrT;, Where (zy,)nez represents a M dimensional non Gaussian i.i.d. sequence, the com-
ponents of each vector x,, belng morever i.i.d. In particular, E(xz,x}) = I. It is proved that the empirical
eigenvalue distribution of R. + R* converges towards a limit distribution independent from 7 > 1. Using
finite rank perturbation technics of the resolvent of the matrix under consideration, the Stieltjes transform
of this distribution was shown to satisfy a polynomial degree 3 equation. Solving this equation led to an
explicit expression of the probability density of the limit distribution. [25] extended these results to the
case where (z,)nez is a non Gaussian linear process x,, = Z;;og Ajzp— where (z,)nez is i.i.d., and where
matrices (A;);>o are simultaneously diagonalizable. The limit eigenvalue distribution was characterized
through its Stieltjes transform that is obtained by integration of a certain kernel, itself solution of an in-
tegral equation. The proof was based on the observation that in the Gaussian case, the correlated vectors
(25 )nez can be replaced by independent ones using a classical frequency domain decorrelation procedure.
The results were generalized in the non Gaussian case using the generalized Lindeberg principle. We also
mention [1] (see also the book [2]) where the existence of a limit distribution of any symmetric polynomial
of (R, R*),er for some finite set T was proved using the moment method when z is a linear non Gaussian
process. [22] studied the asymptotic behaviour of matrix R, R* when (2, )nez represents a M dimensional



non Gaussian i.i.d. sequence, the components of each vector x, being morever i.i.d. Using finite rank
perturbation technics, it was shown that the empirical eigenvalue distribution converges towards a limit
distribution whose Stieltjes transform is solution of a degree 3 polynomial equation. As in [21], this
allowed to obtain the expression of the corresponding probability density function. Using combinatorial
technics, [22] also established that almost surely, for large enough dimensions, all the eigenvalues of RTRf_
are located in a neighbourhood of the support of the limit eigenvalue distribution. We finally mention
that [23] used the results in [22] in order to study the largest eigenvalues and corresponding eigenvectors
of R- R when the observation contains a certain spiked useful signal that is more specific than the signals
signals (Un)nez that motivated the present paper.

We now compare the results of the present paper with the content of the above previous works. We
first study a matrix that is more general than I%T}?i While we do not consider linear processes here, we
do not assume that the covariance matrix of the i.i.d. sequence (y,)nez is reduced to I as in [22]. This in
particular implies that the Stieltjes transform of the deterministic equivalent vy of D5 cannot be evalu-
ated in closed from. Therefore, a dedicated analysis of the support and of the properties of vy is provided
here. We also mention that in contrast with the above papers, we characterize the asymptotic behaviour
of the resolvent of matrix Wy, NW W NWf n While the mentionned previous works only studied the
normalized trace of the resolvent of the matrices under consideration. Studying the full resolvent matrix
is necessary to address the case where a useful spiked signal u is added to the noise y. We notice that the
above papers addressed the non Gaussian case while we consider the case where y is a complex Gaussian
i.i.d. sequence. This situation is of course simpler in that various Gaussian tools are available, but ap-
pears to be relevant because in the context of the present paper, y is indeed supposed to represent some
additive noise, which, in a number of contexts, is Gaussian. In any case, it should be possible to extend
the present results to the non Gaussian case by using the Lindeberg principle or some interpolation scheme.

We finally mention that some of the results of this paper may be obtained by adapting general recent
results devoted to the study of the spectrum of hermitian polynomials of GUE matrices and deterministic
matrices (see [5] and [27]). If we denote by Zy the M x (N + 2L — 1) matrix Zy = (y1,...,YN+2L—1),
then Zy can be written as Zy = R]le ~ where the entries of Xy are i.i.d. complex Gaussian standard
variables. Each M x M block Xy (1 <k, Il < L)of ¥y = WinWy Wy NWfN is clearly a polynomial of
Xn, X} and various M x M and M x (N +2L—1) deterministic matrices. Assume that M < N+2L—1. In
order to be back to a polynomial of GUE matrices, it possible to consider the L(N+2L—1)x L(N+2L—1)
matrix ¥y whose (N + 2L — 1) x (N + 2L — 1) blocks are defined by

= by 0
EN,]{}J — ( ]\(f)vkhl 0 >

It is clear that apart 0, the eigenvalues of Y n coincide with those of . If Xy is any (N +2L —1) x
(N + 2L — 1) matrix with i.i.d. complex Gaussian standard entries whose M first rows coincide with
X, then, it is easily seen that each block of Yy coincides with a hermitian polynomial of XN, X}{, and
deterministic (IV + 2L — 1) x (N + 2L — 1) matrices such as

~ Ry O
Ry =
= ()
Expressing X as the sum of its hermitian and anti-hermitian parts, we are back to study the behaviour
of the eigenvalues of a matrix whose blocks are hermitian polynomials of 2 independent GUE matrices

and of (N +2L—1) x (N +2L—1) deterministics matrices. Extending Proposition 2.2 and Theorem 1.1 in
[5] to block matrices (as in Corollary 2.3 in [27]) would lead to the conclusion that 7y has a deterministic



equivalent v and that the eigenvalues of Wy NW; W, NW;, y are located in the neighbourhood of the
support of vx. While this last consequence would avoid the use of the specific approach used in section 9 of
the present paper, the existence of vy is not a sufficient information. vy should of course be characterized
through its Stieltjes transform, and we believe that the adaptation of Proposition 2.2 and Theorem 1.1
in [5] is not the most efficient approach.

1.4 Overview of the paper.

As the entries of matrices W), y and Wy x are correlated, approaches based on finite rank perturbation of
the resolvent Qn(z) of matrix Wy, NW;’ NWhp, NW;’ n» usually used when independence assumptions hold,
are not the most efficient in our context. We rather propose to use Gaussian tools, i.e. integration by
parts formula in conjunction with the Poincaré-Nash inequality (see e.g. [32]), because they are robust
to correlation of the matrix entries. Moreover, as the entries of Wy vW, W), NW;, N are biquadratic

functions of y1,...,yn+or—1, we rather use the well-known linearization trick that consists in studying
the resolvent Qn(z) of the 2M L x M L hermitized version
0 Wf,NW*JV
Wp.n W;,N 0

of matrix Wy yW) y. As is well known, the first ML x ML diagonal block of Q ~(z) coincides with
2Qn(2?). Therefore, we characterize the asymptotic behaviour of Qu(z), and deduce from this the re-
sults concerning Qn(z). The hermitized version is this time a quadratic function of y1,...,yny2r—1, and
the Gaussian calculus that is needed in order to study Qn(z) appears much simpler than if Qn(z) was
evaluated directly.

In section 3, we evaluate the variance of useful functionals for Qy(z) using the Poincaré-Nash inequal-
ity. In section 4, we establish some useful lemmas related to certain Stieltjes transforms. In section 5, we
use the integration by parts formula to establish that E(Qn(z)) behaves as Iof, ® Sy(z) where Sy(z) is
defined by .

CN&X N(Z) -
SN(Z)— <1—C?Va(2)2RN+Z[M>
where ay(z) is defined by an(z) = 7 T'E(Qnpp(2))(IL ® Ry) where Qu pp(2) represents the first
ML x ML diagonal block of Qn(z). We deduce from this that

E(Qn(z)) = Sn(z) + An(2)

enzan(z)

-1
where Sy(z) = — <zIM + )2RN> , an(z) = 7 TrE(Qn (2))(I ® Ry), and where Ay (z)

is an error term such that

1—cEan(z

'imm i) P

)
ML Im(z)
for each z € CT, where P; and P are 2 polynomials whose degrees and coefficients do not depend on N.
Using this, we prove in section 7 that for each z € CT,

1
—TrE I, ®T F
a7z DEON () — 1L @ Tn(2)] Fy — 0
where (Fy)n>1 is any deterministic sequence of matrices such that supy ||[Fn|| < 400, and where Tx(z)

is defined by

1
§m

zentn(z) !
Tn(z) = — ( 2@y + —NNE)
n(z) <Z M 1 — zc3t%(2) N> '



tn(z) being the unique solution of the equation

1 zentn(2) -t
t = —T —zly — —————— 1.11
N e = e L) (11

such that ty(z) and zty(z) belong to Ct when z € C*. tx(z) and Tv(z) are shown to coincide with
the Stieltjes transforms of a scalar measure uy and of a M x M positive matrix valued measure V]:\F,
respectively, and it is proved that vy = ﬁTr(V?\}) is a probability measure such that oy — vy — 0 weakly
almost surely. vy is referred to as the deterministic equivalent of 7. In section 8, we study the properties
and the support of vy, or equivalently of py because the 2 measures are absolutely continuous one with
respect to each other. For this, we study the behaviour of ¢x(z) when z converges towards the real axis.
For each z > 0, the limit of ¢x(2) when z € C* converges towards z exists and is finite. If cy < 1,
we deduce from this that vy is absolutely continuous w.r.t. the Lebesgue measure. The corresponding
density gy (x) is real analytic on R*, and converges towards +oo when z — 0,z > 0. If ¢y < 1, it holds
that gy (z) = O(%) while gn(z) = O(x2—1/3) if ey = 1. If ey > 1, vy contains a Dirac mass at 0 with

weight 1 — % and an absolutely continuous component. In order to analyse the support of uy and vy,
we establish that the function wy(z) defined by

1

wn(z) = zentn(z) — W

is solution of the equation ¢y (wy(z)) = z for each z € C — R' where ¢y (w) is the function defined by
2 1 -1 1 -1
on(w) = eyw MTrRN (Ry — wl) CN MTTRN (Ry —wl)™" —1

Moreover, if we define ¢y () for z > 0 by the limit of £y (2z) when z — z, 2z € CT, the equality ¢n (wn(2)) =
z is also valid on R*. We establish that if = is outside the support of jy, then, it holds that

on(wn(z)) =z, ¢ (wy(z)) >0, wy(z) %TrRN (Ry —w(z)I)™' <0

This property allows to prove that apart {0} when ¢y > 1, the support of u is a union of intervals whose
end points are the extrema of ¢n whose arguments verify ﬁTrR (R—wl )_1 < 0. A sufficient condition
on the eigenvalues of Ry ensuring that the support of uy is reduced to a single interval is formulated.
Using the Haagerup-Thornbjornsen approach ([15]), it is moreover proved in section 9 that for each N
large enough, all the eigenvalues of Wy Won Wy N W]’ﬁ y lie in a neighbourhood the support of the
deterministic equivalent vn. The above results do not imply that oy converges towards a limit distribu-
tion. In order to obtain this kind of result, some extra assumptions have to be formulated, such as the
existence of a limit empirical eigenvalue distribution for Ry when N — +4o00. If the relevant conditions
are met, vy, and therefore Uy, will converge towards a limit distribution whose Stieltjes transform can be
obtained by replacing in the above results the empirical eigenvalue of Ry by its limit. We do not present
the corresponding results here because we believe that results that characterize the behaviour of vy for
each N large enough are more informative than the convergence towards a limit.

In section 10, we finally indicate that the use of free probability tools is an alternative approach
to characterize the asymptotic behaviour of . The results of section 10 are based on the following
observations:

e Up to the zero eigenvalue, the eigenvalues of Wy NW; W, NW; n coincide with the eigenvalues of
W;,NWf,NW;,NvaN



e While the matrices W]f NWy N and W; ~Wp,n do not satisfy the conditions of the usual asymptotic
freeness results, it turns out that they are almost surely asymptotically free. Therefore, the eigen-
value distribution of W}‘ NWf,NW; NWp N converges towards the free multiplicative convolution
product of the limit distributions of Wi xWy N and W7 yWp n. These two distributions appear to
coincide both with the limit distribution of the well known random matrix model %X]’(, (IpxRN) XN
where Xy is a ML x N complex Gaussian random matrix with standard i.i.d. entries.

The asymptotic freeness of WJ’? NWy N and W;, ~Wp N appear to be a consequence of Lemma 6 in [13].
While this approach seems to be simpler than the use of the Gaussian tools proposed in the present
paper, we mention that the above free probability theory arguments do not allow to study the asymp-
totic behaviour of the resolvent of Wy NW; NWhp, NW]’{ - We recall that in order to evaluate the largest
eigenvalues and corresponding eigenvectors of Wy nW Wy, NW]’{’ y in the presence of a useful signal, the
asymptotic behaviour of the full resolvent in the absence of signal has to be available.

2 Some notations, assumptions, and useful results.

In the following, it is assumed that L is a fixed parameter, and that M and N converge towards +oo in

such a way that

ML
CN = N — Cy, G >0 (2.1)

This regime will be referred to as N — 400 in the following. In the regime (2.1), M should be interpreted
as an integer M = M (N) depending on N. The various matrices we have introduced above thus depend
on N and will be denoted Ry,Ys n,Y, n,.... In order to simplify the notations, the dependency w.r.t.

N will sometimes be omitted.
We recall that the resolvent Qy(z) of Wy, NW; N W, NWJ’{ y is defined by

Qn(z) = (WynWi Wy n Wiy —21) 7 (2.2)

As the direct study of Qn(z) is not obvious, we rather introduce the resolvent Qx(z) of the 2M L x 2M L
block matrix

0 W; NW*N>
My = ’ P, .
N <WP7NW;,N 0

It is well known that Qx(z) can be expressed as

B 2Qn(22) QN ()W NWy
Qvlz) = ( Wy NW i nQn(2%) 2Qn(7%) > >

where Q ~(z) is the resolvent of matrix W), NI/VJZk Wy NW;’ n- As shown below, it is rather easy to eval-
uate the asymptotic behaviour of Qx(z) using the Poincaré-Nash inequality and the integration by part
formula (see Propositions 2 and 1 below). Formula (2.3) will then provide all the necessary information

on Qn(2).

In the following, every 2M L x 2M L matrix G will be written as

Gpo Gor
G = pp p ,
<Gfp fo>



where the 4 matrices (G; ;)i jep.r are M L x M L. Sometimes, the blocks will be denoted G(pp), G(pf), -...

We denote by Wy the 2M L x N matrix defined by

_ (WeN
W= (7). (2.4

Its elements (W[Z)iﬂL,jgN,mgM satisfy

E{WZ}WZ'T;”} = %Rmmu\/&mi’ﬂ’-
where W/ represents the element which lies on the (m+M (i—1))-th line and j-th column for 1 < m < M,
1<i<2Land1<j<N. Similarly, Q?figmz, where 1 < mq,ms < M and 1 < iy,1o < 2L, represents the
entry (mi+M(iy—1)), (ma2+M(ia—1)) of Q. Foreach j =1,... ,N,{wj}é-v:l, {wp,j};v:l and {wf,j}é-v:l are
the column of matrices W, W), and Wy respectively. For each 1 <1 < 2L and 1 <m < M, f" represents
the vector of the canonical basis of C*M% with 1 at the index m + (i — 1)M and zeros elsewhere. In
order to simplify the notations, we mention that if ¢« < L, vector £/" may also represents the vector of the
canonical basis of CML with 1 at the index m + (i — 1)M and zeros elsewhere. Vector e; with 1 <j < N
represents the j —th vector of the canonical basis of CV. Also for any integer k, .J; is the k x k ”shift”
matrix defined by

(Jk)ij = dj—in (2.5)

In order to short the notations, matrix J; is denoted .J; L' although J;, is of course not invertible.

By a nice constant, we mean a positive deterministic constant which does not depend on the dimensions
M and N nor of the complex variable z. In the following, x will represent a generic nice constant whose
value may change from one line to the other. A nice polynomial P(z) is a polynomial whose degree and
coefficients are nice constants. Finally, we will say that function fy(z) = O,(an) if z belongs to a domain
2 € C and there exist two nice polynomials P; and P, such that fy(z) < « NPl(]z\)Pg(ﬁ) for each z €
Q. IfQ = Ct, we will just write fy(2) = O,(ay) without mentioning the domain. We notice that if Py, P»
and Q1, Q2 are nice polynomials, then Pl(\z])Pg(‘Ile‘)+Q1(\2])Q2(‘IT12‘) < (Pr+Q1)(|2]) (P +Q2)(‘IT12|),

from which we conclude that if functions f; and fy are O,(«) then also f1(z) + fa(z) = O ().

The sequence of covariance matrices (Ry)n>1 of M-dimensional vectors (y,)n=1,.. n is supposed to
verify
al <Ry <bl (2.6)

for each IV, where a > 0 and b > 0 are 2 nice constants. Ay y > Ao n > ... > Ay, n represent the eigen-
values of Ry arranged in the decreasing order and fi w,..., far,nv denote the corresponding eigenvectors.
Hypothesis (2.6) is obviously equivalent to Ay;,nv > a and A\ y < b for each N.

The eigenvalues and eigenvectors of matrix W, NW; N, NW; y are denoted 5\17 N = ...> A M,N and

fl,N, o ,fM,N respectively.
C° (R, R) represents the set of all C* real valued compactly supported functions defined on R.

If £ is a random variable, we denote by £° the zero mean random variable defined by

€ =¢—E¢ (2.7)



We finally recall the 2 Gaussian tools that will be used in the sequel in order to evaluate the asymptotic
behaviour of Qn(z) and Qn(2).

Proposition 1 (Integration by parts formula.) Let & = [¢y,...,Ex]T be a compler Gaussian random
vector such that E{¢} = 0, E{&€T} = 0 and E{¢¢*} = Q. IfT': (&) = T'(&,€) is a C* complex function
polynomially bounded together with its derivatives, then

PR S Py £ \(3)
E{&F(é)}—;mkm{ s } (28)

Proposition 2 (Poincaré-Nash inequality.) Let ¢ = [¢1,...,¢k]|T be a complex Gaussian random

vector such that B{¢} = 0, E{¢T} = 0 and B{&¢*} = Q. If T : (&) = T(£,€) is a C* complex

function polynomially bounded together with its derivatives, then, noting V¢I' = [g—g,...,aaf—i]T and

T — [or or 1T
vgr—[yé’...,@]

Var{l'(¢)} < E{ Vel(§) OVl () | +E{ V() QVEI(E)} (2.9)

3 Use of the Poincaré-Nash inequality.

In this paragraph, we control the variance of various functionals of Qun(z) using the Poincaré-Nash
inequality. For this, it appears useful to evaluate the moments of |[Wy||. The following result holds.

Lemma 1 For anyl € N, it holds that supy> E{|Wn|[*} < +o0.

Proof. We first remark that it is possible to be back to the case where matrix Ry = I;. Due to the
Gaussianity of the i.i.d. vectors (yn)n>1, it exists i.i.d. N(0, ) distributed vectors (Yiid,n)n>1 such that

E(yiid,ny;d’n) = Iy verifying y,, = R}fy,-,-dm. From this, we obtain immediately that the 2M L x N block
Hankel matrix Wi;q n built from (v, iid)n=1,.., N satisfies

1/2
Ry
Wn = Wiid,N (3.1)
RY?
As the spectral norm of Ry is assumed uniformly bounded when N increases, the statement of the lemma
is equivalent to supy E{||W;ial*} < +oo. It is shown in [26] that the empirical eigenvalue distribution

of Wiid,NW;i y converges towards the Marcenko-Pastur distribution, and that its smallest non zero

eigenvalue and its largest eigenvalue (which coincides with ||[W;;q n||?) converge almost surely towards
(1 —/cx)? and (1 + ,/cx)? respectively. We express E{||[W;;4||*} as

E{|Wiial*} = E{|Wiial* 1ywisaj2<svemz+st + B{UWiial* 1ywigz> 0+ o246}
< 5+ B{Wiidl FLywisaiz> a4 yez1st < 6+ E{UWiall B3P E{L w0125 0 vemes )

where § > 0 is a nice constant. As E{||[W;; 4 [|#} = O(N?), it is sufficient to prove that E{Y)w, 2> 142+
is less than any power of N~!. We introduce a smooth function ¢y defined on R by

Do) = 1, for A € [—o00, —6] U [(1 + /&x)% + 6, +oc],
P70, for A e [=6/2, (1+ @)? +6/2)
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and ¢g(A) € (0, 1) elsewhere. Then, it holds that

E{Ljw,gi2> 1 ven2z4st = B{Lx oo oviaw > (1 ven 246t < P[Trdo(WiaWiig) = 1]
< E{Treéo(WiiaWig)**}

for any k € N. Lemma 1 thus appears as an immediate consequence of the following lemma.

Lemma 2 For each smooth function ¢ such that ¢(\) = 0 if X € [=6/2, (1 + \/cx)* 4+ §/2] and ¢(N)
constant on [—oo, =8| U [(1 + \/¢5)? + 6, +00], it holds that Vk € N, E {( o( “dW;d))%} < ﬁ

Proof. We prove the Lemma by induction. We first consider the case £ = 1. For more convenience we
will write W instead of W;;; in the course of the proof. Here and below we take sum for all possible values
of indexes, if not specified. From (2.9) we have

. aTeo(WW*)\ ., 9Trp(WIW)
Var{Trp(WW*)} <Y E { (W) E{W;, ;1W,-2,j2}8W7%
OTrp(WW™) iy oms o [ OTrg(WW*)\
ZE{ BT E{WWW,ZM}(iaWZ% (3.2)

We only evaluate the first term, denoted by %, of the right handside of (3.2), because the second one can
be addressed similarly. For this, we first remark that

OTrop(WW* L OWW
ﬂiml) =Tr | ¢ (WW*)——7— | = (¢/(WW* )W)Z )
8Vvi1,j1 aWﬂm b

Plugging this into (3.2) we obtain

1 / * *my
=), NE{(cb (WWS)W) L Oma maOin s iatgn (¢ (W )W)W}

Denoting [ = i1 — i9, it is easy to verify that ¢ can be written as

L—1
¥ = % S E{Tr (¢ (WWHW)" (JL ® L) (¢ (WW*)W) Ji ). (3.3)
I=—(L—1)

where we recall that matrix Jg, is defined by (2.5). For each ML x N matrices A and B, the Schwartz
inequality and the inequality between arithmetic and geometric means lead to

Therefore, since J;*J; @ Ing < Ipyp and Jy'Jy < Iy
K
- * ru| o Y * * ] ]
MLTrA (Ji" ® In)BJRY| < +-(TrA"A + TtB*B) (3.4)
By taking here A = B = ¢(WW*)W, we obtain from (3.2) and (3.3)
Var{Tro(WW*)} < %E {Tr (¢’(WW*))2WW*}. (3.5)

11



Consider the function n(\) = (¢'(\))?A. It is clear that n()) is a compactly supported smooth function.
Therefore (see e.g. [26]), it holds that

B{ ™ (@ WWIPWW) = [ adnsien)+0 (53).

where ppsp N is the measure associated to Marcenko-Pastur distribution with parameters (1, cy) and
where Syrpy C [0, (1 + /cn)?] represents the support of iy p . It is clear that for N large enough, the
support of ¢ and Sysp,y do not intersect, so that |, S n(X)dparp,n(A) = 0. Therefore, we obtain that

1) {ﬁﬁ ((¢’(WW*))2WW*)} =0 <%> .

This and (3.5) lead to the conclusion that Var{Tr¢(WW*)} = O (N~2). To finalize the case k = 1, we
express E{(Tro(WW*))2} as E{(Trop(WW*))?} = Var{Trgp(WW*)}+E{Tr¢(WW*)}2. [26, Lemma 10.1]
implies that E{Tré(WW*)} = O(N~!), which completes the proof for k = 1.

Now we suppose that for any n < k we have E{(Tr¢p(WW*))?*} = O(N~2") and are about to prove
that it holds for n = k£ 4+ 1. As in the previous case we write

E{(Tr¢(WW*))2F+D} = Var{(Trg(WW*))*1} + (E{(Tr¢<ww*>>k+l})2 (3.6)

To evaluate the second term of the r.h.s. of (3.6), we use the Schwartz inequality and the induction
assumption

BUToV W)} < (o) E(momr ) =0 (gm) )

We follows the same steps as in the case k = 1 to study the first term of the r.h.s. of (3.6). Using again
the Poincaré-Nash inequality, we obtain that

Var{(Trop(WW*)F+11 < %E {(Trqﬁ(WW*))% Tr (¢’(WW*)2WW*)} . (3.8)

Using Holder’s inequality, we obtain
K = a1 2
Var{(Trop(WW*)F+11 < NE{(TW(WW*))%“}’““ E{(Tr(¢’(WW*)2WW*)) " }’““ . (39

The properties of function n(\) = ¢'(\)?\ imply that it satisfies the induction hypothesis and that it
verifies (3.7), i.e. E {(Tr(¢/(WW*)2WW*))*11 = O(N*1). Plugging this into (3.9), we get that

Var{(Tr¢(WW*))F+1} < %E {(Trgb(WW*))%H}k_il . (3.10)

From this, (3.7) and (3.6), we immediately obtain

K2

E{(Tro(WW*)?+2} < SSE{(Tra(WW*)+2}w +

We denote by zj y the term z; v = N2 E{(Trg(WW*))2%+2}. Then, (3.11) implies that

zen < ki (zpn) D 4ok
This inequality leads to the conclusion that sequence (2 n)n>1 is bounded, or equivalently that

E{(Tro(WW*))%+2} < ~zirz as expected. This completes the proof of Lemmas 2 and 1. B

We now evaluate the variance of useful functionals of the resolvent Qun(z).

12



Lemma 3 Let (Fy)n>1, (GN)N>1 be sequences of deterministic 2M L x 2M L matrices and (Hy)n>1
a sequence of deterministic N x N matrices such that max{supy |[|[Fn|, supy ||Gn|, supy [[Hn ||} <
Kk, and consider sequences of deterministic 2M L-dimensional vectors (a1 N)N>1, (a2 n)N>1 Ssuch that
supnllai N|| < k fori=1,2. Then, for each z € C*, it holds that

C 2
Var {mTrFQ} 5\27)2/{ , (3.12)
C 6
Var {mTrFQGWHW*} < (]ff)f . (3.13)
Var {a]Qaz} < AGL (3.14)

N
where C(z) can be written as C(z) = Pi(|z]) P (L) for some nice polynomials P and Ps.

Proof. We first prove (3.12) and denote by £ the term £ = ﬁTrF Q. The Poincare-Nash inequality
leads to

/S W
Var{{}g Z E{(W) E{‘/Vil,jlwzz,]z}awm2 }

i1,j1,mM1 11,71 12,72
12,J2,M2
o\
mi1 Tr72
+ Z { oW {VViLhWiz,jz} <6Wm2 > }
i1,g1,m1 11,71 12,2
i2,j2,m2

We just evaluate the first term of r.h.s., denoted by ¢. For this, we need the expression of the derivative of
Q with respect to the complex conjugates of the entries of W. We denote by 11, and 11y, as 2M L x 2M L
matrices defined by IL,; = () 11‘04 L) and Iy, = ( 118 . 0). Then, after some algebra, we obtain that

0
W?mj =-Q (")) "Qli<L — Q (w?,p) ") "QLisr

= —QIL,We; (f")11,,Q — QI We; (£)11;,Q (3.15)
From this, we deduce immediately that

0¢ 1 m
e = 31 (11,sQFQIL W + prQFQHH,W>ihj1

21,71

Using that E{W/™: W% } = £ Ryima0iy 44, intja, We obtain that ¢ is given by

i1,917 " 12,92
1

0= N(ML)?

> (e)" (I, QFQILW + I, QFQILy, W) £ Ry,

11,J1,m1
12,J2,m2

X 521+J1,Zz+32(fm2) (s QF QI W + 1, QFQILW)ey,
We put u = i1 —iz and remark that > £ Ry, (£2)7 = J;*®@R and that

mi,m2,t1 —i2=u i1
Ji#. Therefore, ¢ can be written as

AT
jo—ji=u €j2€j;

L—1
1 * (0 THRU
E{ > 3 I, QFQILW + 1, QFQIL, W) (Ji" © R)

u=—(L—1)

x (I, QFQIL, W + 111, QFQIL, W) 3! | (3.16)

1

=N
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1
Each term inside the sum over u can be written as ——TrA*(I;, ® RY?)(J;* @ I)(I; @ RY?)AJ3, where

the expression of ML x N matrix A is omitted. As ||R]| is bounded by the nice constant b (see (2.6)),
(3.4) and (3.16) lead to the conclusion that we just need to evaluate ;77 E{TrA*A}. Using the Schwartz
inequality, we obtain immediately that

E{TrA*A} < 2E{Tr ((I,;QF QIL,;W)*IL,;QF QIL,; W)} (3.17)
+ 2E{Tr (I;, QFQILp, W) I 1, QFQIL, W)}
Since (prQFQpr)*prQFQpr < |1QI*IF|*I and [|Q]| < 12, we get that
1
(Im )

= (Imz)4

BT (T QFQIL, W) Tl QF QI W)} < o | FI? < BTV )

ML

IFI2EW %)
Lemma 1 thus implies that

1 1
<77 BT (T, QF QI W) 'TL,  QFQIT, W)} < K’P <Imz>
for some nice polynomial P. The term MLE{Tr (I, QF QII ¢, W) 11, QF QILf, W)} can be handled sim-
ilarly. Therefore, (3.16) leads to ¢ < k2 P (£1). This establishes (3. 12)

To prove (3.13) one can also use Pomcare—Nash inequality for § = 57 LTrF QGW HW?*. After some
calculations, we get that the variance of £ is upperbounded by a term given by

1 1
% (ML H(FQGWH) (FQGW H) + 5= Te(FQW H)" (FQW H) + 1 + 772) (3.18)

where k1 is some nice constant, and where 7; and 72 are defined by

1

m = mTr(HPfQGWHW*FQprW)*(prQGWHW*FQprW) (3.19)
1 . ) )

Ny = mTr(prQGWHW FQprW) (prQGWHW FQprW) (3.20)

Using Lemma 1 as well as the inequality QQ* < ﬁQ—ZI , we obtain immediately (3.13).

3.14) is the consequence of (3.12) since ajQas = TrQasal = TrQF for F' = asaj. This completes
1 1 1
the proof of Lemma 3. B

In the following, we also need to evaluate the variance of more specific terms. The following result
appears to be a consequence of Lemma 3 and of the particular structure (2.3) of matrix Q(z).

Corollary 1 Let (Fy n)n>1 be a sequence of deterministic M Lx M L matrices such that supy || F1 n|| < K,
and (Hy)n>1 a sequence of deterministic N x N matrices satisfying supy |[Hn| < 1. Then, if Imz% > 0,
the following evaluations hold:

1

1 5 1 )
Var {mTrFlQZ](Z)} S K mpl(‘z ‘)P2(1m22) (321)
where i and j belong to {p, f};
Var {mTI‘ |:HW Hiljl < 0 0 > Q(Z)HZZJZW:| } < Hzmpl(’22’)P2(ImZ2) (322)

where i1, j1, 12, jo still belong to {p, f}, but verify i1 # j1 and is # ja.
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Proof. We first prove (3.21), and first consider the case where i = j = p. We define the 2M L x 2M L

131 8 >, and remark that -7 TrF;Qpp(2) coincides with £ = 71 TrFQ(z). We
follow the proof of (3.12), and evaluate the right hand side of (3.17) in a more accurate manner by taking

into account the particular structure of the present matrix F. It is easy to check that

matrix F' by for F =

—E{TY (1L, QFQIL W) T, QE QI 1)}
1

= 3 BT (W7 Q, F Q) Q FiQuWy) )

As Qyp(2) = WpWJfQ(z2), we obtain that

* * * * 1
Q},(2)Qyp(2) = (Q(2)) W W W, WFQ(2*) < |’W|’4m I
if Im(22) > 0. Therefore, it holds that
1
* Yk 2 4
Fy prprFl < w7[|[W]| m
From this, using the expression of Q,, = 2Q(2?), we obtain similarly that
Wf QppFl prprFlQppr < “2||W||6 (Im22)4
Lemma 1 thus leads to the conclusion that
1 * K * K 2 Hl‘ZP
mE{Tr (Wf QppF1 prprFlQppr)} <K m

where k; is a nice constant such that E(||Wy||®) < k; for each N. Using similar arguments, we obtain
that

2 K] 2%[
(Imz2)%

This, in turn, implies (3.21) for i = j = p. As the arguments are essentially the same for the other values
of 7 and j, we do not provide the corresponding proofs.

ﬁE{Tr(prQFQprW)*prQFQprW)} <k

F, 0
0 0
necessary to check that the 4 terms inside the bracket of (3.18) can be upperbounded by /{2P1(|z2|)P2(IH}22 )
for nice polynomials P; and P%. As above, the use of the particular expression of matrices (Q; ;)i je{fp}

allows to establish this property. The corresponding easy calculations are omitted. W

In order to establish (3.22), we follow the proof (3.13) for F' = Il;;, < >, G = I, Itis

4 Various lemmas on Stieltjes transform

In this paragraph, we provide a number of useful results on certain Stieltjés transforms. In the following,
if A is a Borel set of R, we denote by Sys(A) the set of all Stieltjes transforms of M x M matrix valued
positive finite measures carried by A. S1(A) is denoted S(A). We first begin by stating well known
properties of Stieltjes transforms.
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Proposition 3 The following properties hold true:

1. Let f be the Stieltjes transform of a positive finite measure ., then

— the function f is analytic over CT,

—if 2 € CT then f(z) e CT,

— the function f satisfies: |f(z)] < ’fﬁi , for z€ C*

—if p(—00,0) = 0 then its Stieltjes transform f is analytic over C/RT. Moreover, 2 € CT implies
zf(z) e CT.

— for all ¢ € C°(R,R) we have

/RQS()\)d,u(/\) == hmIm {/ o(z) f(x + iy dm} (4.1)

2. Conversely, let f be a function analytic over CT such that f(z) € CT if 2 € CT and for which
sup,>. iy f(iy)| < +oo for some e > 0. Then, f is the Stieltjes transform of a unique positive finite
measure v such that (R) = limy_, o —iyf(iy). Moreover, the following inversion formula holds:

b
u(fa,b]) = lim + / T f (€ + iv)de, (4.2)

v—0+ T

whenever a and b are continuity points of w. If moreover zf(z) € C* for z in C* then, p(R™) = 0. In
particular, f is given by

and has an analytic continuation on C/RT.
3. Let F be an P x P matriz-valued function analytic on CT verifying
-Im(F(2)) >0 iz C*
= supys. iy F(iy)|| < +oo for some e > 0.
Then, F € Sp(R), and if u* is the corresponding P x P associated positive measure, it holds that

' (R) = Tim —iyF(iy) (4.3)

If moreover Im(2F(z2)) > 0, then, F € Sp(R*).

We now state a quite useful Lemma.

Lemma 4 Let 3(z) € S(RT), and consider function B(z) defined by B(z) = z8(z?). Then B € S(R).
Moroever, it holds that

G(z) = <-sz S e Cg(;;(z)R>_l € Su(R) (4-4)
G(z) = ( . sz;;; (Z)R> e S (®) (4.5)
and that . L
G(2)(G(2) < b, G(2) (G < (4.6)
Finally, matrices G(z) and G(=) are linked by the relation
G(2) = 2G(=2) (4.7)

for each z € CT.
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Proof. Let 7 be the measure carried by RT corresponding to the Stieltjes transform ((z). We first prove
that B(z) is a Stieltjes transform. We first remark that if 2 € C*, then 22 € C — R*. 3 analytic on
C — R* thus implies that 3(z) is analytic on C* Moreover, it is clear that

zd T(\) :/ Imz(\ + |2|2)dT(N)
R+

1 =1
mf3(z) m or A 22 X — 222

> 0, whenImz > 0.

To evaluate 3(z) for z € CT, we write

zdT(\)
R+ A— 22

dT(N)
<

Using that ‘% — z‘ > ‘Im(% — z)‘ > Imz for z € CT and A > 0, we get that

o< [ T =T

From this and Proposition 3, we obtain that 3(z) € S(R).

To prove (4.4), it is first necessary to show that G is analytic on C*. For this, we first check
that m(z) = 1 — ¢2B%(z) # 0 for z € C*. Indeed, write 3(z) = z + iy with y > 0, then m(z) =
1—c? 2%+ ¢ y? — 2czyi. Hence, if 2 = 0 we have m(z) = 1+ c?y? > 0, and if 2 # 0 then 22y # 0 since

y > 0. In order to establish that matrix <—ZI M — %R) is invertible on CT, we verify that
cB(2)
Im|( -zl — ——5— 4.
m( 21y 1—c2,82(z)R><0 (4.8)
on CT. It is easy to check that
cB(2) cImB(z)(1 + ?|B(2)])
Im | —2lp — ——5— = —Imz I — —Imz 1
m (et — =" Ggarge) =~ ~ R R <

Therefore, Imz > 0 and Im3(z) > 0 imply (4.8). The imaginary part of G(z) is given by

Im(G(z)) = —G(2)Im <—ZIM — %R) (G(2))" > Imz (G(2) (G(2))") >0 (4.9)
Therefore, InG(z) > 0 if z € C*. We finally remark that lim,_, ., —iyG(iy) = I, which implies that
sup,~. [[iyG(iy)| < +oo for each € > 0. Proposition 3 eventually implies that G € Sp(R). Moreover, if

7G is the underlying M x M positive matrix valued measure, (4.3) leads to 7 (R) = I.

We prove similarly the analyticity of G(z) on CT. We first check that 1 — z2¢28%(z) # 0 if z € CT, or
equivalently that |1 — zc?8%(2)| # 0 if z € CT. We remark that

2020\ — 2 o1 2 _ 1
1= 2B = BEIEHE) - | > st (256) - ) @10
As B € S(RT), it holds that Im (cQﬁ(z) - %) > 0 if z € C*. Therefore, 1 — 2¢?3%(z) # 0 if z € Ct.

As above, we verify that

m| —z —ﬂ = —1lmz — 1m —CZB(Z) —1lmz
(et = = et) = et (T ) e e
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It is easy to check that

o (1 —cj(i(ﬂil))2> - z(ccﬁ(z))2]2 (Im(25(2)) + |2¢B(2)["ImB(2)) > 0

% R> is invertible if

if 2 € C*, which, of course, leads to (4.11). Therefore, matrix <—z[ M —

2z € C*, and @ is analytic on CT. Moroever, we obtain immediately that

_efle) Y = e (GG
1_Z(65(Z))2> R> (G(2))" > Imz (G(2)G(2)") > 0 (4.12)

) R(G(2))* > 0

Im(G(z)) = G(2) <Imz Iy +Im <

cB(2)
1= 2(cB(2))?

for z € C*. As above, it holds that lim, , . —iyG(iy) = I and that sup,. [liyG(iy)|| < +oo for each
€ > 0. This implies that G € Sy/(RY), and that if 7¢ represents the associated M x M matrix-valued
measure, then 7¢(R*) = I.

In order to establish (4.6), we follow [15, Lemma 3.1]. More precisely, we remark that

Im(2G(z)) = G(z)Im <

ImG(z) = Imz/ aré() < ) _ !

R+ |A — z|? Imz Imz

Therefore, (4.12) leads to (G(2)G(2)*) < ﬁg The other statement of (4.6) is proved similarly and this

completes the proof. B

Lemma 5 We consider a sequence (Bn)n>1 of elements of S(RT) whose associated positive measures
(TN )N>1 satisfy for each N > 1

1
™7w(RT) = MTrRN (4.13)
as well as ) )
/]R+ Adrn(\) = ex 3 TrRy MTrR?V (4.14)
Then, it exist nice constants w, k such that
kImz
I D 4.15
N 2 )
and : 5
1= 2 (enBy(2))?] > 0m2) (4.16)

(w? +2]?)?

for each z € Ct and for each N > 1. Moreover, if Bn(2) is defined by Bn(2) = z Bn(2?), then, we also
have

3
ImBy(2) > % (4.17)
and . ;
L= enBy ()| = o (4.18)

for each z € C* and for each N > 1.
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Proof. We first establish (4.15). Imfxy(z) is given by

ImfBn(z) :Imz/ drv(Y)

R+ |A — 2|2
For each w > 0, it is clear that

drn(\) “dry(N) _ n([0,w])
/R+ A= 2 2/0 =22 = 202+ o)

Assumption (2.6) and (4.14) imply that the sequence (7ny)n>1 is tight. For each e > 0, it thus exists
w > 0 for which 7x(Jw,+00o[) < € for each N, or equivalently, 7n5([0,w]) > T8 (RT) — €. As 7n(R") =
LTr(Rn) > a, we choose € = a/2, and obtain that the corresponding w verifies 7 ([0,w]) > a/2 for each

N. This completes the proof of (4.15). We now verify (4.16). For this, we use (4.10). As Im <ﬁ(z)) <0,
it holds that Im <C?VBN(2) - m) > ¢4 ImBy(z). Therefore, we obtain that
‘1 — 2 (enBn(2))?] > & Tmz (ImBy (2))? (4.19)
which implies (4.16).
We finally verify (4.17) and (4.18). For this, we first express By (z) as

z

_ 2y
Bue) = 20w = [ T dme(y)
which leads immediately to
A+ |2]? 9 1
ImﬁN(Z) =Imz /]R+ deN()\) > Imz ‘Z’ /R+ deN()\)

1
> (Imz)? ————=dTn(A
> ()’ [ mmd )

We observe that for w > 0, then,

1 w 1 1
TP > —_— > -
/R+ = Z2|2dTN(/\) _/0 e z2|2d7'N()\) 2 SZ 1 o 7~ ([0, w])

As justified above, it is possible to choose w for which 7x/([0,w]) > § for each N. This leads to (4.17).
We now remark that |1 — ¢%,8%| = |'8N||B+v — A Bn|. As ImBy > 0 on CT, it holds that

1 1
'— — c?vﬁN‘ > 'Im (— — ﬁwm)' > AImBy
BN BN
Using that |Bx| > ImBy, we eventually obtain that

11— &BY| = & (ImBy)’

which, in turn, implies (4.18). B
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5 Expression of matrix E{Q} obtained using the integration by parts
formula

We now express E{Q} using the integration by parts formula. For this, we have first to establish some
useful properties of E{Q(z)} that follow from the invariance properties of the probability distribution
of the observations (yn)n=1,..n. In the following, for k,I € {1,2,...,L}, we denote by Q’;;,l and Ql};
the M x M matrices whose entries are given by <Q]z§}zl) = (Qpp)(k_l)M+m (I—1)M+n and <Q]Jf;) =

m,n ’ m,n
(fo)(k_l)M+m’(l_1)M+nf0r each m,n € {1,2,...,M}.

Lemma 6 The matrices E{Qpp} and E{Qg} are block diagonal, i.e. E (Q%) =E (Q]Jf;) =0ifk#I,
and

TrE{Qpp} (/2 ® R) = TIE{Qg}(/L @ R), (5.1)
E{Qps} = E{Qgp} = 0.
Proof. To prove (5.2) we consider the new set of vectors z, = e~**y;. and construct the matrices Z,,

Z; in the same way as Y, and Y. It is clear that sequence (2, )nez has the same probability distribution
that (yn)nez. Zp and Z; can be expressed as

eIy ... 0 1 ... 0
Zp = : : Yo l: . : ;
0 ooe b, 0 ... e (V=D)ib
e Iy ... 0 ... 0
Zp=eH0L 0 Y
0 oe oy, 0 ... e (N-1)if
Therefore, it holds that
eIy ... 0 Ty ... 0
nznzi=| o o |y o
0 e bt 0 .oelfry,

—zlyn %2575

-1
Similarly to Q we define matrix Q% = < ) and obtain immediately that

~ZpZ} —zImL

e_wIM 0 ewa 0
E{Qgp} = E{Qpp}

0 . e_LwIM 0 ce eLwIM
Since E{Qgp} = E{Qpp! then for any M x M block E{Qpp’*} we have
E{Qppj’k} = e_wa{Qppj’k}ekw = e(k_j)wE{Qppj’k}'

This proves that E{Qppj’k} = 01if k # j as expected. A similar proof leads to the conclusion that E{Qg }
is block diagonal. Moroever, the equality E{szp} = E{Qfp} implies that

e_iGIM 0 eiGIM 0
E{QZ} = e 1 L : E{Qsp}

0 e by, 0 el
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Therefore, each M x M block prj’k of Qgp verifies E{prj’k} = e_(L+j_k)i9E{prj’k}. As j—k €
{—(L —1),...,L — 1}, this implies that E{Qg”*} = 0. This leads immediately to E{Qg} = 0. We
obtain similarly that E{Qp¢} = 0.

To prove (5.1) let us consider sequence z defined by z, = y_,+n2r for each n. Again, the distribution
of z, will remain the same and it is easy to see that Z, and Z; are given by

0 ... Iy 0o ... 1
Zr=|: R aE
Iy 0 0
0 ... Iy 0
Zp: : : Yf
Iy 0 1 0
From this, we obtain that
0 o Iy 0 oo Iy
E{Qpp) = | | E{Qa} | :

As E{Qgp} = E{Qpp}, this immediately implies that E{Qg’/} = E{QppL_j L=} and, as a consequence,
that E{TrQpp(I1 ® R)} = E{TrQg (I, ® R)} as expected. W

Now we return to the expression for Q(z). Using the resolvent identity we get

N *
2Q(2) = —Ionr + Q)M = Dy + > Q(2) ( O, ”0“’?’]'> . (5.3)

o Wp,jWy s

For every my,mg =1,...,M, i =1,...,2L and i3 = 1,..., L we denote by AZ‘;:LQ the 2NV x 2N matrix
defined by

AL 0N)jk = (Q (wy, )i (W2,
(AL w0))jk = (Q (wpy)) (wp i)y o)

(AL D= Q5 )5 ()i

A7) = (Q(5)i (wh )i,

We also define matrix Aj"/™ by A"/™* = E{AZL;;M (5.3) implies that
ZB{Q[T " (2)} = —0iria0my,me + TrAT " (pf) + TrAL ™ (fp). (5.5)

In the reminder of this paragraph, we evaluate for each 41,49, m1, mo the elements of matrix Aznzlzmz

using the Gaussian tools (2.8) and (3.15). As we shall see, each element of AJ'}™* can be written as a
functional of matrix E(Q) plus an error term whose contribution vanishes when N — +oo. Plugging these
expressions of AZLZ””Q into (5.5) will establish an approximate expression of E(Q). As the calculations are

very tedious, we just indicate how each element (AJ'}"*(ff));x of matrix A"} (ff) can be evaluated.
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By using integration by parts formula and (3.15) we obtain

B { (a (wg>)m <w;ak>:-:2}

- Z Z E{WZT:iL Q_T

i3=1 ms3

L
=Y > E{QuLew, W

/ O (QEE WL w)
7]”} X E{ 123 2
i'.j

7,2+L k‘}

- N Z Z Ry

/

oy,

ig=1 4/ i3=1 ¢’
m’ m3 m’ m3
oQmims
mim T2 1113
X OigtL+j,i'+5'E {Qzlzlg % Omay,m Oig+ L, Ok,jr + Wi2+L7k7—m’

1 L M
=5 Z Z E{Q?le3m3Rm3m2 i3,i2—(j—k

i3=1mz=1

xE{W (Q ()"

B {mir (o,

).

X 51'3,2'2—(1 }

m]zgz

}__ E : § Rm3m’ i3+ L+7,1" 43’

i3, =1
m3,m
mmg
z+L23} - E : E : Rmsm’ i3+ L+7,1'+j5’
13] i/=L+1
ms,m’

an =5 3o (&) em)”

1113

Z Z Oigt Ltj,ir+5'E { <A:'f§2m2(ff)> (Qp(Ir, ® R))PL™ }

Z Z Oig+5,i+5' { (A?lezm( f)) (Qpp (I, ® R))T™ s }

m]zgz

Now we define for every iy = 1,...
with blocks

(BI(fp))
(Br=) =

- v
<B§'f§2m2(pp) = E{

(B?f;m )

(DY) = L TD(JL ® 1) =

ML

,2L, ’L2 = 1,...

ﬁf%E{(Q”)UL@m}

i1,i2—(j—Fk

(QPP> IL® R)}T,nlfm
(pr> (I ® R)}fm’m2

o wE (&) e m}

Also for every ML x ML block matrix D we define the sequence (M) (D)(1))=_r41....

,M 2N x 2N matrix B""'™2

, L and my,mo = 1,.. iy

1,M2
llgig—(j—k)—LgLa

(g LISz G-RI<L)

11,12—

1
i1 ia—(—F) 1<io—(j—k)<L>

Ly (j-k)+r<r-

k)+L

and N x N Toeplitz matrix T]\(,J’VLI) (D) given by

L—1 3as
Zl ZID (5.6)
L—1
= > MOy (5.7)

l=—L+1
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In other words, the entries of TZS{VLI) (D) are defined by the relation
M o
|:T]\([’L)(D)]j1 i (D)1~ d2) 1-(-1)<ji—jo<L1 (5.8)
We observe that if D is block diagonal, i.e. if D!""™2 = 0 for each mj,my when i; # io, then, matrix

7/177/2

T]\(,{VL[)(D) coincides with the diagonal matrix 71577 ./ (D) = (77 TtD) Iy. It clear that

¥ Z E { ((Qpp> I, ® R))fn.lm 5i37iz—(j—k)} (BZL;?mQ(ff)>j,k

Q113

In order to rewrite the term

L
¥ 5% duenniiny x 2{ (AT00) (@l R |

m’,j iz,i'=1

in a more convenient way, we put [ = ¢/ — i3, and remark that

N Z Z Oig+ Ljir+j' X E { (A?;ng(ff)) (Quw(lr @ R)" } -

n@ g, =

WX s, g S @etnemi

m’ l_— Z—Zg l

Using the definition (5.6), this can be rewritten as

L
% Z Z Oig+Ltj,i+j' X E { <A:§L;2m2 (ff)> (Qap ([ ® R))Z i3 } -

m’ ' is,i'=1
L-1

e X B{(amgmun), Qe ) o)

I=—(L—1)

We introduce j' = L + j — [, and using (5.8), we notice that

L
% Z Z Oig+L+j,i+j' X E { <A:§L;2m2 (ff)> (Qap ([ © R))Z i3 } -

m’,j i3,8'=1
N

nELY [TV @ue )| (Anran) o=
j/:]. 2 I
cyE { (J]%/TJ\(Z%)(pr(IL ® R))AylezmQ (ff))j k}
We obtain similarly that

N Z Z 513+m+yE{<Al?;§”2(pf)> (Qpp (I, ® R))75™ } .

7.7 ZSZ—

cyE { (7—1\(7%) (QppIL ® R))A:?212m2 (pf)>ﬁk}
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Therefore, matrix A"!"2(f f) is also defined by

1112

(anen) = (Brun) - eve { (AT Qui e RIATE D) b
- o { (T80 ot © DAL 1)}

Writing Qgp and Qpp as Qg = E (Qgp) + Q?p = Q?p (see (5.2)) and Qpp = E (Qpp) + Qpp: We obtain
that

7

(ateun),, = (B=un),, o2 { (T Quutti o ROAL00), |
—cnE { (Jﬁ’r]&‘?(Qﬁp(IL ® R))A;?gm(ff))j k}
_eyE { (787 Qg1 @ R)AT™ (pf))j. k}

We define the N x N matrix A"!™2(ff) b

iri2
AT(fF) = —enE {IRT Qi (I © R)ATL™ (£5) }
— enE{ TP Qg1 @ R)ATL™ (b)) |

Dropping the indices i1, i2, m1, meo, we eventually obtain that

Ag = Bg — cyE {TJS{VLI)(Qpp(IL ® R))} Aps + Ag.
Using similar calculations, it is possible to establish that:

Apt = By — cyE {T]&‘{)(QH(IL ® R))} Ag + Aps

Afp = Bp —enE {Tz%)(Qpp(IL ® R))} App + App

App = Bpp —cnE {TJ\(IJ,%)(QH([L ® R))} Agp + App,

where Apg, Agp, and App are defined as
cNE{ Q211 @ R))JK Apf} —enE {T(M)(ng(IL@gR))AH},

A, = —cnE JNTNL Qi (I ® R)Agp | — enE{ T (Qpp(Ir @ B)App | .

App = —enE{ T (Qpe(Ir @ R) I App b — enE{ T4 Qg (1L @ R)Ag |

By Lemma 6, matrices E (Qg) and E (Qpp) are block diagonal. Therefore matrices E{T]\(,NL[) (Qe(IL®R))}

and E{T]\(,%) (Qpp(IL®R))} reduce to 7 E{TrQg (I, ®R)} Iy and 177 E{TrQpp (I, ® R)} Iy respectively.
As E{TrQg (I, ® R)} = E{TrQpp (1L, ® R)} (see (5.1)), we eventually obtain that

Iy AL E T Qpp (I © B)} Iy
MLE{TYQPP(IL®R)}IN Iy

)AB+A. (5.9)
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In the following, we denote by a(z) the function defined by

1

a(z) = Vi

— K {Terp(IL ® R)} (5-10)

To find the expression of A, we have to prove that the matrix governing the linear system (5.9), is
invertible. For this, we recall that Qpp(2) = 2Q(2?), and introduce the function a(z) defined by

1

a(2) = = Tr (B{Q()(IL x R))).

« is clearly an element of S(R™). In order to evaluate its associated positive measure iy, we denote by
fin the positive measure defined by

ML
) ML )
din(A) = mei (IL ® R)fi 65, (5.11)
=1

where we recall that (5\1)@:1 mrz and ( fl)lzl M1 represent the eigenvalues and eigenvectors of Wy W WPWJE .

We remark that [ is carried by RT and that its mass fi(R™") coincides with ﬁTrR. Then, measure i is
defined by

[ oanvo =& ([ o). 5.1

Moreover, we notice that
a(z) = za(2?).

Therefore, Lemma 4 implies that a € S(R) and that

1—cAa(z)?#0

if 2 € C*. This implies that the matrix governing the linear system (5.9) is invertible for z € C*. Matrix
H given by

—_ < T ONE) 1N>‘1‘

cNa(z) IN IN

is thus well defined for each z € C™.
The blocks of H are of course given by

1
Hyp,=Hg=— 1
PP T 2 a()?
evae(z)

Hpe =Hpp = ——5 "
1 - alz)

N-

5.9) implies that A = HB + HA. (5.5) implies that we only need to evaluate matrices Apr and Agp,.
p P
We obtain that these matrices are given by

Apf = prBpf + prBﬂ-‘ + prApf + prAﬁ‘
Afp = prBpp + Hﬂ-‘pr + prApp + Hﬂ'Afp.
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This and the definition (5.4) of matrix A!"!"™? lead immediately to

1119

0 WEWr\ )\ mme
(E {Q (WPWJ:‘ o F )}) =TrA7 " (0f)Lip<r + TrAT " (0f ) Liy> 1 =

1112

1 mims
T c?\,oﬂ Tr (Bpf —cnvaBg + Ape — CNaAH>i1i2 li,<r
1 mima
+ 1_ c?\,az Tr(pr —cvaBpp + Agp — CNaApp>i1i2_L1i2>L
It is easy to notice that Tr (pr)mlm2 Tr (Bpf)f:;;'"”2 =0, and Tr (Bpp)ZLij2 E{(QIl;f(I2L ® R))ZgTL},
Tr (Bg);)3, " = E{(QIlp(I2L ® R)){"} ™}, where Il ; = (072, ) and I, = (722 0). Hence,
0 WWw: mims cN
(E {Q (pr* 0 ” )}) = 7<E{Qﬂpp(12L ® R)}
! 2112 1-— C
1ma2 CNO mims
+ E{QHff(IQL & R)}>z 5:?Z12m2 = - 1_ B <E{Q(I2L & R)}) gzrlnzlgmz’
112 cNa 1192

where &' represents the remaining terms depending on the entries of matrix AJ"}™?. Using the

identity (5.3), we obtain that

E(Q} + B =E{Q (wyws 0 )} = —%E{Q}(m ©R)+E, (5.13)

which immediately leads to

—E{Q} <7([2L®R) ) = Ioyr — &
e
As E(Q) is block diagonal, (5.13) implies that matrix £ is also block diagonal, i.e. ¢ = &y = 0. We
apply Lemma 4 to 5(z) = a(z), and conclude that matrix — <1 CN2a 5(l2r ® R) + z> is invertible for
— o

each z € CT, and that matrix Sy(z), defined by
Sn(z) <70Na(z) R+ z) - (5.14)
N = — .
1 —.a?(z)
belongs to Sy (R), and verifies |Sy(2)|| < 2. We deduce from this that

-1

-1
E{Q} = - <%([2L ® R) + ) +¢& (%(Iu ® R) + )

or equivalently that
E{Q(2)} = L ®8(z) — €(2) (I2L ® S(2)) (5.15)

This allows to evaluate E(Q(z)) by identification of the first diagonal blocks of the left and right hand
sides of (5.15). For this, we introduce the M x M matrix-valued function Sy(z) defined by

-1
Sn(z) =— <ZIM + %R]\]) (5.16)

Lemma 4 implies that S belongs to Sy (RT), verifies ||Sn(2)|| < L, and that S(z) and S(z) are linked
by the equation S(z) = 25(2%). As E(Qpp(2)) = 2E(Q(2?)), (5.15) leads to

E(Q(:2)) = I © S(z%) — Eppl2) I ® S(=2) (5.17)
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for each z € C*. Therefore, &£,,(z) only depends on 22. As the image of C* by the transformation z — 22
is C — RT, we obtain that &,,(2) = Ep,(z?) for some function E,, analytic in C — RT. This discussion
leads to
E(Q(z)) =1L ® 5(2) — Epy(2) (I ® S(2)) (5.18)
for each z € C — R™.
In the following, we prove that
1 1 1

7L 1 (E@n(2) = L ® Sn(2)) = =5 Tr(Epp(2) (I © Sn (2)) = Ox(555

6 FEvaluation the error term &

In order to establish (5.19), we prove the following result.

Proposition 4 For each deterministic M Lx M L sequence of matrices (Fi n)n>1 such that supyy [ F1 v <

K, then

1 1

1 2
mTr(é’pp(z) Fin)| < “mplﬂz |)P2(Imz2) (6.1)
holds for each z for which Imz? > 0, where Py and Py are 2 nice polynomials.
1

Proof. We define F' as the 2M L x 2M L matrix Fy = < FBN 8 > and remark that mTr(S'F =

1 .
mTr(gpp(z) Fj n) can be written as

1 mim mi1m:
mTrSF . 62a2 Z ( TrA, 2(pf) — caTr AT 2(ff)) 1i,<r

11,12
mi,m2

(TrAm1m2 (fp) — caTrA™™ (pp)) 12-2>L)Fm2m1. (6.2)

i192—L i192—L 2211

1
As matrix F verifies ngflml =0if iy > L, mTrSF is reduced to the right hand side of (6.2) that we

now evaluate.

my
> AT GHFL s = 0 Y E{THLQi(r @ R)(Q (1)),
11,12 i1,02 .k N
mi,m2 mi,ma2

< (why) P 4+ (T Qe ® RV (Q () ) (w7,) ™ Paes
:cTrE{TN,L<Q%<IL®R>>(VEf) FQ (") + THL(Qpel @ R) IR (ng) FQ () }
= e E{ TV (Qi (I ® B)) (I, W) FQ (I, W)
+ THLQpe (I ® B)TRF (T, W) FQ (T, W) .

1
Similar calculations lead to the following expression of mTrEF:

1 c *
oL EF = 1-Za )MLHE{TNL(QE(IL®R))(prW) FQ (I, W)

+ T (Qpe(L ® R)JR (W)™ FQ I, W) — caTY'L (Qpp (I ® R)) (L W)™ FQ (L, W)
— ca T Qi (I @ R)) (I W) FQ (I W) b (6.3)
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We now evaluate the right hand side of (6.3). The Schwartz inequality leads to

ﬁTrE{T%(Q%(IL 9 1) (I, 7)° FQUI, 1) }

Z E{rM QH([L®R))(l)ﬁTr(J ( hW)*FQ(prW))}'

I=—L+1
L—1
=| Y B Qe © R, © 1) 7 Te (R (W) FQ ) ) )
l=—L+1
: L-1 1/2
< > Var{mTr(fo(IL®R)(JlL®IM))}

l=—L+1
1 l 1/2
x Var {mTr<J(*N) (T, W) FQ (T, W) ) }

Using Lemma 3, we obtain that

Var {mﬂ(@m ® R)(JL, @ IM”} < ()P <1ni>

and that

Var {]\/}L <J( ) (s W)* FQ(prW))}<“ $P1(|22|)P2 <In122>

Since L does not grow with N this implies immediately

ﬁTrE{T%L(Q%(IL ® R)) (I,;W)* FQ (T, W) }‘ < ’impl("z )P <1n122>

It can be shown similarly that the 3 other normalized traces can be upper bounded by the same kind of
term. It remains to control the terms E and . For this, we use Lemma 5 for the choice

1
1—(cn oy 1—(061);]\;1@2
BN (z) = an(z). It is sufficient to verify that the measures (fiy)n>1 associated to functions (an(z))n>1
verify (4.13) and (4.14). For each N, it holds that

/O+OO dTin() = E </O+OO dﬂN(A)> - %T}RN

/0+oo Adaiy(N) =E (/0+oo AdﬂN(A)> =E <MTY((IL ® R)WfWJW”W}kO

and

A straightforward calculation leads to E (ﬁTr(I/VfVVI’,k WW3 )) = ey TrRy 4, TrR%,. Therefore, (4.16)

implies that
1 1

<P P
1= 2(ewanta] = PP )
for each z € C*, and if 22 € C¥, it holds that
1 1

|1 — 22(cvan(22))?] = P1(|z2|)P2(Imz2)
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As an(z) = zay(2?), this is equivalent to

1

< P Pal)

1
1-— (CN aN)2

Finally, we remark that |y (2)] < & TrRy 1= < b for each z € CT. Therefore, if 22 € CT, it holds

that |ay(22)| < b IH}ZQ and that |ay(2)| = |z||an(2?)| verifies

< b1+ |2]?)

()| < bzl s <

1
Imz2
This completes the proof of Proposition 4. l

Proposition 4 immediately leads to the following Corollary.

Corollary 2 For each sequence (Fy)n>1 of deterministic ML x ML matrices such that supy>, < K,
then, we have

T [(B(QN(2) ~ 1. Sx(2) FN]1 < kg P () Pa( ) (6.4)
for each z € CT. In particular, it holds that
ST QNG ~ 110 Sy < 5 gz P Pa(E) (65)

Proof. (5.17) implies that

ﬁTr [(E(Qn(2%)) — I, ® Sn(2%)) FN]‘ — 'ﬁﬁgpp(z)sjv(%)m

As ||Sy(2?)|| € <5 if 22 € C*, the application of Proposition 4 to matrix Fi Ny = Sn(2?)Fy implies that

Imz2

1
ML

Tr [(E(QN(z2)) —Ir® SN(Zz)) Fy] ‘ = “%P1(|Z2|)P2(hr}z2)

for each z such that 22 € C*. Exchanging 22 by z eventually establishes (6.4).

7 Deterministic equivalent of E{Q}

7.1 The canonical equation

Proposition 5 If z € CT, there exists a unique solution of the equation

1 zenty(2) -t

satisfying tn(z) € CT and ztn(2) € CT. Function z — ty(2) is an element of S(R™), and the associated
positive measure, denoted by py, verifies

1 1
—TrRy —

i MTrR?V (7.2)

1
NN(R+) = MTrRN7 /R+ )\d,uN()\) = CN

29



Moreover, it exists nice constants 3 and k such that

1 2 22
< R Ip) -
‘1 —z(en tN(z))z‘ (Imz)
for each N. Finally, the M x M wvalued function Tn(z) defined by
zentn(z) !
Tn(z) = — <zIM + —RN> (7.4)
1 — zc4t3(2)
belongs to Spr(RT). The associated M x M positive matriz-valued measure, denoted ij\}, verifies
vE(RT) = Iy (7.5)
as well as )
MN::KfHRNuﬁ (7.6)

Proof. As N is assumed to be fixed in the statement of the Proposition, we omit to mention that
tn, TN, N, - - . depend on N in the course of the proof. We first prove the existence of a solution such that
z — t(z) is an element of S(R™). For this, we use the classical fixed point equation scheme. We define
to(z) = —1, which is of course an element of S(RT), and generate sequence (t,(z)),>1 by the formula

2ty (2) R>—1 ‘

1
¢ — TR (-2l — —2EnE)
nt1(2) M < HMT T zc?t2(z)

We establish by induction that for each n, ¢, € S(R"), and that its associated measure p, verifies
in(RY) = L TrR and

/ T (@) = e~ Te(R) L Te(R?) (7.7)
; R}

Thank’s to (2.6), this last property will imply that sequence (py)n>1 is tight. We assume that ¢, in-
deed satisfies the above conditions, and prove that ¢,41(z) also meets these requirements. Lemma 4
zctn(z)
1— zc2t2
sition 3, to prove that t,.1(2) € S(RT), we need to check that Imt, 1(z),Imzt, 1(2) > 0 if 2 € CT,
as well as that limy_, 4o iyt,+1(iy) exists. As T, € Sy (RY1) and t,41(2) = ﬁTrRTn(z), it is clear that

Imt,11(2),Imzt,41(2) > 0. Finally, it holds that

1
implies that function T),(z) = | —zlp — R> is an element of Sy;(R1). According to Propo-

ciyty (iy) R> -1

1
Win1 (1Y) = 57 rR< M Gy (ciyta(iy))?

Since t,,(z) is a Stieltjes transform we have —iyt, (iy) — p,,(RT), which implies that —iyt,+1(iy) — 4 TrR,
i.e. that p,11(RT) = 4 TrR.
We finally check that u,,11 satisfies (7.7). For this, we follow [16].

Yy——+00

+00
/0 Mint1(dX) = lim R <—iy(iy$TrRTn(iy) + %TrR)) .
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Using twice the resolvent identity we can express T,, as

1 ctn -1 1 R ct, cty, 2 9
I i "R =+ = - RT,,
" Z<M+1—zc2t% > z+z1—zc2t% 1— zc?t2 "

from which it follows that

1 1 czty, 1 9 czty S| 3
—2 [ —Tr(zRT, —TrR) ) = ———" ) —TyRT,.
z <M r(zRT,(z)) + i rR)> T o2 0 rR° + <1 — zc%%) A rR

Since —iyt,(iy) — 4 TrR and t,(iy) — 0 we can conclude that —iy(iy+;TrRT,(iy) + & TrR) —
#TrRTrR2 as expected.

We now prove that sequence t,, converges towards a function ¢ € S(R™) verifying equation (7.1). For
this we evaluate 6,, = t,+1 — t,

1 1 2e(ty — th_1)(1 4+ 2c?tpt,_1)
0, = —=TrR(T,, — T,—1) = —=TrRT, RT,
"T Mt (Tn = Toa) aon (1—2c22)(1 — 222 _)) et
ze(1 + 2CPtpt, 1) 1
=0 —TrRT,RT, 1.
" 1(1 —222)(1 — 222 )M Hnftin—l

We denote by f,(z) the term defined by

ze(1 + 2Pttty 1) 1
n = —TrRT,RT,,_ 7.8
fal2) (1—z22)(1 — 222 )M : ! (7.8)

Lemma 4 implies that ||T}|| < = and that |tx| < 2 for each k > 1 and each z € C*. Therefore, it

Imz Imz
holds that
<K 2l 14 2
— \(Imz)? (Imz)?

Moreover, it is clear that for each k, |1 — 2c?t2| > (1—¢? (Irlﬂzz')Q ). For each ¢ > 0 small enough, we consider
the domain D, defined by

1
ze(1 + zc2tntn_1) MTrRTnRTn_l

D.={z€CT, (Ir@;)? <e} (7.9)

Then, for z € D, it holds that

1 1 1
11— 2c?82] |1 — 222 || = (1 — c%e)?

and that p
|fn(2)] < A= (e+¢)

We choose € in such a way that ﬁ (e + 62) < 1/2. Then, for each z € D, it holds that

c2e
1
wn‘ < 5‘9n—1’
Therefore, for each z in D, (t,(2))n>1 is a Cauchy sequence. We denote by t(z) its limit. (£,(z))n>1 is

uniformly bounded on every compact set of C — RT. This implies that (¢,(z)),>1 is a normal family on
C —R*. We consider a converging subsequence extracted from (¢,(z))n>1. The corresponding limit ¢.(z)
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is analytic over C — R*. If 2 € D, t,(z) must be equal to t(z). Therefore, the limits of all converging
subsequences extracted from (¢,(z)),>1 must coincide on D, and therefore on C —R™. This implies that
tn(2) converges uniformly on each compact subset towards a function which is analytic C — R™, and that
we also denote by t(z). It is clear that ¢(z) verifies (7.1) and that t € S(R™) and verifies (7.2). Moroever,

Lemma 4 implies that 7" € Sy (R™), while (7.6) and (7.5) are obtained immediately.

As (7.2) holds, (7.3) is a consequence of the application of Lemma 5 to the function Sy (2)

:tN(Z).

We now prove that if 2 € C and ¢1(z) and t5(z) are 2 solutions of (7.1) such that ¢;(z) and zt;(2)
belong to C*, ¢ = 1,2, then ¢;(z) = t2(2). In order to prove this, we first establish the following useful

Lemma.

Lemma 7 If z € CT and if t(2) verifies the conditions of Proposition 5, then, it holds that

1—u(z) >0
and
det(I-D) >0
where
_ [ ux) o w(z)
Do <|z|2<> ')
) = o P FTRTE)TE) )
1~ =(()F
v(z) 37 Te(RT(2)(T(2))* R)
11— z(ct(2))??

Proof. Using the equation t(z) = %TrRT(z), we obtain immediately after some algebra that

Im(#(z)) Im(t(z)) 1 *
( Im(24(2)) ) =D ( Im(z4(2)) > +< " 0

Im(z) Im(z)

The first component of (7.15) implies that

(1= u() ) — o) BEEL L Enrr o))
Therefore, it holds that (1 —u(z)) > 0. Plugging the equality

Im(t(z))  wv(z) Im(zt(2)) 1 1 . B e
m(z)  1-u(z) Im(z) | I—u() i TETETE)N)

into the second component of (7.15) leads to

Z2’U2Z m(zt( 2 22’UZ
(1w - EEEC)) Inbet)_ oot 1

1 —wu(2) Im(z)  1—u(2) MTY(RT(Z)(T(Z))*) >0

and to (7.11).
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To complete the proof of the uniqueness, we assume that equation (7.1) has 2 solutions ¢;(z) and t2(2)
such that ¢;(z) and zt;(z) belong to C* for i = 1,2. The proof of Lemma 4 (see in particular (4.10))
zeti(z)

1 — 2t2(2)
by T1(z) and T5(z) the matrices defined by (7.4) when t(z) = t1(z) and t(z) = t2(2) respectively. u;(z)
and v;(z), i = 1,2, are defined similarly from (7.13) and (7.14) when t(z) = t1(z) and t(z) = t2(z). Using
that t;(z) = & Tr(RT;(2)) for i = 1,2, we obtain immediately that

implies that for i = 1,2, then 1 — z(ct;(2))? # 0 and matrix —zI — R is invertible. We denote

t1(2) — t2(2) = (w1,2(2) + 2v12(2)) (t1(2) — t2(2))

where
() = 6 caty(2)czta(z) 3 Tr(RT (2) RT5(2))
123 = T et (2)) (1 - et (2)) (719
and
LTy z z
v12(2) = c( oy Tr(RTh (2) RT5(2)) (7.17)

1= z(ct1(2))?) (1 = 2(cta(2))?)
In order to prove that t1(z) = t2(2), it is sufficient establish that 1 — uj 2(2) — zv12(2) # 0. For this, we
prove the following inequality:

11— w12(2) — 2012(2)] > V(1 —ui(z)) — [2|v1(2) /(1 — ua(2)) — [2]v2(2) (7.18)

which, by Lemma 7, implies 1 — u 2(z) — 2v1,2(2)) # 0. For this, we remark that the Schwartz inequality

leads to |u12(2)] < v/ui(z)\/u2(z) and |v1 2(2)| < \/v1(2)y/v2(2). Therefore,
11— ui(2) = zv12(2)] 2 1= Vur (2)Vua(z) = v/ [2lv1(2) v/ [2]va(2)

We now use the inequality

Vab—Ved > Va—cvVb—d (7.19)

where a, b, ¢, d are positive real numbers such that a > ¢ and b > d. (7.19) for a = b =1 and ¢ = uy(2),
d = uy(z) implies that 1 — y/u1(2)\/u2(z) > /1 — u1(2)y/1 — uz(z). Therefore, it holds that

11— u19(2) — 2012(2)] = V1 —u1(2)y/1 — ua(z) — V/[2lv1(2)V/2]va(2)

(7.19) for a = 1 —uy(2), b =1 —ua(z), ¢ = |z|vi(2) and d = |z|va(z) eventually leads to (7.18). This
completes the proof of the uniqueness of the solution of (7.1) and Proposition 5. B

Remark 1 (7.10) and (7.11) are still valid if z belongs to R™*. To check this, it is sufficient to remark

if z=x € R™*, the fundamental equation (7.15) is still valid, but ITn(f((ZZ))) and In}fﬁzg)) have to be replaced

by t'(z) and (zt(x)) where ' denotes the differentiation operator w.r.t. x. The same conclusions are
obtained because t (x) > 0 and (xt(x)) >0 if x € R™*.

7.2 Convergence

In this paragraph, we establish that the empirical eigenvalue distribution 7y of matrix Wy, NW; N, NVVJZk N
has almost surely the same deterministic behaviour than the probability measure vy defined by

1
VN = MTW}V“ (7.20)

where we recall that v%; represents the positive matrix valued measure associated to Ty (z). For this, we
first establish the following Proposition.
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Proposition 6 For each sequence (Fx)n>1 of deterministic M Lx M L matrices such that supy s ||[Fiv|| <

K, then,
ﬁﬁ (E(Qw(2)) = I, ® T (2)) Fa] = 0 (7.21)

holds for each z € C —R™.
Proof. Corollary 2 implies that

S TE@N) ~ (e sn )Py =0 (53

We have therefore to show that ﬁTr (Ip ® (Sy —Tn)) Fy — 0. It is easy to check that

ZCN zent

L (L@ (S=T)F = —Tr(I, ® 5) <

WL WL >(IL®RT)F

1 — zc3,a? 1 2C3 2
~zey(a— )1+ zcqat) 1
(1= 2ca?)(1 — zct2) ML

Tr(I, ® SRT)F. (7.22)

We express a —t as a — 3 TrRS + L. TrR(S — T), and deduce from (7.22) that

zeny (14 zckat)
1 — zc%,02)(1 — 2c31?)

zen (14 zc4at) 1
(1 — zc%a2)(1 — 2¢%t?) ML

ﬁﬁ (IL®(5—T))F = <a - %TrRS) (

< —_Te(I, ® SRT)F + %TrR(S _7) Te(I, © SRT)F  (7.23)

ML
(6.4) implies that o — ﬁTrRS = Oz(%) Therefore, in order to establish (7.21), it is sufficient to prove
that 4 TrR(S — T') — 0. For this, we take F' = I;, ® R in (7.23) and get that
1

STR(S(2) ~ T(2)) = fix(2) 17 TER(S(2) — T(=) + 0.

- ) (7.24)

where fn(z) is defined by

zen(1+ ziion) 1
In(2) = (1—zca?)(1 JZ 2c3t2) MTT(RS(Z)RT(Z))

fn(z) is similar to the term defined in (7.8). Using the arguments of the proof of Proposition 5, we
obtain that it is possible to find ¢ > 0 for which, supysn, [fn(2)] < + for each z € D, for some
large enough integer Ny. We recall that D, is defined by (7.9). We therefore deduce from (7.24) that

LTrR(S(z) — T(2)) — 0 and ﬁTr (I, ® (S(2) —T(z))) F converge towards 0 for each z € D,. As func-

1
tions z — mTr (I, ® (Sn(2) — T (2))) Fn are holomorphic on C — R* and are uniformly bounded on

1
each compact subset of C—R™, we deduce from Montel’s theorem that mTr (Ir ® (Sn(2) —Tn(2))) Fn

converges towards 0 for each 2 €¢ C — RT. B

We deduce the following Corollary.
Corollary 3 The empirical eigenvalue distribution vy of WﬁNW;’NW ,NW;N verifies
I)N — UN — 0 (7.25)

weakly almost surely.
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Proof. Proposition 6 implies that E (577 TrQn (2)) — 4 Tr(Tv (2)) — 0 for each z € C—RT. The Poincaré-
Nash inequality and the Borel Cantelli Lemma imply that o=Tr(Qn(z)) — E (75 TrQn(2)) — 0 a.s. for
each z € C — RT. Therefore, it holds that

L Ta(Qn(2)) — = TH(T () — (7.26)
a7 L (@n(z a7 (I (= a.s. .
for each 2 € C — R™. Corollary 2.7 of [16] implies that o — vy — 0 weakly almost surely provided we
verify that (Iny)n>1 is almost surely tight and that (vy)n>1 is tight. It is clear that

R
RJr)\dVN()\) = m

Wy N
W — p,
" ( Win )
It holds that ||[Wy| < Vb ||[Wian| where Wiqy is defined by (3.1). As |[Wian| — (1 + /) al-
most surely (see [26]), we obtain that ﬁTrWﬁ NWy NWpnW5  is almost surely bounded for N large

enough. This implies that (Zx)n>1 is almost surely tight. As for sequence (vn)n>1, we have shown that
sup fR+ Adun(N) < 4o00. As uy = ﬁTrRNVT, the condition Ry > al for each N leads to

TeWy N Wy xWon Wiy < [W|*

where we recall that

Adun(N) > a Advy(N)
R+ R+

Therefore, it holds that supy [+ Advy(X) < 400, a condition which implies that (vy)ny>1 is tight. W

8 Detailed study of vy.

In this section, we study the properties of vy. (2.6) implies that ux and vy are absolutely continuous
one with respect each other. Hence, they share the same properties, and the same support denoted Sy in
the following. We thus study pnx and deduce the corresponding results related to vn. As in the context of
other models, px can be characterized by studying theStieltjes transform ¢y (z) near the real axis. In the
following, we denote by M the number of distinct eigenvalues (Xl, N)l=17...,ﬁ arranged in the decreasing

order, and by (my n),_; 37 their multiplicities. It of course holds that zlj‘il myn = M.

8.1 Properties of {(z) near the real axis.

In this paragraph, we establish that if 29 € RT*, then, lim, ,, .cc+t(2) exists and is finite. It will be
denoted by #(zg) in order to simplify the notations. Moreover, when ¢ <1, lim,_,o ,ec+ur~ [t(2)] = 400,
and lim, o ,ec+ur+ 2t(2) = 0. The results of [34] will imply that measure py is absolutely continuous
w.r.t. the Lebesgue measure, and that the corresponding density is equal to %Im(t(:n)) for each x € RT*.
When ¢ > 1, a Dirac mass appears at 0.

We first address the case where g # 0, and, in order to establish the existence of lim,_,, ,cc+ t(2),
we prove the following properties:

e If (2,),>1 is a sequence of CT converging towards xg, then [t(zy)|,~; is bounded
e If (214)n>1 and (225, )n>1 are two sequences of C* converging towards z and verifying limg; 2o = ti

for ¢ = 1,2, then t; = ts.
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Lemma 8 If zo € R™, and if (zn)n>1 1s a sequence of C* such that lim, ., 2, = To, then the set
[t(zn)],,>; is bounded.

Proof. We assume that |t(z,)| — +oo. Equation (7.1) can be written as

M

1 mp
Ho) = L Z _ (8.1)
M =1 —zn(1+ %)

As zg # 0, the condition [¢(z,)| — +oo implies that it exists [y for which

ct(zn)xlo

S gy ey

)—0

or equivalently

Znct(zn) — o) — Xlo

As [t(z,)| — +00, it holds that z,ct(z,) — Ay, a contradiction. W
Lemma 9 Consider (z1,)n>1 and (za,)n>1 two sequences of CT converging towards zo € R™ and
verifying lim,, sz, t(zin) =t; fori=1,2. Then, it holds that t; = ts.

Proof. The statement of the Lemma is obvious if zy does not belong to S. Therefore, we assume that
xo € S — {0}. We first observe that if lim,, 1 2, = 2o (2, € CT) and t(2,,) — tg, then

1-— Zo (Ct0)2 75 0 (8.2)
1+Ct°7xl7é0 =1 M (8.3)
o @2 70 =l .

Indeed, if (8.2) does not hold, Eq. (8.1) leads to ty = 0, a contradiction because 1— g (cty)? was assumed
equal to 0. Similarly, if (8.3) does not hold, the limit of #(z,) cannot be finite. Therefore, matrix Tj

defined by )
_ o )
he (e o] »

is well defined, and it holds that T'(z,) — Ty and that ¢ty = ﬁTrRTO. In particular, for i = 1,2,
T(2in) — T; where T; is defined by (8.4) when ty = t;, i = 1,2, and t; = %TrRTi. Using the equation
(7.1) for z = %, we obtain immediately that

( t(z1,0) — t(z2,n) ) _ < uo(21,n, 22,n) v0(21,m, 22,m) >

21 nt(21m) — 220t (22,0) 21022000(21.m, 22.n) 00 (21,0s 22,0)

. ( t(z10) — t(z20) > N < (210 = 22.0) 37 T (21,0) RT (22,n) > (8.5)

21,nt(21,n) - Z2,nt(22,n) 0
where ug(z1, 2z2) and vo(z1, 22) are defined by

cz1t(z1)czat(z2) ﬁTr(RT(zl)RT(zg))
(1= 2z1(ct(21))?) (1 = 22(ct(22))?)

ug(21,22) = ¢ (8.6)
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and

1
+Tr(RT(z1)RT (22))
M
vo(z1,22) = ¢ 8.7
o 2) = T @) (1 - (et (2)) 57
for z; € C*, i = 1,2. Taking the limit, we obtain that
( ty —to > _ < uop(zo,20)  vo(zo, o) > ( ty —t2 > (8.9)
xo(ty — ta) zgvo(wo, wo) uo(zo, o) xo(ty — ta) '
where wug(zg, z9) and vo(zg, zo) are defined by replacing z;, t(z;), T (z;) by xo, t;, T; in (8.6, 8.7) for i = 1, 2.

If the determinant (1 —ug (2o, z0))? — 2200 (20, 20)? # 0 of the above linear system is non zero, it of course

holds that ¢1 = to.

We now consider the case where (1 —ug(xg,0))? — 22vo(z0, 79)? = 0. We denote by u;(z) and v;(zo),
i = 1,2 the limits of u(z; ) and v(z; ), ¢ = 1,2 when n — 4o00. We recall that u(z) and v(z) are defined
by (7.13) and (7.14) respectively. It is clear that w;(xg) and v;(xg) coincide with (7.13) and (7.14) when
(2,t(z),T(z)) are replaced by (zo,t;,T;) respectively. (7.11) thus implies that

(1 — ug(w0))* — z3vi(20)* > 0 (8.9)

for ¢ = 1,2. Using the Schwartz inequality and (7.19) as in the uniqueness proof of the solutions of Eq.
(7.1) (see Proposition 5), it is easily seen that

(1 = wo(z0, 20))* — 23 (vo(0, 20))?| > (1 — v/u (o) v/ ua(x0))* — zgv1 (x0)v2(20)

> (1 — u(0)) (1 — up(x0)) — wgv1 (o) v2(0)

> (L~ ui(20))? — a3v1(w0)2\/ (1 — ua(0))? — a3vs(w0)2 2 0 (8.10)

Therefore, (1 — ug(zo,0))? — z3vo(z0,70)? = 0 implies that the Schwartz inequalities and the inequal-

ities (7.19) used to establish (8.10) are equalities. Hence, it holds that |ug(zg,z0)[* = u1(zo)ua(o),
or equivalently | Tr(RTIRT)| = (35 Tr(RT\ T} R))Y?(4 Tr(RT>T5 R))'/2. This implies that Ty = aTy
for some constant a € C. Moreover, as t; = ﬁTr(RTi) for ¢ = 1,2, it must hold that ¢; = at5. In
order to prove (8.10) we use (7.19) twice, for set {a = b = 1, ¢ = wui(xg), d = wuz(xp)} and set
{a = (1 —wi(w0))?, b = (1 — ua(wo))?, ¢ = x3v}, d = z2v3}. Since all these terms are positive real

numbers, Vab —vVed = vJa — /b — d if and only if ad = be. It gives us

ul({L'()) = ’LLQ(IIZ'O) (8.11)
(1— ul(xo))2x%v2(xo)2 =(1- uQ(xo))2x(2)v1(xo)2 (8.12)

Since zg # 0 and (1 —u1(70))? —x3v1(w0)? > 0, if ug(z9) = 1 it follows that vq(zg) = 0 which is impossible.
Hence, uy(zg) # 1 and we have vq(zg) = va(zg). From the definition of u; and v; one can notice that
ui(z0) = a3 |ti|?vi(wo). Which gives us immediately |t1|> = |t2|* and, as a consequence, |a| = 1. Using
once again the fact that vi(xg) = va(xg) and 11 = aT5, we obtain that

la* L Te(T3 RRT,) & Tr(RTLT5 R)

|1 — zoc2a?(t3)22 |1 — woc?t3|?

The numerators of both sides are equal and non zero, from what follows that the denominators are also
equal, i.e.

|1 — xoc2a2(t§)2] =11- xocztg\
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We remark that if w and z satisfy |1 — w| = |1 — z| and |w| = |z|, then, either w = z, either w = z. We
use this remark for w = zoc®t3 and z = zoc?a®(t5)% If w = z, it holds that a?(t})? = t3 = t7 = t3 and
since Imt; > 0 we conclude t; = t5. If w = 2, we have a?(t3)? = (t3)2. If to = 0 then it also holds that
t1 = 0. Otherwise, we have a = £1. If a = 1, the condition Imt; > 0, leads to the conclusion that ¢; and
t9 are real and coincide. We finally consider the case a = —1. We recall 71 = a1y = —T5. Therefore, it
holds that

:E(]t;
1—zoc?(t5)? 7

l’otz

0" p— T —
1 — zoc2(83)? woin

xolp —

which is impossible, since xg # 0. This completes the proof of Lemma (9). B

Lemmas 9 and 8, and their corresponding proofs imply the following result.

Proposition 7 For each x > 0, lim, ,, ,cc+ t(z) = t(z) exists. Moreover, 1 — z(ct(x))* # 0, and

matriz (I + % R) is invertible. Therefore, lim,_,, ,cc+ T'(2) = T'(x) where T'(x) represents matriz

-1
T(x) = <—x(I + % R)) . Moreover, t(x) is solution of the equation

t(x) = %Tr(RT(a;)) (8.13)

If u(z) and v(x) represent the terms defined by (7.13) and (7.14) for z = x, then it holds that
1 —u(z)>0 (8.14)

and
(1 —u(x))? —2%(v(x))? >0 (8.15)

for each x # 0. Moreover, the inequality (8.15) is strict if x € RT —S. If moreover Im(t(z)) > 0, then,
we have
1 —u(z) —zv(x) =0 (8.16)

It just remains to justify (8.14), (8.15), and (8.16). As function z — (z) is analytic on C — S, = — t(z)
is differentiable on R* — 8. As (t(z)) > 0 and (xt(z))" > 0 hold on R* — S, the arguments used in the
context of Remark 1 are also valid on Rt — &, thus justifying there (8.14) and the strict inequality in
(8.15). 1 —wu(x) > 0 and inequality (8.15) also hold on 8 — {0} by letting z — z, z € C* in Proposition
1. As v(z) > 0 for each x # 0, the strict inequality (8.14) is a consequence of (8.15).

In order to prove (8.16), we use the second component of (7.15), and remark that it implies that
Im(t(z)) = (u(z) + zv(z)) Im(t(z))
Therefore, Im(¢(z)) > 0 leads to (8.16). W

We also add the following useful result which shows that the real part of ¢(z) is negative for each
x> 0.

Proposition 8 For each x € R**, it holds that Re(t(x)) < 0.
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Proof. It is easily checked that

( R ) ) B ( e ) < Rt > N < —_R‘e;’?ggr(g;))&?):) > (8.17)

for each z € C — S. Moreover, as all the terms coming into play in (8.17) have a finite limit when z — z
when x # 0, (8.17) remains valid on R*. For z = z, the first component of (8.17) leads to

Re(t(z))(1 — u(x) + zv(zx)) = —:L'%TT(RT(JE)T(JE)*) (8.18)

Proposition 7 implies that 1 — u(z) > 0, when & € R*. Therefore, 1 — u(x) + zv(x) is strictly positive as
well, and it holds that

1 1

Re(t(z)) = —x T a(@) T 20() MTr(RT(m)T(m)*) (8.19)

Therefore, z > 0 implies that Re(t(z)) < 0 as expected. W

We now study the behaviour of ¢(z) when z — 0. We first establish that lim,_,q ,ec+yur+ [t(2)| = +o0,
and then that lim, , .cc+yur+ 2t(2) = 0 if ¢ < 1 and is strictly negative if ¢ > 1. We recall that ¢(x) for
x > 0 is defined by t(x) = lim,_,, ,ec+ t(2). For this, we establish various lemmas.

Lemma 10 It holds that lim,_,q ,ec+ur- [t(2)| = +00.
We assume that the statement of the Lemma does not hold, i.e. that it exists a sequence of elements of

Ct UR* (25)n>1 such that lim, o 2, = 0 and #(2,,) = to. (7.1) and (8.13) imply that

o 1 M mlxl
ant(n) = =77 > " (8.20)
=1 1+ = GG

1+ % clearly converges towards 1 -+ ctg);. As the left hand side of (8.20) converges towards 0,
for each [, 1 + ctg\; cannot vanish. Therefore, matrix I 4 ctoR is invertible, and taking the limit of (8.20)
gives

%TrR(I +ctoR)P =0

As ImﬁTrR(I + ctoR)™! cannot be zero if g is not real, ty must be real. We now use the observation
that |zp|v(z,) < 1 for each n (see Lemma 7 if 2, € C* UR™, and Remark 1 if 2, € R™*). As
11— zn(ct(2))?|*> = 1, |zn|v(2,) bounded implies that |z, |37 Tr(RT(2,)RT(2,)*) is bounded. It is easy
to check that
1 1
Jonl g TH(RT () RT (20)°) = 1o g (R + ctoR) T R(I + ctoR)™") + O(1)

Therefore, the boundedness of |z, |+ Tr(RT (z,) RT (z,)*) implies that & Tr(R(I+ctoR) ' R(I+ctoR) ™) =
0 which is of course impossible. l

Lemma 11 Consider a sequence (z,)n>1 of elements of C*T UR* such that lim,_ o 2z, = 0. Then, the
set (znt(zn))n>1 1s bounded.

39



Proof. We assume that (z,t(2,))n>1 is not bounded. Therefore, one can extract from (z,),>1 a subse-
quence, still denoted (zy,)n>1, such that lim,_, 4 [2,t(2,)| = +00. Then,
ct(zn) 1

= — 0
1 — zp(ct(zn))? m — Znt(zn)

Therefore,

1 ct(zn) ! 1
—TrR|{I+ ———F=R ——TrR
M < Tz zn(ct(zn))? > oM

This is a contradiction because the above term coincides with z,t(z,) which cannot converge towards a
finite limit. W

Lemma 12 Assume that (z1.5)n>1 and (22, )n>1 are sequences of elements of CTUR* such that limy,_, o0 2in =
0 and limy,—s o0 2int(2in) = 0; fori=1,2. Then, 6; = 2.

We first remark that |¢(z; )| — 400 for i = 1,2. Equation (7.1) implies immediately that

1\ 1 1 !
t(z) = t(z) — —T —— —zct 21
zt(z) <zc (2) ct(z)) i rR <R+ ci(?) zc (z)> (8.21)
As m — 0, zinct(zin) — ﬁ — ¢0; for i = 1,2. If §; # 0, Eq. (8.21) thus implies that
21

c MTrR (R + Ct(z 3 zi,nct(zi,n)) converges towards 1, which implies that matrix R—cd; [ is invertible.

Therefore, either (5 = 0, either ¢; is a solution of the equation

1
I =co-TrR(R ~ co; 1)t (8.22)
or equivalently, d; verifies

i = cb; MTrR(R — e, I)7t (8.23)

We note that the solutions of this equation are real, so that §; € R for i = 1,2. Eq. (8.5) leads to
21t (21n) — Z2mt(22,n) = 210 22000(21m, 22.0) (E(21,0) — (22,0))
+ u0(21,m; 22,n) (21,0t (21,0) — 22,0t (22,0))

It is straightforward to check that 21,22 ,00(21n, 22.0)(t(21,0n) — t(22.,,)) — 0 and that ug(z1,n,22,,) —
up(0,0) = ez TrR(R — ¢611) "' R(R — ¢651) . Therefore, we obtain that

51 — 52 = UO(O, 0)(51 — (52) (8.24)

We recall that |ug(21n,22,0)] < \/u(21,0)v/u(z2,,) < 1. Moreover, we observe that u(z;,) — u;(0) =
ciz TrR(R — ¢6;1) ' R(R — ¢5;1)~" and that 0 < u;(0) < 1. The Schwartz inequality leads to

[uo(0,0)[ < /u1(0)y/u2(0) <1 (8.25)

If the Schwartz inequality (8.25) is strict, |up(0,0)] < 1, and §; = d2. We now assume that u(0,0) =

u1(0)\/uz(0) = 1. This implies that

R — 611 = k(R — coal)
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for some real constant s, or equivalently, \; — cd1 = r(N\; — cda) for each [ =1,... ,M. If R is not a
multiple of I, k must be equal to 1, since otherwise, we would have \; = \y for each [,I’. k = 1 implies
immediately that §; = d,. We finally consider the case where R = o?I. Then, (8.23) implies that §; is

. 2 X
solution of §; "= = §;, i.e. §; =0 or

1
6 = o’ (E — 1> (8.26)
We now check that §; = 0,5, = o2 (% — 1) or 6 = 0,0, = o2 (% — 1) is impossible. If this holds, u;(0)
and u3(0) cannot be both equal to 1, and |up(0,0)| < 1. Therefore, (8.24) leads to a contradiction, and
81 = 09 is equal either to 0, either to o2 (% — 1). |

Lemmas 11 and 12 imply the following corollary.

Corollary 4 If ¢ <1, it holds that
lim zt(z) =0 (8.27)
z2—0,z€CTUR*
and that

1({0}) =0 (8.28)

Proof. Lemmas 11 and 12 lead to the conclusion that lim,_,q ,ec+ug+ 2(2) = § where 0 is either equal to
0, either coincides with a solution of the equation (8.23). In order to precise this, we remark that ¢(z) > 0
if z < 0 implies that 6 < 0. Therefore, § coincides with a non positive solution of equation (8.23). If
¢ <1, it is clear that (8.23) has no strictly negative solutions. Therefore, (8.27) is established. (8.28) is
a direct consequence of the identity

p({0}) = lim - —zt(z)

z2—0,2€CTUR*

|
In order to address the case where ¢ > 1 and to precise the behaviour of Im(¢(z)) when z — 0,z €
CtUR* if ¢ < 1, we have to evaluate z(¢(z))? when z — 0. The following Lemma holds.

Lemma 13 o Ifc=1, it holds that lim,_,c+ g~ |2(t(2))?| = +o0.

o [fe< 1,
1
li t(2))? = — 2
R (R o
o If ¢ > 1, the assumption lim, , cc+up- 2t(2) = & = 0 implies that lim, ,c+ g+ 2(t(2))? = —ﬁ,

a contradiction because the above limitl is necessarily negative. Hence, & is non zero and coincides
with the strictly negative solution of Eq. (8.23), and u({0}) = —4.

Proof. (7.1) implies that

z z 2_—i I [ ¢ -
(t(2))? = MTR<t(Z) + 1_Z(ct(z))2}z> (8.30)

We assume in the course of this proof that § = 0 (if ¢ < 1, this property holds). We first establish the
first item of Lemma 13. We assume that ¢ = 1 and that there exists a sequence (z,),ec+ur+ such that
2z, — 0 and z,t(2,)% — a. As [t(z,)] — +00, (8.30) leads to a = a — 1, a contradiction. Therefore, if
2t(2)?| = +o00 as expected.

c=1, 1imz—>0,—>C+UR*
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We now establish the 2 last items. For this, we establish that if ¢ # 1, then, |2¢(z)?| is bounded when
z € CT UR* and z is close from 0. For this, we assume the existence of a sequence (2,),>1 of elements
of C* UR* such that z, — 0 and |2,t(2,)?| — +o00. Then, it holds that

cznt(zn)? !

As |zpt(2,)?] — +o0, % — —=. Condition z,t(z,) — 0 thus implies that ¢ =1, a contradiction.

Using again (8.30), we obtain 1mmed1ately that if z,(t(2,))? = «, then a = As |zt(z)?| remains

(e 1)
bounded when z € C* UR* is close from 0, this implies that lim, ¢ ,cc+yUr- ,(z(t(z))2 = c(ll—c) as ex-
pected. Taking z € R™* leads to the conclusion that the above limit is negative. When ¢ > 1, this is a
contradiction because — (1 5 18 positive. Therefore, if ¢ > 1, §, the limit of 2¢(z), cannot be equal to 0.
Hence, § coincides with the strictly negative solution of (8.23) and u({0}) = —¢ > 0. This completes the
proof of the Lemma. H

Putting all the pieces together, we obtain the following characterization of uy when ¢ < 1.

Theorem 1 The density fn(z) of un w.r.t. the Lebesque measure is a continuous function on RT™*, and
is given by fn(x) = %Im(tN(:p)) for each x > 0. If ey < 1, un is absolutely continuous, and if cy > 1,
then dun(xz) = fn(x)dr 4+ pn({0})dg. 0 € Sy, and the interior S3; of Sy is given by

Sy = {zr € R, Im(t(z)) > 0} (8.31)
If moreover cy < 1, it holds that
1 1
)~ — 8.32
i) = s (832
when x — 07, while if ey = 1,
1Vv3 /1, N\

Proof. t(z) is not analytic in a neighbourhood of 0; hence, 0 € S. As lim,_,, ,ec+ t(2) = t(v) exists
for x 75 0, Theorem 2.1 of [34] implies that if A € R™* is a Borel set of zero Lebesgue measure, then
= [, f(z)dx = 0. The continuity of f on R™* is a also a consequence of [34].

We now prove (8.32). For this, we remark that (8.29) implies that

x_}%r’ggox(t(:n)f T l-o (8:34)

As Im(t(z)) > 0 for each = # 0, (8.34) implies that #(z) ~ ———— when x — 0%, or equivalently that
1

Va/e(l-c
1m(t(z)) ~ L

ze(l—c)’

It remains to establish (8.33). For this, we first prove that

lim  2%(t(x))® = <%TrR;,1>_1 (8.35)

z—0,2>0
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For this, we write (8.13) as

“1
1 1
LR —at@)+ ———R| =1 (8.36)
M 1= saor

As ¢ = 1, at(x) — 0 and |z(t(x))?| — +oo when z — 0,7 > 0. The left hand side of (8.36) can be
expanded as

-1
1 ! :
7R (—xt(xﬂ + ZR> O

+ %Tr R at(x) + wt(x)er (x) +

w(eap
where €;(z) and e2(z) converge towards 0 when z — 0,2 > 0. Therefore, (8.36) implies that

1

1 1
MTr Rl zt(z) —

W = zt(x)ér(z) + Wé(x)

where €;(z) and éx(z) converge towards 0 when z — 0,2 > 0. This leads immediately to (8.35). As
function @ — 22(t(z))? is continuous on R**, it holds that

z—0,2>0

—1/3
lim 2%3t(z) = e¥7/3 LTI"R_l
M

where k is equal to 0,1 or 2. If k& = 0, the real part of ¢(z) must be positive if = is close enough from
0. Lemma 8 thus leads to a contradiction. If k = 2, Im(#(x)) < 0 for « small enough, a contradiction as
well. Hence, k is equal to 1. Therefore,

~1/3
lim  2*3Im(t(x)) = sin 27/3 (%TrR_l> (8.37)

rz—0,2>0

This completes the proof of (8.33). W

We now show that function z — t(x) and © — f(x) possess a power series expansion in a neighbour-
hood of each point of S3;. More precisely:

Proposition 9 If xg > 0 and Im(t(zg)) > 0, then, t and f can be expanded as

+00 +o00
ta) = anla —a0)", f(@) = 3 bl — a0)"
k=0 k=0

when |z — xg| is small enough.

As in [34] and [12], the proof is based on the holomorphic implicit function theorem (see [8]). We denote
t(zo) by to. Then, Eq. (8.13) at point xg can be written as h(xg,ty) = 0 where function h(z,t) is defined
by

ct

-1
h(Z,t) =1— %TI‘ <R <—Z([ + W R)) )
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As zp > 0 and Im(ty) > 0, function (z,t) — h(z,t) is holomorphic in a neighbourhood of (xg,ty). It is
easy to check that

oh
(E) =1—up(zg, o) — :Egvo(xo,xO) (8.38)
z0,to

where we recall that functions ug and vy are given by (8.6) and (8.7). Following the proof of Lemma 9,
we obtain immediately that 1 — ug(zo,20) — 23v0(70, 7o) = 0 implies that T'(xg) = aT(70)*, and that
to = at( for some a € C. The arguments of the above proof then lead to the conclusion that ¢ty = t§, a

contradiction because Im(t(xg)) > 0. Hence, (%)mo 1, # 0- The holomorphic implicit function theorem

thus implies that it exists a function z — £(2), holomorphic in a neighourhood N of x, verifying #(zq) = tg
and h(z,t(z)) = 0 for each z € N. Moreover, condition Im(ty) = Im(#(zg)) > 0 implies that Im(¢(z)) > 0
and Im(z2(z)) > 0 if |z — 20| < € for € small enough. Therefore, if z € C* and |z — x| < ¢, it must
hold that #(z) = t(z) (see Proposition 5). Hence, t(z) = lim,_,, ,cc+ t(z) must coincide with #(z) when if
|z — 20| < €. As #(z) is holomorphic in a neighbourhood of z¢, function  — t(x) can be expanded as

+00
) = 3 anle — a0)"
k=0

when |z — xo| < e. This immediately implies that f possesses a power series expansion in the interval
(LE() —€,Z0 + 6). |

We finally use the above results in order the study measure vy associated to the Stieltjes transform

tnw () = %TrTN(z) (8.39)

As vy and ppy are absolutely continuous one with respect each other, dvy(x) can also be written as
dvn(z) = gn(z)dz + vn({0})dg. Using the identity

C z 2
tu(2) = —% - % (8.40)

If >0, t,(x) =lim,_,, ,ec+ exists, and is given by the righthandside of (8.40) when z = 2. Hence, for
x>0, g(xr) = LIm(t,(z)), ie.

R

we obtain immediately that

1 cIm((t(x))?
sy = L (@)
7w |1 —z(ct(x))?|
If ¢ > 1, |2t(2)?] — +o0 if 2 — 0. (8.40) thus implies that vy ({0}) = lim,_.o —2t,(2) coincides with 1 — 1,
which, of course, is not surprising. We now evaluate the behaviour of ¢ when x — 0,z > 0 and ¢ < 1.

(8.41)

Proposition 10 If ¢ < 1, it holds that
1 1 1

1
~pg — ————— —Tr(R7') — 42
while if c =1, it holds that
1v3 (1 S0\
g(a:) =2—0 ; 7 <MTI'(R 1)> —x2/3 (843)

44



Proof. Using Eq. (8.30), we obtain after some algebra that

1 1 1 1
t(2))? ~, 0 —TrR™' ——
z(t(2))” + 1= =0 3] R Z0 =P 1()
As () ~4 50,050 W, we get that
1 1 1 1
I ?)~ —i —TrR™! —
m((t(x))") 1 i R e PR R

Therefore, (8.41) immediately leads to (8.42). (8.43) is an immediate consequence of (8.37). W

Proposition 10 means in practice that if cy < 1, a number of eigenvalues of matrix Wy, NW; N, NW;’ N
are close from 0. Moreover, the rate of convergence of gn towards +oo is higher if ¢y = 1, showing that
in this case, the proportion of eigenvalues close to 0 is even larger than if cy < 1.

We finally mention that ¢,(z) and g(x) possess a power expansion around eachpoint z¢ € S°. This
is an obvious consequence of Proposition 9 and of the above expressions of s, (x) and of g(z) in terms of

t(z).
8.2 Characterization of Sy.

We denote by wy(z) the function defined by

(1 — z(entn(2))?) = zentn(z) — 1
entn(z) NN entn(z)

wy(z) = — (8.44)
It is clear that w is analytic on C — S, that Im(w(z)) > 0 if z € C*, that w(z) = lim,_,, ,cc+ w(z) exists
for each z € R*, and that the limit still exists if x = 0. If we denote this limit by w(0), then, it holds that
w(0) =0 if ¢ <1 and that w(0) = ¢d if ¢ > 1, where we recall that 0 is defined as the solution of (8.22)-
Moreover, w(z) is real if and only if ¢(x) is real. Therefore, the interior S° of S is also given by

S° = {r ¢ R", Im(w(z)) > 0} (8.45)

Moreover, as t(x)" and (zt(x)) are strictly positive if x € R — S, the derivative w'(z) of w(z) w.r.t. z is
also strictly positive on R — S. t(z) can be expressed in terms of w(z) as

1 1 .
t(z) = Z w(z) MTrR (R—w(2)I) (8.46)
(8.44) implies that
1+ ct(z)w(z) — z(ct(2))*> =0 (8.47)
Plugging (8.46) into (8.47), we obtain immediately that wpy(z) verifies the equation
on(wn(2)) = 2 (8.48)
where ¢n(w) is defined by
1 1
o (w) = eyw? 7 TRy (R — wIl)™* <cN 7 TN (R = wl)™ — 1> (8.49)

Observe that (8.48) holds not only on C— S, but also for each z € S. Therefore, it holds that ¢p(w(z)) = =
for each = € R. For each z € R — &, it thus holds that ¢ (w(z))w' (z) = 1. Therefore, as w'(z) > 0 if
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reR—S, w(z) satisfies ¢ (w(x)) > 0 for each 2 € R — S. This implies that if z € R — S, then w(z) is a
real solution of the polynomial equation ¢(w) = = for which (b/(w) > 0. Moroever, Proposition 8 implies
that if z € RT™ — &, then, t(z) = Re(t(x)) is strictly negative. Eq. (8.46) for z = z thus leads to the
conclusion that if z > 0 does not belong to S, then w(z) also verifies w(z) L TrR (R — w(z)I)™' < 0. If
x < 0, then, t(z) is this time strictly positive and w(x) still verifies w(z) & TrR (R — w(z)I)~' < 0. This
discussion leads to the following Proposition.

Proposition 11 Ifz € R — S, then w(z) verifies the following properties:
/ 1
d(w(x)) =z, ¢ (w(z)) >0, w(w) MTI"R (R—w(z))"t <0 (8.50)

As shown below, if z € R — S, the properties (8.50) characterize w(z) among the set of all solutions of the
equation ¢(w) = x and allow to identify the support as the subset of RT for which the equation ¢(w) = =
has no real solution satisfying the conditions (8.50). These results follow directly from an elementary
study of function w — ¢(w).

We first consider the case ¢ < 1, and identify the values of x > 0 for which the equation ¢(w(z)) ==
has a real solution verifying (8.50), and those for which such a solution does not exist. It is easily seen
that if x > 0, all the real solutions of the equation ¢(w) = x are strictly positive. Therefore, the third
condition in (8.50) is equivalent to --TrR (R — w(z)I)™' < 0. We denote wy y < wan < ... < Wiz N
the (necessarily real) M roots of #;TrRy(Ry — wl)™! = % and by pny < pen < ... < pgrogy
the roots of ﬁTrRN(RN —wl)™ = 0. As ¢ < 1, it is easily seen that w; > 0, and that w; <
XM < < wo < Xﬁ—l < < pgpg < wpp < M. Tt is clear %TrR(R —wl)™! < 0 if and only if
w € (Agpp1) U. ..U (Ao, pigp—_q) U (A, +00).

For =z > 0, the equation ¢ ¢(w) = z is easily seen to be a polynomial equation of degrti 2M + 1.
Therefore, ¢(w) = x has 2M + 1 solutions. For each x > 0, this equation has at least 2M — 1 real
solutions that cannot coincide with w(z) if z € (§°)%

e M solutions belong to Jwi, g7l - - -, Jwsr, A1[. None of these solutions may correspond to w(z) if
z € (8°)° because 4, TrR(R — wl)~! > 0 at these points.

e On each interval |\7, pu1], ..., ] A2, pig7_4 [, the equation ¢(w) = x has a real solution at which ¢’ is
negative. Therefore, ¢(w) = x has M — 1 extra real solutions that are not equal to w(z) if x € (5§°)°.

As oy (w) — o0 if w — XLN,w > XLN and that ¢n(w) — +oo if w — 400, it exists at least a point
in ]Xl, N, +0o] at which QS/N vanishes. This point is moreover unique because otherwise, ¢ (w) = x would
have more than 2M + 1 solutions for certain values of . We denote by w4 n this point, and remark
that if z > 24 vy = ¢n(wi n), dn(w) = x has 2M + 1 real solutions: the 2M — 1 solutions that were
introduced below, and 2 extra solutions that belong to |A1,w, [ and Jw, , +oo[ respectively. Therefore,
w(x) is real, and it is easily seen that w(x) coincides with the solution that belongs to |wy,+oo[. This
implies that x4, +oo[C R —S.

If ¢ (w) does not vanish on A5z, 1 [U. .. UXe, p7_, [, for each = €]0, 2], ¢ is decreasing on these
intervals. Therefore, none of the real solutions of ¢(w) = x match with the properties of w(x) when
r € RT — 8. Therefore, w(z) must be a complex number: ¢(w) = z has thus 2M — 1 real solutions, and
a pair of complex conjugate roots: w(x) is the positive imaginary part solution. In this case, = € §°, and
the support S coincides with [0, z].
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We illustrate such a behaviour when M = 3. In the context of Fig. 1, the support is reduced to the
single interval [0, 2] because ¢ (w) # 0 for w € [Az, 1] U [Aa, o).

Tt

Figure 1: Typical representation of ¢ (w) as a function of w for M = 3. There is no local maximum on
[A3, 1] and on [Ag, o], so that S = [0, x4 ].

In order to precise the support when ¢ vanishes in ]X 371U .. UAg, ugz7_ [, we need to characterize

the correspondlng zeros. For this, we first justify that ¢ cannot have a multiplicity 2 zero. Assume for
example that ¢ has a multiplicity 2 zero in |A;; 3i+1-1> Hi[, and denote by w; this zero. Then, if 7, = ¢(w;),
the equation ¢(w) = x; has 2M — 1 simple real roots, and the multiplicity 3 root w;. Therefore, the
equation ¢(w) = x; has 2M + 2 roots (counting multiplicities), a contradiction. We now establish the
following useful result.

Proposition 12 The number of local extrema of ¢n in ]Xﬁ,m[u...u]%,uﬁ_l[ is an even number,
say 2q, with 0 < g < M — 1. If ¢ > 1, we denote the arguments of these emtrema by wf’N <wyy <
w;,N <...< w;r—l,N <wg y, then xf,N = ¢N(w1|—,N)7‘T2_,N = ¢n(wy y), - q LN = = on(w, Wy N )Ty N =
ox () verify

xIN<a:2_’N<x;N<...<a:;r_1N<a:_N (8.51)

Moreover, for each [, the interval ]Xﬁ_(l_l),m[ contains at most one interval [w DN p+1,N], and x;N

(resp. x,, n) 15 a local minimum (resp. local mazimum) of ¢ .

Proof. We establish that if wy, wy € {w], wy, ..., w;r_l, wy } such that wy > wy, the images 1 = ¢(w)
and z9 = ¢(wq) are also satisfy z7 > x5. The goal is to show that ratio (1 — x2) /(w1 — wy) is always

positive. For more convenience we put f, = G TrRy(Ry — wyl M)t ZM X for n=1,2. With
this and (8.49) we can rewrite

Ty = d(wy) = wifn(fn -1)= wipn(pn - 1), (8.52)
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where p, = 1 — f,. Let us notice that extremes w; and wy are by definition such that f; and fy are
negative. Using directly (8.52) for x; and z2 we can write

z1— 2 (wip] — wips) — (wipr — wipy)

wy — wa w1 — w2

2 2
wipy — Wapz  WiP1 — W32
w1 — W2 w1 — w2

= (w1p1 + wap2) (8.53)

With the definition of fi o the first term of (8.53) can be expended as

M _
w1p1 — Wap2 c Z Aima wo w1
M
1

wy — w3 Wy — w2 \\; —ws A\ — Wy

And similarly the second one as

2 2 Mo~ 2 2
wipy — wip2 < )\,ml ws wy
————=—= = (w1 + wa) E = — =

w1 — W2 w1 —

1
M M ~
A\ m; Aim;;
w1 + ’w2 - — + wiwo— —
( le: )\ — )()\i—wg) Zl: )\ —wl)()\i—wg)
5

Putting the last two equation in (8.53) we obtain
<2

M
1 — T2 C )\Zml
——— = (wi1p1 +wop2 — w1 —w2) | 1 — — = =
w1 — W2 ( ) M Zl: ()\, — wl)()\,- — ’wg)

Aim;

C
—wiwa s 21: O — ) (s — 1) = —(wi f1 +waf2)

c Nm; ¢ X Xom
x\1=77 < < — Wiwz— — R
M 21: (Ai —wi)(N; — w2) M 21: (Ai —w1) (A — w2)

Now we recall that — f,, is positive as well as w;, we > 0 from what we have —(w; f1 + waf2) > 0. That
allows us to use the inequality

1 U1 < L, 1 >
i —wi)ANi —w2) 2\ —wi)? (N — wy)?

and to write

T T c M X2m c M sz
1 — 42 Z 3 1Y 3 11lg
w] — wy ( 1fl 2f2) 2 1 (/\2 —w1)2 2 zl: ()\z _ZU2)2
M —
c Aim;
— W12 —— E -
M 1 (/\z—wl)(/\i_w2)
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It is easy to check that 7 >° o A m’ = f(w) +wf’(w). Using this we can rewrite last inequality as

r1— 1
ﬁ > —5(wfi+wafo) (2= fr —wifi = fo = wafs)
c M Xm
s £ ST Aimi (8.54)
! 2le:()\,-—w1)()\i—w2)

Taking the derivatives of the expression (8.52), we obtain that ¢/ (wy,) = 2wy, f2 — 2wy, fr +2w2 fr f, — w2 f!.

By definition, w 2 are extremes of function ¢(w), i.e. ¢'(wy 2) = 0. This gives immediately f,+wy,f,—1 =

w”f . After putting this into (8.54) and regrouping terms we obtain

xr1 — T2 l wlf{ w2fé . Xz Ai i

pr——— 2 J(wify +w2f2)< n g ) Z i —w1) (O — wy)
L o / M Nim

= LA ) + qwrw (flj? 1 j?) g 2 ”; 7

Finally, we denote by I, I, I3 the three parts of r.h.s and show that I; + %13 and Io+ %13 can be presented
as the sum of positive terms. Using again the definition of fi > we expend I; + %Ig as

\im;
—w1)(N; — wa)

M
w? f] 4 w3 fy — 2wiws Z o
1

M
w? w3 B 2w we
Z ( (i —wl) * (A — ws)2 (Xi—wl)(xi_um))

2
C ~ w1 w2
=——) Aim; | = - =
4MZ " </\-—w1 )\i_w2>

)

Similarly, I + %Ig can be written as

) J1 c M Aim;
21: (i = wi) (N — wa)

— s S N f2/ fi filfa 2
= w2 N <<A—w1> T = wa)? (Xi—wna-—w))

oy Z)\ (\/f2/f1 \/fl/f2>2
4M

)\—wl )\,-—wg

This shows that 21—z > 0, and that (8.51) holds. It remains to justify that each interval (]Xﬁ—(l—l)’ )=y 771
contains at most one interval [w W, N, W,y ) Assume that the interval [Ag; (I=1)> ,ul[ contains 2 inter-
vals [w;—l,N’wpl-i-l,N] and [ oo N> Why 1 ) With p1 < po. Then, it also holds that [w ot 1N Wp o n] C
RSy (1-1)» - a:;l n is necessarily a local minimum because a:;l N < @, 1y While z,  \ must be a

local maximum. The same property holds for xp N and x_ However, this contradicts the property

p1+2,N*
T, N < xpl-l-l,N' This completes the proof of Proposition 12. W

Proposition 12 allows to identify the support Sy.
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Corollary 5 When cy < 1, the support Sy is given by
Sy = [O,xIN] U [$2_7N,:E;:N] U...[z, N T4.N] (8.55)

Proof. If x belongs to the interior of the righthandside of (8.55), ¢(w) = z has only 2M — 1 real solutions.
This implies that the 2 remaining roots are complex valued, i.e. that x € §°. This leads to the conclusion
that

]O,xIN[U]xiN,x;N[U ey v N[C S°
and that
[O,xIN] U [ZE2_7N,:E;:N] U...lz, yyz4n] CS
Conversely, if z € RT — <[0, i N U [z v g N U [, 3:+7N]>, the equation ¢(w) = x has 2M + 1 real

solutions, which implies that w(z) is real. Therefore,

R* — ([o,xlfN] U [zy ot gl U [x;N,m,N]) CRY-S
or equivalently,
S 0,2y U [z, 23 N U [, 5, 240]

This completes the proof of Corollary (5). B

We illustrate the above behaviour when M = 3. In the context of Fig. 2, ¢ vanishes on [A3, 1] and
not on [Ag, f12]. The support thus coincides with S = [0,z ] U [z5, z4].

T+

L1+

Ty,

Figure 2: Typical representation of ¢ (w) as a function of w for M = 3. There are 2 local extrema on
A3, 1] and no local maximum on [Ag, 2], so that & = [0, 27 ] U [z}, z4].
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When matrix R is reduced to R = 021, i.e. M =1 and \; = o2, the support of course coincides with
S =10,z4], and z is given by

2

1 1++vV1+8c

_ 4

$+—ac<1+1+m> (c—l— 5 > (8.56)
2

Moroever, w, is equal to

wy =0 (8.57)

9 (1 1+\/1+80>
_I_ R S—
2
(8.56) and (8.57) are in accordance with the results of [22].

We now briefly address the case ¢y > 1. The behaviour of ¢ is essentially the same as if ey < 1,

except that the first root w; n of the equation ﬁTrRN(RN —wl )_1 = % is now strictly negative. As

¢~ (0) = 0, this implies that it exists w; y < wy,— < 0 for which (blN(wM_) = 0. Moreover, this point
is unique, otherwise, the equation ¢n(w) =  would have more than 2M + 1 roots for certain values of
x>0 z_ ny = ¢n(w_ ) > 0 is thus a local maximum of ¢ whose argument is strictly negative. We
also notice that ¢n(w) > 0if 0 < w < Xﬁ. Apart these differences, the behaviour of ¢y for w > XM
remains the same as if ¢y < 1. In particular, Proposition 12 still holds true. However, we remark that
if 0 < @ < x_ y, the equation ¢y (w) = x has still 2M — 1 real solutions that are strictly positive, and
2 extra real roots, the smallest one being less than w_ x and the other one being negative and largest
that w_ n. This implies that wy(x) is real. We also notice that wy () coincides with the smallest extra
negative root because it satisfies conditions (8.50). Hence, the interval ]0,z_ x| is included into RT — Sy.
If ¢ does not vanish on [Ag7, 1 [U. .. UXg, sz, for @ €lz_ n, 24 n[, the equation ¢ (w) = = has only
2M — 1 real solutions that do not satisfy conditions (8.50) and 2 extra complex conjugates solutions.
Therefore, |z_ y,24+ N[C S¥ and [z_ y,z4 8] C Sy. Conversely, 0,z_ n[U]z+ n,+oo[C RT — Sy,
which implies that Sy C {0} U [z n, 24 n]|. As it was established above that {0} C Sy, we deduce
that Sy = {0} U [z_ n, 24 n] if ¢y does not vanish on |Ag7, (U .. UXe, pp_[. If ¢y vanishes on
]XH, pi[U. .. UJAg, pa7_q ), ie. if ¢ > 1 (we recall that ¢ is defined in Proposition 12), the support is given
by

Sy ={0}uU [:E_,N,:EIN] U [:E2_7N,:E;:N] U...[z, n T+.nN] (8.58)

To justify this, we just need to establish that z_ y < azf ~» and to use the same arguments as in the
proof of Corollary 5. To justify z_ n < x;FN, we put w; = w_ y,wy = wa, and follow step by step
the arguments used to evaluate ¢(wy) — gb({ul) > 0. We notice that in contrast with the context of the
proof of Corollary 5, w; < 0 and f; > 0. However, fijw; is still negative, so that —(w; f1 + waf2) is still
positive. This allows to conclude that all the inequalities used in the course of the proof of Corollary 5
remain valid, except the evaluation of the term Iy + I3/2 that needs the following simple modification:
we express Io + I3/2 as

c —fo/fi —f1/f 2
_wl’wgm Z)\zmz X <()\Z — w1)2 + ()\7, _ ,w2)2 + ()\Z — 'wl)()\z — w2)>

As —fo/f1 and — f1/ fo are positive, it holds that

2
o=y S (S22

Therefore, Iy + I3/2 > 0, and ¢(wz) — ¢(w1) > 0 holds.
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In order to unify the cases ¢y < 1 and cy > 1, we define z_ y for cy <1 by z_ y = 0, and summarize
the above discussion by the following result.

Theorem 2 The support Sy is given by

Sy ={0}y>1 U [x_JV,xIN] U [miN,x;N] U...[2, N T4.N] (8.59)

We now establish that sequences (w4 n)n>1 and (24 n)n>1 are bounded. In other words, for each
N, the support Sy is included into a compact interval that does not depend on N.

Lemma 14

sup w4 N < 400, sup r4 N < +00 (8.60)
N>1 N>1

In order to prove this lemma, we use that w4 y > A y and that gblN(uq_,N) = 0. It is easy to check that
/ 1 1
oy (w) =2 w—TrR(wl — R)™" — (cyw)*—TrR(wl — R)™>
M M
— 2ckw iTrR(wI ~-R)™! 2 — 2(ch)2iTrR(wI — R)_2LTrR(wI ~Rr)7!
NTAM M M

For w > b > Ay, it is clear that |(wl — R)™!|| < —1;. Writing that wi;TrR(wl — R)~! = & TrR +
LTrR?(wl — R)~! and w%TrR(w[ ~R)2= ﬁT R+w (FTrR(wl — R)™2) — L TrR*(wl — R) ™!
obtain immediately that ¢ (w) can be written as

/ 1
=cy —Tr
o (w) CNM R+ on(w)
where dx(w) verifies |dy(w)] < §(w) and w — 6(w) is a rational function of w that does not depend
on N and which converges towards 0 when w — +o0o. Therefore, for each n > 0, it exists w; > b
such that QS/N( ) > % MTrR n for each w > wy. As ¢y — ¢, and that + 7 'R > a, we obtain that

, 2

Oy (w) > %*a for w > wy. As ¢N(w+,N) = 0, we deduce from this that wy xy < wi. As w; does not
depend on N, this establishes that supy~, w4 n < +00. To prove that x y is bounded, we observe that
4N =¢Nn(wy N) < on(wr). As wy > b, it is easily seen that

2

2 b b
o (w1) < 2eywi <(w1 —b)? " (w1 — b))

Therefore, sequences (¢n(w1))n>1 and (24 n)n>1 are bounded. This completes the proof of Lemma 14. W

We finally provide a sufficient condition under which the support is reduced to Sy = [0, 24 n]if ey < 1
and to Sy = {0} U [z_ v, x4 n] if ey > 1. More precisely, the following result holds.

Proposition 13 Assume that it exist k > 0 such that for each M large enough, the following condition
holds:

M

for each pair (k,1), 1 < k <1 < M. Then, for each M large enough, Sy = [0,z4 n] if cy < 1 and to
Sy = {O} U [x_,N,x+7N] ifCN > 1.

N 1/2
Ak v — AN| <k <u> (8.61)
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Proof. We assume that (8.61) holds, and that S does not coincide with [0, z1] or S = {0}U[z_,z4], i.e
qﬁ/ (w) vanishes at a point wg such that A\ < wp < Apr and ﬁTrR(R —wol)~! < 0. After some algebra,
we obtain that wg satisfies:

—LTrR(R — wol)~?
1—2cLTrR(R — wol)~?

%Tr (R(R —wol)™1)* =

As 4 TrR(R — wol)~! < 0, this implies that

1 2 1
—T n1H =— § ——TrR(R — wol)™t
i r (R(R wo </\k — ZU(]) < i R(R wo )
M
M~ |/\k = w0|
2 2
. . M A . M A
Jensen’s inequality leads to < Zk 1 )\k wol < % Y ket < v _’“w()) . Therefore, we obtain that % Y ket I/\Tkwo\
1, and that
| M
M Z ()\k — w0> (8‘62)

We assume that \j, < wo < Aj,+1. Then, hypothe51s (2.6) and condition (8.61) imply that

2
)\k CL
> - @@ @ @ @
<)\k—w0> H, (‘k—jo‘-ﬁ-l)

Hence, it must hold that

%ol &
™=
=

|
oAl

+

—_

—_

)=
for each M large enough, a contradiction because Zk:l m is easily seen to be an unbounded term.
|

9 No eigenvalues outside the support.

In this paragraph, we establish the following result:
Theorem 3 Assume that there exists € > 0, k1 € R, ko € RU{+00} and an integer Ny such that
(/11—6, /ig—i—e)ﬂSN:@ VN > Np. (91)

Then with probability one, no eigenvalues of Wy NW NWp, NWfN appears in K1, k2| for all N large
enough.

We first remark that it is sufficient to consider the case where ko < 4o00. To justify this claim, we
recall that Uy>1Sy is a compact subset (see Lemma 14), and notice that ||y, NW, W, NWfN” <
[Wx|[* where matrix Wy is defined by (2.4). Moreover, (3.1) implies that almost surely, for N large
enough, |[Wx|? < b(1 + 6+ \/cx)* where § > 0. Therefore, almost surely, the largest eigenvalue of
Wy, NW; NWhp, NW}: y is for each N large enough upperbounded by the nice constant b2 (1+6+ \/5)4.
This justifies that it is sufficient to assume that ko < +00 in the following.

In order to establish Theorem 3, we use the Haagerup-Thornbjornsen approach ([15], see also [6]).
The crucial step of the proof is the following Proposition.
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Proposition 14 Vz € CT, we have for N large enough,

E {ﬁTrQN(z)} = %TrTN(z) + %TN(Z) (9.2)

where vy is holomorphic in CT and satisfies

(@)1 < AP () (9.3

mz

for each z € C*, where Py and P, are nice polynomials.

Proof. To prove (9.2) we write

E {LTrQN(z)} — L DTy (2) = T [E{QN(2)} — I ® S ()]

ML M ML
1
+ MTr [Sn(z) — Tn(2)]
As (6.5) holds, it is sufficient to establish that
1 1 .
MTr[SN(z) —Tn(2)]| < mPl(|z|)P2(Im 2) (9.4)

for some nice polynomial P; and P,. In the following, we denote by sy (z) the function defined by
1
sy(z) = MTrRNSN(z) (9.5)

It is clear that sy € S(RT). Moreover, if uuy s represents the associated positive measure, then we have

1 1 1
pns(RT) = 17 RN, . Ny s(\) = en 77 T RN MHR%V (9.6)

(9.6) can be proved using the arguments of the proof of Proposition 5.
As 5 Tr[Sn(2) — T (2)] is given by (7.23) for F = I, (9.4) appears equivalent to the property

SN S (E) = T ()] = s (2) = a2 < gz Pr(lDPa(in ) (97)

In order to prove (9.7), we define the following functions that appear formally similar to functions u(z)
and v(z) defined by (7.13) and (7.14):

_ eza(z) 2 & Tr(RS(2)S*(2)R)

tel) = T ca(a)P )
o (o) — I TE(RS(2)S" () R)
" = ()P )
w (s _c|cz|2t(z)a(z)ﬁTr(RS(z)T(z)R)
v = T cale) D = (=) (910)
1
27 Tr(RS(2)T'(2)R) 0.11)

'Ut,a(z) = C(l _ 2(0&(2))2)(1 — Z(Ct(z))z)
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Using equation ¢(z) = - TrRT(z) and the definition of s(z) and S(z), we obtain easily that

(s(z) —t(2) | _ o () =1(2)) 1(2)
(i) = (G0 10 + (50) 912
holds, where
€1(2) = (a(z) — s(2))(zvt,a(2) + ut,a(2)) (9.13)
€2(2) = z(a(z) — 5(2)) (2010 (2) + ura(2)) (9.14)
Dia(z) = (ngjtaia) Z’;Z(é%) (9.15)

This can also be written as

(s(z) —t(2)) > <61(2)>
I-D;.(2 9.16
1o (50 740) = (60 10
(6.4) leads to a(z) — s(z) = O.(N~2). In order to verify that (e;(2))i=12 are O,(N~2) as well, we have
to control u; o and v . As t(2),a(z),]|T(2)| and [|S(2)| are O,(1) terms, it is sufficient to evaluate the
denominator of the right handside of (9.10). As the mass and the first moment of y and 7 (the measure as-

sociated to a(z)) both verify the conditions of Lemma 5, this Lemma implies that (1—z(ct(2))?)~ = O,(1)
and (1 — z(ca(2))?)~! = O,(1). Therefore, we have checked that (€;(2))i=12 are O,(N~2) terms. B

In order to evaluate s(z) — t(z), it is of course necessary to show that matrix I — Dy 4(%) is invertible
on C7, and to control the action of its inverse on the vector (e1(z),€1(2))T. We define matrix D,, by

D,(z) = ( Sa(z) ”a(z)> (9.17)

2%04(2)  ua(z)
and establish the following result.

Lemma 15 For each z € CT, it exist nice constants k and 3 such that

ke (Imz)®
det(I — D — 9.18
U =DPE) = (e 1 ey 1)
Moreover, it exist 2 nice polynomials Py and Py for which
1 —uq(2) >0 (9.19)
and g
k (Imz)
det(I — D e 9.20
U= Dale) = ap ey 20

for each z € By, where By is defined as

1 1
By {Z eC s Npl(‘Z’)P2 <I Z) < 1} (9.21)
Finally, for each z € By, it holds that

k (Imz)®

det(I — Dyo(2)) > [(CEENERE

(9.22)
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Proof. To evaluate det( — D(z)), we use the calculations of the proof of Lemma 7. In particular, we

have
B Imt(z) \ LTeRT (2)T*(z)
(I —D(z)) (Imzt(z)) = Imz < 0 (9.23)
This implies that
Imz 1 Imzt(z) Imz 1
1-— = ——  —TrRT(2)T" > - —TrRT(2)T* 9.24
u() Imt(z) M (2)T7(z) + Imt(z) v(z) 2 Imt(z) M ()T (2) (9:24)
By applying Cramer’s rule to (9.23), we obtain that
Gt - D) = T L pror i —ue) s (S Lnrrore) . ©.2)
CImt(z) M ~ \Umt(z) M '
I
It is clear that Imt(z) < [t(2)] < TR (Imz)™' < b(Imz)~'. Therefore, it holds that Im]jfl(Z) >
F (Imt(z))?. We now evaluate +TrRT(2)T*(z). For this, we remark that
N = — > _— .
MTrRT(z)T (2) MTrRT(z)T (2)RR™ > bMTr(RT(z)T (2)R) (9.26)

Jensen’s inequality implies that 4 Tr(RT(z)T*(2)R) > ‘%TrRT(zﬂ2 = [t(2)]? > (Im#(2))?. Therefore,
the application of Lemma 5 to 5(z) = t(z) implies that

% (Imz)®

Imz 1 N 2
<Imt<z> g RTRT (2)> = R TP

for some nice constants x and 3. (9.18) thus follows from (9.25).

We now establish (9.19) and (9.20), and denote by €(z) the function €(z) = a(z) — s(z). Using the
equation s(z) = -TrRS(z), and calculating Im s(z) and Im 2s(z), we obtain immediately that

1
_ Ima(z) | _ —TrRS(2)S*(2) Ime(z)
(I-D.(2)) <Imza(z)> = Imz (M . + Tmze(2) ) (9.27)
The first component of (9.27) leads to
Imz Ime Imza Imz Ime
— i * > = * .
1=t = Ima MT rRSST Ima * Tme © = Tma MT rRSST Ima (9:28)

1
Using the same arguments as above, we obtain that MTrRSS* > 7]s(2)]? > ¢ (Ims(z))%. As (9.6) holds,
we can apply Lemma 5 to §(z) = s(z) and obtain as above that

Imz iTrRS( 15%(2) > % (Imz)*
Ims(z) M (1817 + |2[?)
I
for some nice constants 8 and k. We remark that % > — h'ﬁ‘a Therefore, by Lemma 5 applied to 3(z) =
I
a(z), it holds that Iﬂ > —kile ]51 2 for some nice constants k1 and B1. As |e(2)] < Nin(]z\)Qg( -)
mao
for some nice polynomials )1 and Qg,we obtain that
Imz Ime _ Imz 1 e | 1 & (Imz)*
1—uy > — - L g dme S me 1 pgge > = 2
YOS Tha M RSS™+ Ima — Ima M RSs ~ Im 2 (1812 + 12[?)? (9:29)
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if z belongs to the set By y defined by

% (Imz)* 1 1 BE+ |z % (Imz)*
T+ T ~ Wb S > 5

The set By v is clearly defined in the same way than By, but from 2 other nice polynomials P; 1 and P, 1.
Using the Cramer rule, we obtain that det(I — D,) can be written as

Imz Tme Imze
I1-D,) = [ - —TrRSS* + —— | (1 — ua) + ——vq .
det( ) = <Ima 1% rRSS —I—I a> (1 —uq) + T (9.30)
Plugging (9.29) in the last equation, we get that the inequality
1w (o)t el
k (Imz z| e
det(I—D,) > | = - o 31
=D 2 (2 (8P + !z\2)2> Tna 931

holds for each z € By n. As vy, = O,(1), we obtain that

4\ 2 4\ 2
k (Imz) |zl el o> 1k (Imz)
(181* + |=12) Ima “ = \ 4 (|82 + |2]?)2
for each z € By, where By is defined as By from 2 nice polynomials P2 and Po. We put

Pi(|z]) = Pii(|z]) + Pi2(|z]) and Py(1/Imz) = Py1(1/Imz) + P 2(1/Imz), and consider the set By
defined by (9.21). It is clear that By C Bi,n N B2y, and that (9.19) and (9.20) hold if z € By.

It remains to establish (9.22). For this, we remark that the inequalities

| det(I = Dya(2))] = [1 = ua(2)]? = [z Josa(2)? > (1 = [uga(2)])?
— [zlva(z) - |z[ve(2) = (1 - (Z)ua(z))2 = [2lva(z2) - |2]v(z) = (1 —u(2))(1 — ua(2))
= |zlva(2) - [zv(z) = V(1 = u(2))? = [2[20(2)) (1 = ua(2))? = |2[2va(2))
= /det(I — D(z)) det(I — Do(2))

hold for each z € By. Therefore, (9.22) follows from (9.18) and (9.20). This completes the proof of
Lemma 15. B

Solving (9.16), we obtain immediately that it exists 2 nice polynomials @)1 and Q2 such that,

s (2) — tn()] < T Qi) )

Imz

holds for each z € By. If z € Bf;, we use the argument in [15]. More precisely, if z € BY;, the inequality
1 < 1= Pi(|2])P2(1/Imz) holds. As |sy(z) — tn(2)] < 2 & TrRy = on CT, we deduce that

Pg(l/Imz)

|sn(2) = tn(2)] < 20 Pi(]2))

for each z € Bf,. This, in turn, leads to the conclusion that sy(z) — tn(z) = (’)Z(ﬁ) for each 2z € C*.
This establishes (9.7) and & Tr(Tn(z) — Sn(2)) = Oz(ﬁlg) as expected. This completes the proof of
Proposition 14. &

We now follow [7] and [15] and use the following Lemma
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Lemma 16 Let ¢ be a compactly supported real valued smooth function defined on RY, i.e. ¢ €
CE(RT,RT). Then,

1
B{ gz mevwswnn |- [ () = 0 (%) 9.32)
Proof. Due to Proposition 3 we can write
E {mTrqS(Wpr Wpr)} == l;ﬁ} Im { - o(x)E {mTrQ(az + zy)} daz} (9.33)
as well as
1.,
5. d(N)dun(A) = = l;ﬂ} Im{ - o(x)E {mTrT(az + zy)} daz} (9.34)

Using Proposition 14, we obtain
1 * *
E {mTr(b(Wpr Wpr)} — /SN d(N)dun (M)

11
= - lylilol Im { - o(x)rn(z + zy)dx} (9.35)

Since the function ry(z) = O,(1), we can use the result which was proved in [6, Section 3.3] and obtain

K, (9.36)

lim sup ¢(x)ry(xz +iy)dz| <

yd0

R+

for some nice constant . This and (9.35) complete the proof. B
In order to establish Theorem 3, we introduce a function ¢ € C2° such that 0 < ¢(\) <1 and

1, for A
o) = b or \ € [k1, ks,
0, for A € R— (k1 — €,k + €)

Since for N large enough (k1 — €, kg +€) NSy = & then fSN d(N)dun (M) = 0 and according to Lemma 16
* * 1
Now we show that
1 N N 1

For this we use again the Poincare-Nash inequality

. . aTr¢(WfW*W W) S
Var{Tr¢(W,W;W,W})} < ZE{ ( P vt E{W“ LW,
7417.71
OTeep (W Wi W, IV5) OTre( WW*) o [T (W)
X f } ZE { E{W;, J1Wi272j2} ma
8W22 JJ2 11,]1 12,52
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We only evaluate the first term of the r.h.s. of the inequality, denoted by v, because the second is similar.
For this we write first

OTry(W W2 W, W¥) L OWWEW, W
Lo P g wywpw ) = L
8Wi17j1 8Wi17j1

t1J1°

L+1<i <2L, (¢/(WfW;WPW}k)W;WfWP)Zf—L)jl

{1 < iy < L, (W Wi/ (WyWyW,W W)
Plugging this into (3.2) we obtain

L
1 * * * *m
V= Z Z (NE{ (WPWf (b,(Wpr WPWf)Wf)iljll Rm1m25i1+j17i2+j2

t192=1j1,52,m1,mMm2

m 1 * * * *m
< (W Wi (WWsWoWiWs), b+ B (6 W ww,wiwwyw,)

12,72 111

X Bonyms iyt ino (6 (W Wy Wy W i)W WWy) 7 })

12,72

Following the proof of Lemma 1, we obtain
* * C * * * * *
Var{Tro(W,WyW,Wj)} < SE{TeW;¢' (W Wy W, W W W W, W
X o (W W Wy W W+ E{TW W W, W W, Wi (6 (W, W W, Wi)%) (9.37)
To evaluate the first term (t1) of the r.h.s of (9.37) we denote n()\) = (¢'(\))*\ and write
L * * * * * * *
NE {TeW ;o' (W Wy W, W)W Wy W, W i (W W W, W5 )Wy }
L * *
< S EAIWAPTr (W W W, W)}
We recall that (3.1) implies that [|[W||? < b||Wal|?. Therefore, it holds that
R * *
Y1 < NE{”Wiid”21||W“-d||§(1+\/a)2+6Tr(77(Wpr WpW§))}
g * *
+ NE{||Wiid”21||Wiid||>(1+\/a)2+6Tr(77(Wpr W,W5))}

I{ * *
< EATe (W Wy W W)} + KEY2{[Wiial* Ly (1 yeryz+6 1
1 i e )
< B2 { <NTr(17(Wpr W,,Wf))> }

Lemma 16 implies that %E{Tr(n(WfW;WpW;))} = O(N~2). Throughout the proof of Lemma 1, we get
that EHWiidH41||W“-d||>(1+\/a)2+6 = O(N~F) for all k. Since function ¢’ € C2°, there exists a nice constant
k such that |¢/(N\)| < k for all A and ¢'(A\) = 0 for all A > b+ 2e. We deduce from this it exists a nice
constant  such that ||n(WynWy yWy nNW) )|l < & for each N. From what about we conclude that
P = O(N_Z).

As for the second term (1)2) of the r.h.s of (9.37), we write

U = CE{TWW,W W, WF (¢ (W Wy W, W)* Wy |

1 * * 2 * *
< kE {HWpH?NTr (&' (WWyW,W5))" WiW, prf}
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It is easy to see that v can be evaluated as 1)1, leading to the conclusion that vy = O(N~2). Therefore,
we have checked that

1
Var{Trg(W;W;W,W;)} = O (ﬁ) .

Now we can complete the proof of Theorem 3 as in [7]. For this we apply the classical Markov
inequality and combine what above

1 * * 1 8/3 1 * * ?

1 1
_ n78/3 * * «
— N8/ (Var {mTrgb(Wpr Wpr)} + <E {—TMS(Wpr Wpr )

ML
= ().

Applying Borel-Cantelli lemma, for N large enough, we have with probability one

1

—TrqS(WfW WolWj*) < <

ML

By the very definition of function ¢, the number of eigenvalues of matrix W;W7 WpW§ lying in the in-

terval [11, k2] is upper bounded by Tro(W,W; W,Ws ) < ﬁ Since this number of eigenvalues is an
integer, we conclude that with probability one there is no eigenvalues in the interval [k1, ko] for each NV
large enough. W

We finally illustrate the above results by the following numerical experiment. M, N, L are given by
M = 500, N = 1500 and L = 2 so that ¢y = 2/3. The eigenvalues of matrix Ry are defined by

Ap,n = 1/2 + 7 cos (”(k 1)) for k =1,...,M. Matrix Ry verifies ﬁTr(RN) ~ 1. Fig. 3 represents the

histogram of the eigenvalues of a realization of W, NW W, NW]’{’ n as well as the graph of the density
gn(z). We notice that the histogram and the graph of gn are in accordance, and that, as expected, no
eigenvalue of Wy nW yW), NW; y lies outside the support of gy .

10 Recovering the behaviour of the empirical eigenvalue distribution
vy using free probability tools

The purpose of this paragraph is to show that it is possible to use free probability tools in order to charac-
terize the limiting behaviour of the empirical eigenvalue distribution ox of matrix Wy vWy yWp W5 .
As the present paper is not focused on these kind of approach, we present briefly the followmg results
and leave the details to the reader.

The free probability approach is based on the following observations:

e Up to the zero eigenvalue, the eigenvalues of W, NW, NWp, NWf y coincide with the eigenvalues of

e The matrices W;Z NWy N and W; ~NWp, N are almost surely asymptotically free. Therefore, the eigen-
value distribution of W]’f NWf,NW; NWp. N converges towards the free multiplicative convolution
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Figure 3: Histogram of the eigenvalues and graph of gy (z) for M = 500, N = 1500, L = 2

product of the limit distributions of WJT yWy N and W;’ nWp,n. These two distributions appear to

coincide both with the limit distribution of the well known random matrix model %X]’i, (I xRN)XnN
where X is a ML x N complex Gaussian random matrix with unit variance i.i.d. entries.

In the following, we follow the definitions of asymptotic freeness provided in [19] (see in particular sec-
tion 4.3) which need the existence of certain limit distributions. This is in contrast with the approach
developed in the previous sections more focused on the behaviour of deterministic equivalents. We how-
ever mention that more recent free probability works (see e.g. [29] and the references therein, [5]) allow
to avoid the introduction of limit distributions, and would allow to recover the previous results on the
deterministic equivalent vy of Dy.

In order to be in accordance with [19], we thus formulate in this section the following assumption:

Assumption 1 The empirical eigenvalue distribution wy = ﬁ 2211 O,y Of matriz Ry converges to-
wards a limit distribution w

We remark that hypothesis 2.6 implies that w is compactly supported. Moreover, it can be shown that
measures (un)n>1 and (vy)n>1 both converge weakly towards limits denoted p and v in this section.
We also notice that Lemma 14 implies that p and v are compactly supported. It is also easily checked
that the Stieltjes transform t(z) of p verifies the equation

t(z) = —%/W ”lcfg()z) (10.1)
b 1 — zc2t%(2)
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while the Stieltjes transform ¢, of v is given by

1 cit(2)?
t(z) =75 10.2
() 21— z(cut(2))? (10-2)
We recall that c, represents the limit of ¢y = % In the following, we establish that (10.1) and (10.2)
can be obtained using free probability technics.

Before going further, we first recall the main useful definitions introduced in [19].

Definition 1 Consider a finite family of sequences of N x N possibly random matrices ((X; N)N>1)i=1,...r-
Then (XiN)i=1,..r i said to have an almost sure joint limit if for each non commutative polynomial
P(xy,...,xy) in r indeterminates, then %TrP(Xl,N,...,XT,N) converges almost surely towards p(P)
where p is a deterministic distribution defined on the set of all non commutative polynomials in r inde-
terminates (i.e. p is a linear form such that pu(1l) =1).

We remark that if r = 1 and (X y)n>1 are Hermitian matrices, the above condition is equivalent to the
existence of a limit empirical eigenvalue distribution.

Definition 2 Consider p families (Xi(iz\)/)i:17...,r17 e (Xi(ﬁ\),)i:17___,rp of N x N possibly random matrices.
Then, XU, ..., X®) are said to be almost surely asymptotically free if the 2 following conditions hold:

e Foreachq=1,...,p, (Xi([f,\),)izl,,,,mq has an almost sure joint limit
o Vm, iy, iy € {1,2,...,p} with iy # iy # -+ # iy, and for each mon commutative polynomials
(P;)j=1,..m in (ri,)j=1,..m indeterminates such that §Tr(P;(X{y,....X,? \)) = 0 a.s. it holds
’ Zj?
that
1 . . . .
NTr(Pl(XfN, . ,Xﬁ:l N Pm(Xi:*]LV, . ’XZ:;,N)) -0 a.s. (10.3)

We remark that when each family X (@ is reduced to a single sequence (X](\‘,Z)) ~>1 of N x N hermitian, or

similar to hermitian matrices 2, the almost sure freeness of XM, ..., X® holds if
Definition 3 e Foreachq=1,...,p, (X](\([Z))N21 has a limit eigenvalue distribution

o Vm, iy, -+ ,im € {1,2,...,p} withiy # is # -+ # im, and for each 1 variate polynomials (Pj)j=1...m
such that +Tr(P;(XJ)) — 0 a.s. it holds that

1 i i i
ST XU PyxPh . Py (X)) 50 as. (10.4)

We also recall the definition of the S transform of a probability measure, and recall that the S transform of
the free multiplicative convolution product of 2 probability measures is the product of their S transforms.

Definition 4 Given a compactly supported probability measure p carried by RY, we define 1,(z) as the
formal power series defined by

uue) =3 [ tdute) = [ o dute (10,5

%in the sense that X](\?) = UI(\?)H](\?)(U](\?))f1 for some N x N hermitian matrix H](\?)
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Let x,, be the unique function analytic in a neighbourhood of zero, satisfying

Xu(Wu(2)) = 2 (10.6)

for |z| small enough. The, we define the S transform of . as the function S, (z) defined in a neighbourhood
of zero by

1+ 2
o

Su(2) = xu(2)

(10.7)

Moreover, if 1 and ps are two compactly supported probability measures carried by RT, the S-transform
SR, of 1 X o satisfies

Sﬂlﬁuz = Sﬂl SM' (10.8)
We are now in position to state the main result of this section.
Proposition 15 Matrices WJE Wy N and W NWpN are almost surely asymptotically free.

Proof. We first notice that it possible to replace matrices W; and W), by finite rank perturbations
because the very definition of almost sure asymptotlc freeness is not aﬁected by finite rank perturbations.

We thus exchange W), and W; by W, = WY and Wf = TYf where Y and Yf are defined by
E YN
Yo v oo oo ... YN U1
Y}) — Ys ... ... .. YN WY1 Y2 (10.9)
yr -+ YN Yyr Y2 ... Yr-1
YL+1  cvv vve e aee YN Y1 Yyr
Yr+2 «++ o oo .. YN U1 YL Yr+1
Vi=| YL+3 - oo o YN YL oo YL YL+l YL42 (10.10)
Yo -+ YN Yr ... Y Yr+1 Yr+2 .- Y2L-1
In other words, vectors yn+1,---, YN+L—1,---,YN+2r—1 are replaced by vectors y1,...,yr—1,---,Y2r—1-

In order to simplify the notations, we still denote the above finite rank modifications by Y}, Yy, W, Wp.
We define the N x N matrix II and M x N matrix Y by

0O ... 0 1
1 . 0

= . i . . 7and Y = (y17y27"'7yN) (1011)
0 1 0

Y YT
Y11 YIIE+!
Yy = : . Y= : (10.12)
YH.L_ 1 YHéL— 1

63



This allows us to obtain the useful expression for W W, and W;W;

Y*Y

WiW, = Sor, I+ < ¥ > I (10.13)
Y*Y

WiWy = Sk ( N )Hk (10.14)

Since N~1Y*Y can be written as N~ 1Y*dR]\/le, where Yj;4 has i.i.d. Gaussian entries, the hermitian
matrix N™'Y*Y is unitarily invariant. Moreover, Assumption 1 implies that N~'Y*Y has a limit dis-
tribution while it is easily checked that the family {7, 1*,II,. .. ITe2L-1 H2L—1} has the same property.
This and Theorem 4.3.5 in [19] leads to the conclusion that Y*Y/N and {I,11*,1I, ..., IT*2L=1 T12E=11 are
almost surely asymptotically free. Proposition 15 thus appears to be an immediate consequence of the
following Lemma adapted from Lemma 6 in [13]. In order to make the connections between Lemma 17
and Lemma 6 in [13], we use nearly the same notations than in [13] in the following statement.

Lemma 17 We consider a sequence of N x N hermitian random matrices (X" )n>1 and N x N deter-
ministic matrices UN, W, ..., UN WX such that Xy and {UN W, ..., UN WX} are almost surely
asymptotically free. Then, if UN, W, ..., UN WX satisfy

UNWN =whNUN = Iy (10.15)
for each i = 1,...,m as well as %Tr(UiNWJN) = 0;—; for all i,j = 1...m, then the random matrices
UlNXNWfV, o UNXNWIN are almost surely asymptotically free.

Proof. We prove Lemma 17 by following step by step the proof from [13]. For simplicity we omit index N
below. Due to (10.15) we have W; = Ui_1 so that matrices (U; XW;)i=1,.. m are similar to the hermitian
matrix X. We have thus to verify the 2 items of Definition 3. The first item is obvious. To check
condition (10.4), we consider any k, indexes i1, -, with i1 # --- # 4, and polynomials P; such that
LTy (P;(U;, XW;,)) — 0 a.s. Using again (10.15) it is clear that P;(U;, XW; ) = U;, P;(X)W;, and, as a
consequence, 1Tr(P;(X)) — 0 a.s. We define 7y as

1
NN = NTr(Pl(UhXWil)P2(Ui2XWi2) T (UZkXWZk)) =

1 1
NTr(UilPl(X)WilUing(X)Wiz~~~U P( X)W, NTr HWZJ Ui, Pi(X)

where ig = ip. If i1 # i then by assumption %Tr(W Uj,) =0 for j =1,...,m. As we also have

15—1
1Tr(Pj(X)) — 0 a.s, the almost sure asymptotic freeness of "X and {U1,Wh, -+ ,Up, Wi} leads to the
conclusion that ny — 0 a.s. In the case when i1 = i}, we have W; U;, = Iy and the same conclusion
holds. I

By taking X = , Uy =11*~1 and W; = IT""!, Lemma 17 gives us immediately that
Y;,Y,H*(Y;Y)H,...,H*ZL 1(Y YOI2L~1 are almost surely asymptotically free. Using the expression

(10.13, 10.14) of WyW, and WiWy, we obtain that WJW, and WiW; are almost surely asymptoti-
cally free.

We also deduce that the limit distributions of W; W, and W]f W} both coincide with the additive free

convolution product of L copies of the well known limit distribution of Y*TY It is easily seen that the
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Stieljes transform, denoted tp;p(z) in the following, of this free addditive convolution product is solution
of the familiar equation

tup(2) = = 17'w(d7')
Z—C*f 1—|—TtMp(Z)

(10.16)

In the following, we denote by parp the corresponding probability measure. It is clear that (10.16) co-
incides with the equation verified by the Stieltjes transform of the limit eigenvalue distribution of the
random matrix %X]’(, (I x Ry)X N where X is a ML x N complex Gaussian random matrix with unit
variance i.i.d. entries. We note that this result could also be easily obtained using the Gaussian technics
developed in [26] in the case where Ry is reduced to a multiple of Ij;.

According to Proposition 15, the limit eigenvalue distribution of WJZ‘ NWrNW Wy N is pap B p.

In the following, we denote by o this measure and by f (z) its Stieltjes transform. To find an equation
satisfied by f(z), we use (10.8). (10.7) and (10.8) give us immediately

wo(2) = 253 0()

By replacing here z with 1;(z) and taking into account (10.6) we obtain

s () (10.17)

We notice that by definition (10.5), we have

W (2) = / ] itztdﬂ(t) - / f’i(?t 1= —%f <%> 1 (10.18)

Putting this into (10.17) and replacing z with % give us
z2f z 1
g (1)) =1
1+ 2f(2) z

From this, it is straightforward to obtain the expression of f (z). For more convenience, we introduce the
function g(2) = x3,p(¢¥s(271)) which is analytic in the neighbourhood of infinity. It holds that

f2) = (2% (x) —2) " (10.19)

It remains to determine g(z). For this we use (10.18) for ¢arp, tarp and replace z with xarp(z). Then
(10.6) gives

1

——1-—— b SN = (14 s .
=t XMP(Z)tMP (pr(z)> = tmp(Xarp(2) = —(1+ 2)xmp(2)

To obtain the equation for xsp it is sufficient to use the above expression of ¢,/ p(xj_\/[lp(z)), and to plug
it in (10.16) with z = x,/p(2). Therefore, we obtain that

(14 2)xmp(z) = 1 Tdio(T)

xur(z) iy (14 2)xmp(2)
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After simple algebra we get that

oz . / wa(T)
I+ 2)xmp(z) ") 1=7(1+2)xmp(2)

We finally replace z by ¥5(271). With (10.17) it is easy to see that the Lh.s. equal to zg(z). To treat the
r.h.s. we use again (10.17) to obtain that ¥ (27 !) = 2¢%(2)(1 — 2¢%(2)), and get that

1 e dw(T)
9(z) = 7 /[R X —1 ) (10.20)
1 —zg%(2)

Now we recall the equation obtained above for ¢(z)

t(z) = —1/ rw(dr) (10.21)

z e Tt(2)
1 — 2¢2t2(2)

The equations (10.20) and (10.21) are identical up to factor —c,. Since it can be shown that Eq. (10.21)
has a unique solution on the set of Stieltjes transforms, we obtain that g(z) = —c.t(z). Therefore, (10.19)

leads to the equation
5 1

fz) =~ [1— 2(cit(2))?]

z

The Stieltjes transform of the limit eigenvalue distribution of Wy W W, W7 is clearly equal to ci ( f (2) + 1—_C> )
Using the expression (10.2) of ¢,(z), we obtain immediately that

= (Fo+222) — e

Cx

We have thus proved that the limit eigenvalue distribution of WyWj WpWJf can be evaluated using free
probability technics.
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