

A semi-supervised Learning Approach to find equivalent long-string Organization Names

Frédérique Bordignon, Nicolas Turenne, Yann Feugueur

► To cite this version:

Frédérique Bordignon, Nicolas Turenne, Yann Feugueur. A semi-supervised Learning Approach to find equivalent long-string Organization Names. Colloque- Forum PEPS EXIA, Oct 2016, Champs sur Marne, France. 2016. hal-02310298

HAL Id: hal-02310298 https://enpc.hal.science/hal-02310298

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A semi-supervised Learning Approach to find equivalent long-string Organization Names

Frédérique BORDIGNON¹, Nicolas TURENNE², Yann FEUGUEUR³

¹Direction de la documentation, Ecole des Ponts ParisTech, 6-8, av. Blaise Pascal, Cité Descartes - Champs-sur-Marne, F-77455 Marne la Vallée cedex 02

²Université Paris Est, LISIS, INRA, 77454 Marne-La-Vallée, France

³Orange, 39 Fbg de France, 90000 Belfort

correspondance: <u>Frederique.bordignon@enpc.fr</u>

LISIS

Background

A platform called Opalia has been built to propose free access to all publications about a laboratory for a given range of years. This platform makes indexing of a corpus of scientific article of a given lab. But in the French research system a lab includes researchers from different organizations in a same unit generally called. UMR. Author can write differently their laboratory names.

Dataset constitution

Scopus®

Data Acquisition procedure:

✓ From Scopus (<u>http://www.scopus.com</u>) or from the Web of Science (https://webofknowledge.com). Considered as the biggest ones, a gold reference and easy to grab. ✓ Query by keywords. For instance if a laboratory is called

Aim: Sorting a set of labels that is noisy can be seen as a binary classification into positives and leave negatives strings. We propose to use a cascade processing with help of tagging some positive strings to build a relevant space of features that helps classification into good labels.

: UMR 1326 LISIS, interdisciplinary research laboratory in science and innovations in societies, INRA, CNRS, ESIEE, UPEM. The query will be "LISIS" in the field address field.

Main results and interpretations

δ	Le laboratoire LIGM possède t'il un numéro d'UMR? Non		
arning	User can enter a number of laboratory if U[M]{0,1}R[-]{0,1}[^,;:!?\.()\[\]\d]*?[-]{0,1}		
Ű.	EPITA Res & Dev Lab, FR-94270 Le Kremlin Bicetre, France	○ Vrai ○ Faux	
	Univ Paris Est, Lab Informat Gaspard Monge, Equipe A3SI, FR-93160 Noisy Le Grand, France	⊖ Vrai ⊖ Faux	
	Univ Paris Est, Equipe A3SI, Imagine Grp, Lab Informat Gaspard Monge, Ecole Ponts ParisTech, FR-77455 Champs Sur Marne, France	⊖ Vrai ⊖ Faux	
	Univ Paris Est, Lab Informat Gaspard Monge, Equipe A3SI, ESIEE Paris, FR-93160 Noisy Le Grand, France	⊖ Vrai ⊖ Faux	
	Univ Toulouse IRIT INP ENSEEIHT Toulouse France	\bigcirc Vrai	

In other cases, User need to select positive examples (4 at least)

Seuil de validité fixé à 50 v %		
Affiliation	Validité estimée	Validité choisie
CEREA, Joint Lab Ecole Ponts EDF R&D, Marne Valle, France	100%	⊚ Vrai ⊖ Faux
CEREA, Joint Lab, Res & Teaching Ctr Atmospher Environm, Ecole Natl Ponts & Chaussees, EDF R&D, F-77455 Champs Sur Marne, France	100%	⊙ Vrai ⊙ Faux
EDF R&D, Ecole Natl Ponts & Chaussees, Joint Lab, Res & Teaching Ctr Atmospher Environm, CEREA, F-77455 Champs Sur Marne, France	100%	⊚ Vrai ⊖ Faux
Ecole Natl Ponts & Chaussees, CEREA, Res & Teaching Ctr Atmospher Environm, Joint Lab,EDF R&D, F-77455 Champs Sur Marne, France	100%	● Vrai○ Faux
Ecole Natl Ponts & Chaussees, CLIME, Joint Project, INRIA, F-77455 Champs Sur Marne, France	100%	● Vrai ○ Faux

A

Seuil de validité fixé à	50 *	%	
liation			Validité choisie
		10	 Vrai

User interface of the system. User upload its corpus (list of organization labels), name of address field; a laboratory label if learning has been already done.

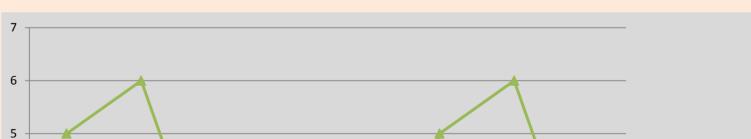
Configuration step

Feature acquisition step

Algorithm 1 - feature Selection

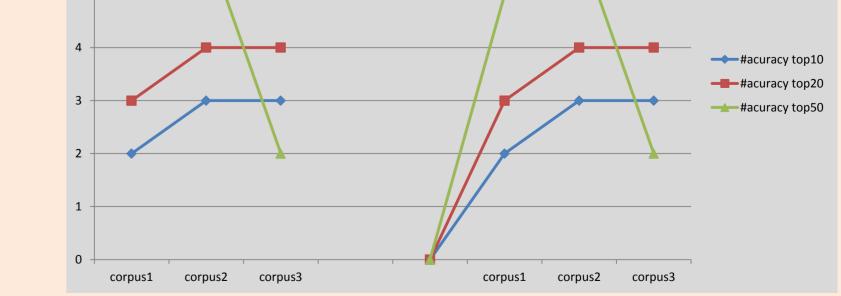
- 1. Build a word (feature) histogram with wholeset of organization labels to process.
- 2. Grouping words by similarity.
- 3. Rewriting all Organization Labels (OL) with obtained features
- 4. Scan all Organization Labels to search a metadata as a laboratory number.
- 5. Scan all Organization Labels to build a list of valid features (require rewritten words)

Algorithm 2 - Learning Model


- 1. Build a matrix taking into account OL selected by a user and metadata from previous steps. We have two kinds of OL, those coming from history of previous processing, and those coming from the given dataset to process. On the last type, we find the true positive OL (more than 80%) and true negative (less than 20%). These data make a comparison matrix.
- 2. Build a test matrix taking into account the rest of all others OL.
- 3. Set the two matrix as input to a SVM routine.
- 4. Assign to each OL of the test matrix, a relevance percent from the previous step and go

CEREA, Joint Lab Ecole Ponts EDF R&D, Marne Valle, France	100%	⊖ Faux
CEREA, Joint Lab, Res & Teaching Ctr Atmospher Environm, Ecole Natl Ponts & Chaussees, EDF R&D, F-77455 Champs Sur Marne, France	100%	⊙ Vrai ⊖ Faux
EDF R&D, Ecole Natl Ponts & Chaussees, Joint Lab, Res & Teaching Ctr Atmospher Environm, CEREA, F-77455 Champs Sur Marne, France	100%	⊚ Vrai ⊖ Faux
Ecole Natl Ponts & Chaussees, CEREA, Res & Teaching Ctr Atmospher Environm, Join Lab, EDF R&D, F-77455 Champs Sur Marne, France	^{it} 100%	⊚ Vrai ⊙ Faux
Ecole Natl Ponts & Chaussees, CLIME, Joint Project, INRIA, F-77455 Champs Sur Marne, France	100%	⊚ Vrai ⊜ Faux

Classification step


Algorithm 3 - Classification Algorithm

- 1. Select valid OL to extract their word trigrams (reference dataset)
- 2. Build a matrix on a known OL (exact true/false one), each of these OL produce a vector. So parameter of KNN is k=1, because we have 2-class classification for OL (true or false).
- 3. Create a vector for each unknown OL, it will return a test matrix.
- 4. Compare the two matrices with Knn algorithm, each vector of test matrix will be clasified in the neighbouhood of the model matrix.
- 5. Assign to each OL of the test matrix, the obtained result, hence go back to step 1 till number of trigrams of the reference dataset does not change.

back to step 1 till the list of words does not change any more.

Classification Accuracy with a sample of 100 affiliations about 3 corpus

Perspectives Local information, domain-dependant (as number of a laboratory) coupled to robust selection of lexical form leads to a good input for a learning step with a SVM model, and a classification step with KNN algorithm. The gain with such aided-computing interface a documentalist relies to easily classify similar address of laboratories which is time consuming. In perspective, the program will be used with several hundred of laboratories and possibly promote this service (https://exia.cortext.net/) in a Open-Access platform such as HAL (https://hal.archives-ouvertes.fr/).

Literature reference: [1] Bikel D.M., Schwartz R. and Weischedel R.M. An Algorithm that Learns What's in a Name, Machine Learning, February 1999, Volume 34, Issue 1, pp 211-231. Acknowledgements: This work was funded by EXIA project (PEPS grant from Université Paris-Est and CNRS).