M. Abbas, A. Ern, and N. Pignet, Hybrid High-Order methods for finite deformations of hyperelastic materials, Comput. Mech, vol.62, issue.4, pp.909-928, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01575370

J. W. Barrett and C. M. Elliott, A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes, IMA J. Numer. Anal, vol.4, issue.3, pp.309-325, 1984.

J. W. Barrett and C. M. Elliott, Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal, vol.7, issue.3, pp.283-300, 1987.

L. Botti and D. A. Di-pietro, Assessment of hybrid high-order methods on curved meshes and comparison with discontinuous Galerkin methods, J. Comput. Phys, vol.370, pp.58-84, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01581883

M. Botti, D. A. Di-pietro, and P. Sochala, A Hybrid High-Order method for nonlinear elasticity, SIAM J. Numer. Anal, vol.55, issue.6, pp.2687-2717, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01539510

E. Burman, Ghost penalty, C. R. Math. Acad. Sci, vol.348, pp.1217-1220, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00543248

E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems, SIAM J. Numer. Anal, vol.56, issue.3, pp.1525-1546, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01625421

E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math, vol.62, issue.4, pp.328-341, 2012.

E. Burman and P. Zunino, A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems, SIAM J. Numer. Anal, vol.44, issue.4, pp.1612-1638, 2006.

E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, CutFEM: discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg, vol.104, issue.7, pp.472-501, 2015.

E. Burman, J. Guzmán, M. A. Sánchez, and M. Sarkis, Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems, IMA J. Numer. Anal, vol.38, issue.2, pp.646-668, 2018.

M. Cicuttin, D. A. Di-pietro, and A. Ern, Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming, J. Comput. Appl. Math, vol.344, pp.852-874, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01429292

B. Cockburn, W. Qiu, and M. Solano, A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity, Math. Comp, vol.83, issue.286, pp.665-699, 2014.

B. Cockburn, D. A. Di-pietro, and A. Ern, Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods, ESAIM: Math. Model Numer. Anal. (M2AN), vol.50, issue.3, pp.635-650, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01115318

F. De-prenter, C. Lehrenfeld, and A. Massing, A note on the stability parameter in Nitsche's method for unfitted boundary value problems, Comput. Math. Appl, vol.75, issue.12, pp.4322-4336, 2018.

D. A. Di-pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol.69, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01820185

D. A. Di-pietro and A. Ern, A Hybrid High-Order locking-free method for linear elasticity on general meshes, Comput. Meth. Appl. Mech. Engrg, vol.283, pp.1-21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00979435

D. A. Di-pietro, A. Ern, and S. Lemaire, An arbitrary-order and compactstencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Meth. Appl. Math, vol.14, issue.4, pp.461-472, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00978198

D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Internat. J. Numer. Methods Engrg, vol.21, issue.6, pp.1129-1148, 1985.

A. Ern, A. F. Stephansen, and P. Zunino, A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal, vol.29, issue.2, pp.235-256, 2009.

C. Gürkan, E. Sala-lardies, M. Kronbichler, and S. Fernández-méndez, Extended hybridizable discontinous Galerkin (X-HDG) for void problems, J. Sci. Comput, vol.66, issue.3, pp.1313-1333, 2016.

C. Gürkan, M. Kronbichler, and S. Fernández-méndez, eXtended hybridizable discontinuous Galerkin with Heaviside enrichment for heat bimaterial problems, J. Sci. Comput, vol.72, issue.2, pp.542-567, 2017.

A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche's method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg, vol.191, pp.5537-5552, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01352903

P. Huang, H. Wu, and Y. Xiao, An unfitted interface penalty finite element method for elliptic interface problems, Comput. Methods Appl. Mech. Engrg, vol.323, pp.439-460, 2017.

L. N. Huynh, N. C. Nguyen, J. Peraire, and B. C. Khoo, A high-order hybridizable discontinuous Galerkin method for elliptic interface problems, Internat. J. Numer. Methods Engrg, vol.93, issue.2, pp.183-200, 2013.

A. Johansson and M. G. Larson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary, Numer. Math, vol.123, issue.4, pp.607-628, 2013.

C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for solving incompressible flow problems, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 2010.

C. Lehrenfeld, Removing the stabilization parameter in fitted and unfitted symmetric Nitsche formulations, 2016.

C. Lehrenfeld and A. Reusken, Analysis of a high-order unfitted finite element method for elliptic interface problems, IMA J. Numer. Anal, vol.38, issue.3, pp.1351-1387, 2018.

C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg, vol.307, pp.339-361, 2016.

J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind

, Collection of articles dedicated to Lothar Collatz on his sixtieth birthday, Abh. Math. Sem. Univ. Hamburg, vol.36, pp.9-15, 1971.

W. Qiu, M. Solano, and P. Vega, A high order HDG method for curved-interface problems via approximations from straight triangulations, J. Sci. Comput, vol.69, issue.3, pp.1384-1407, 2016.

S. Sticko, G. Ludvigsson, and G. Kreiss, High order cut finite elements for the elastic wave equation, 2019.