Source-control infiltration practices: How to avoid creating "polluted sponges"?
Damien Tedoldi, Kelsey Flanagan, Ghassan Chebbo, Daniel Pierlot, Yves Kovacs, Marie-Christine Gromaire

To cite this version:

Damien Tedoldi, Kelsey Flanagan, Ghassan Chebbo, Daniel Pierlot, Yves Kovacs, et al.. Source-control infiltration practices: How to avoid creating "polluted sponges"?. International Sponge City Conference, Sep 2018, Xi’An, China. hal-02190454

HAL Id: hal-02190454
https://hal-enpc.archives-ouvertes.fr/hal-02190454
Submitted on 22 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Source-control infiltration practices: How to avoid creating “polluted sponges”?

Context & objectives

Generalization of “source-control” stormwater management (Fletcher et al., 2015).
Dissemination of decentralized, infiltration-based techniques in urban areas (Zhou, 2014).
• Accumulation of contaminants in soil?
• Required maintenance to enhance long-term pollution control?

Comprehensive assessment of soil pollution by trace metals and polycyclic aromatic hydrocarbons in 11 devices of the Paris region.

Main results

Horizontal distribution of contaminants

• Significant buildup in the inflow area, followed by a marked decrease in contents with increasing distance.
• Precise, “time-integrated” signature of two distinct phenomena:
 o settling of particle-bound contaminants,
 o non-uniform infiltration fluxes at the soil surface (for common rainfall events).
• At the annual scale, the greatest part of the pollutant flux is intercepted by the first permeable surface reached by runoff.

Vertical distribution of contaminants

• Almost uniform profiles in the reference zone and marginally influenced by runoff infiltration.
• Metal and PAH accumulation is limited to the upper 5 to 40 cm of soil, even in the most contaminated part of the facilities.
• Retention results from 2 distinct mechanisms:
 o physical processes (settling and filtration),
 o physicochemical processes (sorption and precipitation of solute species).
• Dissipation mechanisms (e.g., biodegradation) are likely to affect PAH contents at the surface.

Experimental methods

Fig. 1 – Schematic representation of the two-step methodology for soil sampling and analysis (adapted from Tedoldi et al., 2017a).

Fig. 2 – Spatial distribution of zinc [mg/kg] in the surface soil of (a) an infiltration basin and (b-c) two grassed swales (top view). The coordinates are given in meters. The arrows indicate the water inflow (Tedoldi et al., 2017b).

Fig. 3 – Vertical distribution of copper, zinc, and PAH [mg/kg] in two study sites. “Zone 1” and “Reference” respectively correspond to the most and the least contaminated areas of the devices (Tedoldi et al., 2017a).

Maintenance needs

• The two-step experimental methodology provided a tri-dimensional vision of the extent of soil pollution, with a suitable representativeness.
• The soil may act as an efficient filter towards runoff-derived metals and PAH, but this may in turn result in high contents in the upper horizon.
• However, understanding the typical distribution of contaminants may reduce the cost and efforts of maintenance operations to be undertaken.
• In 7 sites out of 11, an average of ~15 m³ of polluted soil material per hectare of urban area had to be managed after ~10 years of operation.

CONCLUSIONS

Table 1 – Estimated volume of polluted soil (Vp,0) with unacceptable metal contents for residential land uses; normalized value per unit surface of drainage area (Vp,0/Sp).

<table>
<thead>
<tr>
<th>Basin</th>
<th>Vp,0 (m³)</th>
<th>Sp (m²)</th>
<th>Vp,0/Sp (m³/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>9.4 m³</td>
<td>1.9 ha</td>
<td>4.9 m³/ha</td>
</tr>
<tr>
<td>Swales</td>
<td>4.0 m³</td>
<td>2.1 ha</td>
<td>1.9 m³/ha</td>
</tr>
<tr>
<td>Filter strips</td>
<td>27.5 m³</td>
<td>3.5 ha</td>
<td>7.8 m³/ha</td>
</tr>
</tbody>
</table>

REFERENCES

