Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

RED-NN: Rotation-Equivariant Deep Neural Network for Classification and Prediction of Rotation

Abstract : In this work, we propose a new Convolutional Neural Network (CNN) for classification of rotated objects. This architecture is built around an ordered ensemble of oriented edge detectors to create a roto-translational space that transforms the input rotation into translation. This space allows the subsequent predictor to learn the internal spatial and angular relations of the objects regardless of their orientation. No data augmentation is needed and the model remains significantly smaller. It presents a self-organization capability and learns to predict the class and the rotation angle without requiring an angle-labeled dataset. We present the results of training with both upright and randomly rotated datasets. The accuracy outperforms the current state of the art on upright oriented training.
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-02170933
Contributeur : Eva Dokladalova <>
Soumis le : mardi 2 juillet 2019 - 14:58:42
Dernière modification le : jeudi 24 septembre 2020 - 16:38:04

Fichier

RotCNN.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02170933, version 1

Citation

Rosemberg Rodriguez Salas, Petr Dokládal, Eva Dokladalova. RED-NN: Rotation-Equivariant Deep Neural Network for Classification and Prediction of Rotation. 2019. ⟨hal-02170933⟩

Partager

Métriques

Consultations de la notice

237

Téléchargements de fichiers

525