A. Amir and D. Keselman, Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms, SIAM J. Comput, vol.26, pp.1656-1669, 1997.

D. Bryant, Building trees, hunting for trees, and comparing trees, 1997.

D. Bryant, A. Mckenzie, and M. Steel, The size of a maximum agreement subtree for random binary trees, Dimacs Series in Discrete Mathematics and Theoretical Computer Science, vol.61, pp.55-66, 2003.

J. Byrka, S. Guillemot, and J. Jansson, New results on optimizing rooted triplets consistency, Discrete Appl. Math, vol.158, pp.1136-1147, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00824940

Z. Chen, S. Ueta, J. Li, and L. Wang, Computing a consensus phylogeny via leaf removal, International Symposium on Bioinformatics Research and Applications, pp.3-15, 2019.

R. Cole, M. Farach-colton, R. Hariharan, T. M. Przytycka, and M. Thorup, An O(nlog n) algorithm for the maximum agreement subtree problem for binary trees, SIAM J. Comput, vol.30, pp.1385-1404, 2000.

Y. Deng and D. Fernández-baca, Fast Compatibility Testing for Rooted Phylogenetic Trees, Combinatorial Pattern Matching, vol.54, p.12, 2016.

D. Fernández-baca, S. Guillemot, B. Shutters, and S. Vakati, Fixed-parameter algorithms for finding agreement supertrees, SIAM J. Comput, vol.44, pp.384-410, 2015.

D. Gusfield, Algorithms on strings, trees and sequences: computer science and computational biology, 1997.

M. Hellmuth, N. Wieseke, M. Lechner, H. Lenhof, M. Middendorf et al., Phylogenomics with paralogs. Proc. Natl. Acad. Sci. USA, vol.112, pp.2058-2063, 2015.

E. D. Jarvis, Whole-genome analyses resolve early branches in the tree of life of modern birds, Science, vol.346, pp.1320-1331, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02046801

C. Scornavacca and N. Galtier, Incomplete lineage sorting in mammalian phylogenomics, Sys. Biol, vol.66, pp.112-120, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01815360

C. Scornavacca, E. Jacox, and G. J. Szollösi, Joint amalgamation of most parsimonious reconciled gene trees, Bioinformatics, vol.31, pp.841-848, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02154935

G. J. Szollösi, B. Boussau, S. S. Abby, E. Tannier, and V. Daubin, Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations, Proc. Natl. Acad. Sci. USA, vol.109, pp.17513-17518, 2012.

P. Vachaspati and T. Warnow, FastRFS: fast and accurate robinson-foulds supertrees using constrained exact optimization, Bioinformatics, vol.33, pp.631-639, 2017.

C. Whidden, N. Zeh, and R. G. Beiko, We have shown above that for any T ? P * , x is descended from y T in T and not from z T for any z ? Z, and so x ? L T (y T ) \ z ?Z L T (z T ). As |L T m (z) \ z ?Z 1 L T m (z ))| ? 4(d + d ) and |(L T m (y) \ L T m (z)) \ y ?Z 2 L T m (y ))| ? 4(d + d ), we have |L T m (y) \ z ?Z L T m (z ))| ? 8(d + d ). To analyze the complexity, vol.63, pp.566-581, 2014.

, Note that T ?{x} = T ?X m = T m . Therefore u T is well-defined for every node u ? V (T m ), and every node in T is equal to u T for some u ? V (T m ), except for x and its parent in T . So let w be the parent of x in T , u T the parent of w in T , and v T the child of w in T that is not x. Observe that T can be obtained from T m by grafting x onto the arc uv. Then it is enough to show that uv ? F . To see that uv ? F , first note that for each z ? {y}?Z, z T is well-defined and (z T ) T = z T of y, and v is an ancestor of (L Tm (y) \ z ?Z L Tm (z ))) ? z ?Z z, L Tm (y) \ z?Z L Tm (z )) ? Z. As |L Tm (y)\ z ?Z L Tm (z )| ? 8(d+d ), |Z| ? 4 and T m is a binary tree, we have |F | ? 16(d+d )+8. For each e ? F , let T e be the tree obtained from T m by grafting x onto the arc e . Let P = {T e : e ? F }. Let T be a tree in P * and consider T = T ?(X m \{x})

.. .. T-=-mastrl?distance-;-t, d, d ? 1) 14: if T is not F ALSE, let T * := T 15: Return T *