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Abstract 19 

An energy approach is proposed as a complement to the stress approach commonly considered for 20 

investigating soil desiccation cracking. The elastic strain energies before and after crack initiation are 21 

estimated by both numerical and analytical solutions. The energy released by cracking is then 22 

compared to the fracture energy to discuss crack initiation conditions. This leads to combined energy 23 

and stress conditions for crack initiation following Leguillon’s theory. An approximate analytical 24 

solution is derived from a variational formulation of the porous elastic body equations. A cohesive 25 

zone model and Finite Element code are used to simulate crack propagation in an unsaturated porous 26 

body. This analysis shows that the energy criterion is reached before the stress criterion, and this can 27 

explain unstable crack propagation at the beginning. The approximate analytical solution allows 28 

predicting correctly the crack depth and opening in its initiation stage. 29 

 30 

Keywords: desiccation cracks, crack initiation, crack propagation, energy criterion, cohesive zone 31 

model.  32 
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1. Introduction 33 

Soil desiccation cracking is a common phenomenon in geotechnical engineering. The reduction of 34 

moisture content during desiccation causes soil shrinkage by the invasion of air into the soil pores. At 35 

the same time, matrix suction increases and leads to the development of tensile stress in restrained 36 

conditions (by a frictional boundary condition, suction gradient, concentrations of stress, heterogeneity 37 

of soil, etc.). This tensile stress can exceed the soil strength and create a desiccation crack network [1–38 

4]. These cracks, created by tensile stresses, are different from localization shear bands that occur 39 

under other stress conditions. They have specific physical and geometrical properties and the 40 

theoretical and numerical approaches to determine their geometry is also different from the methods 41 

used for strain localization and shear band formation. The formation and propagation of desiccation 42 

cracks are hydro-mechanical processes that can affect the soil permeability and compressibility, as 43 

well as its mechanical strength. This could explain the effect of desiccation cracking on the instability 44 

of earth slopes [5–7]. 45 

 46 

The main methods for studying soil desiccation cracking are the following. The field and laboratory 47 

experiments [2,8–14] are used to study the morphology, geometry and development of the desiccation 48 

cracks and the effect of some parameters (e.g. specimen dimensions, boundary conditions, soil 49 

properties, and drying condition) on theirs formation. The theoretical methods [3,15–20] aim to predict 50 

the desiccation cracks geometry (depth and spacing between cracks). The numerical approaches are 51 

introduced to simulate the formation and propagation of cracks during desiccation or to characterize 52 

material properties that cannot be easily measured in laboratory because inaccessible. Different 53 

numerical methods have been used for this purpose: Finite Element Method (FEM), Discrete Element 54 

Method (DEM), JFEM (Joint Finite Element Method), and mesh-free method [21–30]. They have 55 

shown that the initiation and evolution of a crack network are influenced by various factors [1], which 56 

can be divided into two main groups: (i) the internal factors (soil characteristics, structure 57 

heterogeneity and sample dimensions); (ii) and the external factors (soil/mold interface, 58 

humidification/desiccation cycle, desiccation conditions). Quantitative studies on desiccation cracking 59 
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usually focus on crack density, volume change, crack geometry and spacing. Crack depth and spacing 60 

are key variables in the analysis of soil cracking. Various predictive models of soil cracking have been 61 

proposed, based on different approaches, to estimate these parameters.   62 

Lachenbruch [15] developed an analytical approach to analyze the contraction cracks in basalt and 63 

permafrost by using Linear Elastic Fracture Mechanics (LEFM). The author introduced the fictitious 64 

stress notion and showed that: as a single crack propagated to a given depth, the stress field in the 65 

vicinity of the crack was perturbed; and that a distance away the stress asymptotically approached the 66 

initial value. An approach was proposed to predict the spacing between cracks from the theoretical 67 

stress relief field by assuming that the subsequent crack could propagate at approximately 5-10% of 68 

stress relief.  69 

Konrad & Ayad [19] applied the concept introduced by Lachenbruch [15] to predict the crack depth at 70 

the onset of the formation of the primary cracks, as well as the average crack spacing. They calculated 71 

first the stress intensity factor KI as a function of different crack depths. The depth of crack 72 

propagation at the time of initiation corresponded to that giving KI equal to the soil’s fracture 73 

toughness KIC. The crack propagation was analyzed with a trapezoidal distribution of horizontal tensile 74 

stress. The crack spacing was determined from the horizontal stress field in the neighborhood of an 75 

existing crack calculated by the FEM. The prediction of crack spacing was similar to the work of 76 

Lachenbruch [15], in which the subsequent crack initiated in the vicinity of an existing crack when the 77 

horizontal stress reached 95% of the soil tensile strength. The analysis made by Konrad & Ayad [19] 78 

allowed predicting accurately the crack depth at the onset of the primary cracks by using the stress 79 

concept. However, the results depended on an arbitrary value of 95% of the tensile strength to initiate 80 

the subsequent crack. Moreover, this analysis did not give any information about the displacement 81 

fields of the soil and crack opening after crack initiation. 82 

The LEFM, used to study the propagation of a single crack, was equally applied to predict the crack 83 

depth from the suction profile and soil properties [2,16]. However, the approaches developed in these 84 

works cannot be used to predict the crack spacing.  85 
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Penev & Kawamura [31] proposed a relationship to predict the crack spacing and the crack opening in 86 

a pavement layer composed of cement. The solution can be applied to a given thickness of material 87 

subjected to uniform shrinkage, and the crack depth was not considered. Chertkov [32,33] developed a 88 

physically based probabilistic model, using a multiple cracking and fragmentation model available for 89 

rocks, to predict the crack network geometry of swelling clayey soils. The model allowed estimating 90 

the crack opening, cross-sectional area and volume of cracks for a given water content profile and 91 

shrinkage curve of clay soil. However, two fundamental parameters of the model, the average spacing 92 

between cracks and the crack connectedness, were introduced in the model as a specific function of 93 

depth. 94 

Moreover, using desiccation cracking test results and numerical simulation, Peron et al. [34] proposed 95 

a consistent explanation for the formation of desiccation crack patterns in soils. The authors gave an 96 

estimation of desiccation crack spacing by calculating the overall energy of the system. They assumed 97 

that the elastic strain energy was totally released during cracking and that all cracks penetrated to the 98 

full sample depth. This approach allowed estimating the number of blocks and thus the average crack 99 

spacing in a thin layer of soil, but it is not applicable for estimation of crack depth. 100 

By using the LFEM, proposed by Lachenbruch [15] and developed by Konrad & Ayad [19], the crack 101 

propagation condition (KI = KIC) can be satisfied by two values of crack depth. The larger value 102 

corresponds to the ultimate depth of the crack that propagates unstably, while the smaller value 103 

represents the initial crack depth necessary for the onset of unstable propagation. Sanchez et al. [9] 104 

performed laboratory experiments to investigate soil desiccation cracking. The experimental data 105 

showed that the crack reached the ultimate depth in a very short time and that the subsequent evolution 106 

of crack depth was more gradual, corresponding to a stable propagation phase. The instable crack 107 

propagation depth needs then specific analysis which is different from the gradual and stable 108 

propagation. The present paper focuses on the initial instable propagation crack. The depth reached by 109 

the crack during this phase is named “ultimate depth" although it can be followed by a further increase 110 

during a stable propagation phase. The existing approaches described above are based on stress or 111 

energy criterion. However, theoretical approaches, initially proposed by Leguillon [33], have shown 112 
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that a combined stress and energy criterion was needed to characterize crack initiation conditions at 113 

the surface of a homogeneous material [35,36]. A combined energy and stress approach was recently 114 

used [37] to analyze desiccation cracks spacing and depth. However, this work was based on very 115 

sharp simplifications such as a constant suction profile in a horizontal thin layer of soil with constant 116 

vertical stress and a shear stress linearly depending on the depth, etc.  117 

In the present paper, a combined energy and stress approach is used as a complement to a moisture 118 

diffusion problem in unsaturated soil in order to model the desiccation cracking. Unsaturated soil 119 

models are usually extensions of saturated ones and this extension requires the definition of specific 120 

state variables. Various expressions for the effective stress in unsaturated materials have been 121 

proposed from early works of Roscoe et al. (1958) [38] and Bishop (1959) [39] to more recent works 122 

based on energetic approaches [40]. A comprehensive review of effective stress formulations can be 123 

found in [41]. Assuming the incompressibility of the solid matrix and the water phase, Houlsby (1997) 124 

[42] established a general expression for the effective stress in unsaturated material that is used, with 125 

some simplifications, in the present work. First, approximate solutions for the displacement fields of 126 

the soil before and after crack initiation are proposed. The elastic strain energies for these two 127 

moments are then calculated. The elastic energy released by cracking depends on both crack depth and 128 

spacing. Its estimation allows predicting the crack depth corresponding to a given crack spacing. This 129 

is supposed to be a first step towards a method predicting both the depth and spacing of desiccation 130 

cracking based on a combination of energy and stress approaches. The proposed displacement field 131 

allows calculating the crack opening and soil displacements after crack initiation. The approximate 132 

analytical method is compared to the results of numerical simulations using FEM. This latter includes 133 

a cohesive damage fracture law to model the moisture transfer, as well as the initiation and 134 

propagation of a single crack. These investigations provide approximate analytical solution for 135 

estimation of the crack depth due to soil desiccation in the initiation stage. 136 

 137 



7 
 

Notation: In the sequel, light-face (Greek or Latin) letters denote scalars; underlined letters (a) 138 

designate vectors and boldface letters (a) for second-order tensors; outline letters ( £ ) are used for 139 

fourth-order tensors.  140 

2. Analytical approach 141 

In this analysis, the soil is represented as a homogeneous porous material subjected to potential 142 

cracking under desiccation. The study focuses on the initiation conditions and the geometry (e.g. 143 

depth, opening and spacing) of cracks by combining stress and energy approaches. The simultaneous 144 

apparition of cracks [34] is assumed to occur to create a crack network when the failure criterion is 145 

reached. The study focuses on the desiccation crack initiation near the top surface of the soil where the 146 

gravity-induced stresses are negligible. Thus, for the sake of simplicity, the gravity forces are 147 

neglected in the sequel and the governing equations of the problem read: 148 

div= 0,   ' : C ε  (1) 

 

where  represents the total stress, ' the effective, ε the strain and £  corresponds to elastic tensor 149 

(linear isotropic with Lamé coefficients  and ).  150 

The definition of the effective stress is a key question in porous materials. In the linear poroelasticity, 151 

widely used to model fluid saturated porous materials, the following expression of the effective stress 152 

is used: 153 

' bp     (2) 

 

where b is the Biot coefficient, p is pore water pressure and  the unit tensor. For unsaturated soils, 154 

assuming the incompressibility of the solid matrix and the water phase, Houlsby (1997) [42] 155 

established the following general expression for the effective stress:  156 

 ' +a a wp S p p     
 

(3) 

where pa designates the air pressure, pw the water pressure and S the degree of saturation. This 157 

expression of the effective stress was widely used for soil analyses and in particular for the non-linear, 158 
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elastoplastic or damage behavior of soils [43,44] . In this work, the air pressure is neglected. Several 159 

works showed that crack initiation took place when the saturation degree S remained close to 1 160 

([10,11,45]). As a result, and in order to be able to apply the theoretical methods of LEFM and linear 161 

poroelasticity in following analyses, S is assumed to be equal to 1 for the effective stress calculation in 162 

this study. This does not exclude that the variation of S is considered in the moisture diffusion 163 

problem. With this approximation, the same Eq. (2) can be formally used for the mathematical 164 

treatments of unsaturated soil by taking p = -pw. In the sequel for simplicity and unity of notations the 165 

expression (2) is used in the theoretical relations but for the numerical models b is taken equal to 1.  166 

The study focuses on the desiccation crack initiation near the top surface of the soil and for this 167 

purpose, a regular geometry of cracks, characterized by a depth L and a spacing B (Figure 1), is 168 

considered. 169 

 170 

Figure 1: Geometry of the problem 171 

The energy approach consists of the calculation of the elastic strain energies before and after crack 172 

initiation with regular depth and spacing. The assumption of a regular set of cracks allows reducing 173 

the model to an elementary cell of spacing B (Figure 1). The symmetry of this problem allows 174 

reducing the model to a domain containing two subdomains 
1
 and 

2
 with four boundaries 175 

x0y0; L1L2and a half spacing D (D = B/2) presented in Figure 2 the y-axis is oriented 176 

downward).  177 
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 178 

Figure 2: Geometry of the model  179 

The boundary conditions of the elementary cell considered in Figure 2 are: 180 

0 2

1

0

0 0

; ( ) 0                           (I.1)

; ( ) 0                                     (I.2)

; ( ) 0                                     (I.3)

; ( ) 0       

x L x

L xx

y yy

x y L xy

x u x

x x

x x

x x

    

    

    

              (I.4)

lim ( ) 0                                                        (I.5)
y

u x




                                               (I) 181 

The pore pressure field p taking negative values corresponding to suction, results from the moisture 182 

transfer calculation in the numerical simulation. So, for mechanical calculation, it is supposed to be a 183 

known function of y and: lim ( ) 0
® ¥

=
y

p y . As the mechanism of desiccation cracking is related to 184 

tensile stress due to increase of suction during desiccation, variation of the pressure in the positive 185 

range has no effect on the desiccation cracking. The choice of this boundary condition simplifies the 186 

solution while respecting these assumptions.  187 

2.1. Variational formulation of the problem 188 

  189 
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A variational formulation of the local equations governing the deformation of solids is very commonly 190 

used in order to build numerical approximate methods. The variational approach has been used 191 

extensively in linear elasticity but also for non-linear problems. In particular for the analysis of crack 192 

propagation it has been used in various works and a comprehensive review can be found in [46] . In 193 

this section, a variational formulation of the system of equations (I) is established in order to build 194 

approximate solutions. Then, Eq.(3) and the system (I) can be written under the effective stress form 195 

as follows: 196 

0 2

1

0

; '                                     (II.1)

; ( ) 0                        (II.2)

; ' ( ) ( )                           (II.3)

; ' ( ) (0)                   

x L x

L xx

y yy

x div b p

x u x

x x bp y

x x bp

   

    

    

    



0 0 1

        (II.4)

; ' ( ) 0          (II.5)

lim ( ) 0                                                      (II.6)

x y L xy

y

x x

u x


      



 
(II) 

This local formulation is equivalent to the variational problem explained below. A set of kinematically 197 

admissible displacement fields UA, satisfying the above displacement boundary conditions, is defined 198 

as: 
0 2; / ; ( ) 0A x L xU u x u x      and lim ( ) 0

y
u x


  199 

Thus, the solution of the system (II) is the displacement field that minimizes the following potential: 200 

 = 
1

: : . .
2

ε ε

T

d f u d T u dsw w

W W ¶ W

- -ò ò ò£  (4) 

Where: 
1 0

1

0

;        (  is volumetric force)

; ( ) ( ) ( )

; (0) ( ) (0)

   

     


   
     

T L y

L x

y y

x f b p f

x T bp y n x bp y e

x T bp n x bp e

 
(5) 

By assuming that ε
s
 and u

s
 are the strain and displacement solutions of the system (II) for L ≠ 0, the 201 

following inequality can be written for every admissible displacement uUA: 202 
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(u)  (u
s
) (6) 

Moreover, it can be established that, for the solutions u
s 
and ε

s
 [47]: 203 

: : . .

T

s s s sd f u d T u dsε ε

W W ¶ W

= +ò ò ò£ w w  
(7) 

From Eq.(4) and Eq.(7), the potential (u
s
) of the solutions can be deduced as follows: 204 

(u
s
) = 

1
: :

2

s s dε ε

W

- ò £ w  (8) 

The elastic strain energy of the porous elastic material can be deduced from the following analysis. If 205 

 designates the total stress, then a strain increment, produced by the external work dW, satisfies: dW 206 

= d. The porous-elastic constitutive law Eq.(2) can be written as: 207 

: ( )L  C ε ε  (9) 

 where 
1 :L bp C  . Then the external work increment becomes: 208 

: ( ) : :LdW d d    Cε ε  (10) 

In the present work, the pore pressure field is determined by a moisture transfer calculation, and the 209 

effect of deformation on pore pressure is not considered. In addition, the crack propagation at the 210 

initiation phase is very quick. Thus, the pore pressure fields before and after crack initiation are 211 

supposed to be similar. Therefore, 
L
 remains constant in the crack initiation phase. Eq. (10) is 212 

integrated in: 213 

1
( ) : : ( )

2

L LdW d
 

   
 

   C  (11) 

The elastic strain energy released by the cracking process is then given by: 214 

1
( ) : : ( )

2

L L d


         C  (12) 
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The elastic strain energy before cracking, E
before

, is analytically calculated from the displacements 215 

field, which is the solutions of the system (II) with L = 0. The elastic strain energy after crack 216 

initiation E
after

 is deduced from the displacement solution of the system (II) with L ≠ 0. The variational 217 

formulation allows establishing an upper estimation of the elastic strain energy after crack initiation: 218 

1 1 1
( ) : : ( ) : : : : : :

2 2 2

after s L s L s s s L L LE d d d d
   

                    C C C C  (13) 

The second integral of this equation can be transformed as follows: 219 

: : :δL s s s

i id bp d bp u d  
W W W

W= W= ¶ Wò ò ò£  (14) 

This Eq.(14) can be integrated by parts, yielding: 220 

s s s

i i i i i ibp u d bpu n d bu pd
W ¶W W

¶ W= W- ¶ Wò ò ò  (15) 

Integration of  can be decomposed into integration of u (on which the displacement is 221 

prescribed) and f (on which the surface traction is applied). Zero displacement is imposed on the 222 

boundaries ( 0x   and 2L  ). For these boundaries, the contribution of the first integral in Eq.(15) 223 

vanishes because 0s

iu = . The contribution to f corresponds to the prescribed forces T. In addition, 224 

by replacing the term ib p¶  by –fi (see Eq.(5)), the integral of Eq.(15) can be transformed as follows: 225 

f

s s s

i i i i i ibp u d Tu d f u d
W ¶ W W

¶ W= W+ Wò ò ò  (16) 

From the equations (7), (14) and (16), it can be deduced that: 226 

: : : :L s s sd d   
W W

W= Wò ò£ £  (17) 

 By replacing Eq. (17) in Eq. (13), the following is obtained: 227 

1 1
: : : :

2 2

after s s L LE d d   
W W

= - W+ Wò ò£ £  (18) 

The same analysis can be done for the displacements and strains fields before cracking, denoted by u
0
 228 

and 
0
, and it can be found that: 229 

0 01 1
: : : :

2 2

before L LE d d   
W W

= - W+ Wò ò£ £  (19) 
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The difference between elastic strain energies before and after crack initiation using the Eqs.(18), (19), 230 

and (8) can be calculated as: 231 

0 0 0 01 1 1
: : : : : :

2 2 2

before after s sE E d d d     
W W W

- = - W+ W= - W-ò ò ò£ £ £ (u
s
)     (20) 

Using Eq.(6) for an approximate solution u, from Eq.(20), yields: 232 

0 01
: :

2

before afterE E d
W

- ³ - W-ò  £  (u) (21) 

The energy-based method for analyzing crack propagation consists of calculating the energy released 233 

by cracking and comparing it with the surface energy needed to create a crack. If the fracture energy 234 

dissipation rate is designated by G
c
, with G

c
 = 2s

 where s
 is specific rupture energy per unit surface 235 

(depth in 2D geometry), then the energy condition for crack propagation is expressed by: 236 

before after cE E G L- ³  (22) 

Thus, by using Eq.(21), a sufficient condition to satisfy the energy condition in (22) is: 237 

-(u) 0 01
: :

2

cd G L 
W

- W³ò £  (23) 

A simple analysis shows that, for small perturbations close to the initial state, the left side of Eq.(23) is 238 

positive. By designating: 239 

  -(u) 0 01
: :

2
d 

W
- Wò £  (24) 

The energy criterion for crack propagation in Eq.(23) becomes: 240 

/L  G
c (25) 

In the sequel, after calculating the energy before cracking, approximate solutions u for the state after 241 

crack initiation are fitted to u
s
 to obtain close estimations of crack propagation conditions. 242 
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2.2. Analytical solutions  243 

a) Before cracking 244 

The displacement solution before cracking corresponds to L = 0 in the system (II), and the condition ux 245 

= 0 for every point with x = 0 or x = D. The displacement solution is designated by u
0 
as follows: 246 

0

0

( , ) 0

( , ) ( )x x

¥

ìï =ïïï
í
ï = -ïïïî

ò

x

y

y

u x y

u x y b P d
 (26) 

where ( )

2 




p y
P  is dimensionless. The elastic strain energy before cracking can be calculated from 247 

Eq.(19): 248 

2 2

0

1

2 1 2

beforeE
b D P dy



  





    (27) 

With 
2




 



. The term 0 01

: :
2

dε ε
W

Wò £  in Eq.(24) can also be calculated as: 249 

0 0

2 2

0

: :1 1

2 2 2

d
b D P dy







  




 C
 (28) 

b) After cracking 250 

Exact analytical solution doesn’t exist for the stress and displacement fields of problem (II) with L ≠ 0. 251 

An approximate solution of the displacement field can be proposed by minimizing the potential (u) 252 

(Eq.(4)). This minimization is not applied in the space of all continuous functions in the domain  but 253 

only in a subdomain of polynomial functions of x and parameters an(y) that depend on depth. Every 254 

function f(x,y) on the domain =[0,D][0,[ can be decomposed as: 255 

0

( / )
( , ) ( )

!

¥

=

= å
n

n

n

x D
f x y a y

n
 (29) 
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An approximate solution is considered by considering only the first terms up to the second degree of x 256 

as follows: 257 

2

0 1 2

2

0 1 2

( , ) ( ) ( ) ( / ) ( ) ( / ) / 2

( , ) ( ) ( ) ( / ) ( ) ( / ) / 2

ìï = + +ï
í
ï = + +ïî

x

y

u x y a y a y x D a y x D

u x y b y b y x D b y x D
 (30) 

The analysis of the symmetries of the problem (Figure 1) shows that ux must be an odd function of x, 258 

whereas uy must be a pair function. This leads to a0(y) = a2(y) = b1(y) = 0. The displacement field can 259 

be written as: 260 
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 (31) 

The functions a1, b0 and b2 are determined separately for y[0,L] and y[L,], supposing the 261 

continuity of displacement in the entire domain and on the line y = L. Thus, two subdomains are 262 

considered and denoted by 
1
 = [0,D][0,L]; 

2
 = [0,D][L,[ (see Figure 2).  263 

In 
1
, the displacement fields, which satisfy the boundary conditions (II.2) and (II.6), are determined 264 

to find the elements of UA defined in the previous section. The momentum balance equation (II.1) and 265 

the force boundary conditions (II.4) should be satisfied in addition to the displacement boundary 266 

conditions. Therefore, the solution globally satisfies the equations (II.1), (II.2), (II.4) and (II.5). 267 

Additionally, the continuity of the displacement on the 12 interface line (y = L) imposes ux(D,L) = 0. 268 

This leads to the following expressions for ux and uy in 
1
 depending on only two constants, C1 and 269 

C2: 270 
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 (32) 

In 
2
, the continuity of the displacement on the 12 interface must be satisfied, in addition to the 271 

displacement boundary conditions. It should be noted that 
0( , )yu x y

 
(the solution before cracking) 272 

satisfies the boundary conditions corresponding to 
2 

but not the continuity of displacement for the 273 
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solution after cracking in the 12 interface.  The correction term uD
 
is defined to satisfy this 274 

condition without changing other boundary conditions. The solution is proposed with: 275 

0 ( )
( , ) ( , )

( )
y y

P y
u u x L u x L

P L
é ùD = -ê úë û

 (33) 

Because lim ( ) 0
y

P y
® ¥

= , the condition (II.6) will be satisfied by this assumption. The general 276 

displacement expression will be given in 
2
 by: 277 
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(34) 

The approximate displacement field given by Eqs. (32) and (34) satisfies all the conditions apart from 278 

the boundary conditions (II.3) for the 
1
 part and the momentum balance equation (II.1) for the 

2
 279 

part. In the sequel, the two constants C1 and C2 are determined by minimizing the potential (u) to 280 

obtain the best approximation. Note that if C1 = C2 = 0 in Eqs. (32) and (34), then the expression of 281 

the displacement field before cracking can be obtained. 282 

The expression of the potential (u), depending on these two constants (C1 and C2) calculated by the 283 

sum of the potential shown in Eq.(4) for the two subdomains 
1
 and 

2
, is given as follows: 284 
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(35) 

where 
2

2 12

2

DC C L


 
  
 

 and the following constants depend on the pressure field: 285 
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 It can be seen that the potential (u) is a quadratic function of (C1, C2). Minimization with respect to 287 

(C1, C2), i.e., the solution of the system of equations: 288 
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1C

¶

¶
(C1, C2)

2C

¶
=
¶

(C1, C2) = 0 (36) 

leads to the following result: 289 
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With this expression, the potential after crack initiation (Eq.(35)) is calculated as follows: 290 
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From Eqs. (24), (28) and (38), it can be obtained that: 291 
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By replacing the C1 presented in Eq. (37), the normalized dissipated energy by cracking in the 292 

approximate energy approach becomes: 293 
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It can be seen that this normalized dissipated energy by cracking in this approach is a function of the 294 

cracks depth L, the half spacing D, the soil properties though the term ψ and the given suction field 295 

P(y).

3. Numerical approach 

296 

In this work, approximate analytical solutions are compared with the results obtained by the numerical 297 

method. Simulations are performed with the Finite Element code Porofis [48] which is a research code 298 

derived from the commercial code DISROC built for coupled hydro-mechanical processes in porous 299 

fissured materials. The equations used in this paper, for governing hydraulic flow and mechanical 300 
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deformation in cracked and unsaturated porous materials, have been presented in detail in previous 301 

papers [49–51]. They are here briefly summarized. 302 

3.1. Hydraulic behavior  303 

The moisture transfer process in a homogeneous porous and unsaturated material representing the soil 304 

is simulated. The flow in the soil around the cracks is governed by Darcy’s law, while the flow in the 305 

cracks is governed by the cubic law [52], and they satisfy the mass conservation condition. During 306 

desiccation, the suction evolution is related to the degree of saturation by the Van Genuchten model 307 

[53] expressed by the following equation: 308 

1

1 (1 ( ) )

res

n m

res

S S

S p




 
 (41) 

where Sres is residual degree of saturation and θ, n, m are constants. 309 

The equation that allows determining the flow in the soil matrix with an assumption of incompressible 310 

fluid can be written as follows [54]: 311 
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g t
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where 
'1

M

S
C S

N S

 
  

 
, k is the soil hydraulic conductivity, g is the gravitational acceleration, N is 312 

the Biot modulus,  represents the porosity, and S’ is the derivative dS/dp calculated from the water 313 

retention curve. 314 

For the cracks, the transversal conductivity between the two crack walls is infinitely high. This implies 315 

that the pressure is continuous between the two opposite faces of the crack and that the pressure takes 316 

the same value p for a given point along the crack. The equation, which allows calculating the pressure 317 

for every location s  along the crack, can be written as below: 318 

.( ) mf f

s sc p r r     (43) 
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where .mfr v n ; f e
r

t





,  319 

In this equation, .s () designates the divergence in the crack. The fluid-crack mass exchanges are 320 

taken into account by the jump of fluid velocity across the crack v  by presenting the discontinuity 321 

with velocity values v
 and v

 for two faces of the crack. n  is the normal unit vector to the crack 322 

surface. c is the tangential conductivity of the crack (parallel with the two crack walls) that can be 323 

evaluated with the crack opening e by the cubic law.  324 

3.2. Mechanical behavior – Cohesive zone model for the crack 325 

For the mechanical problem, the crack initiation and propagation are modeled by placing joint 326 

elements with Cohesive Zone Model (CZM) behavior. The CZM has been proposed as an alternative 327 

to Linear Elastic Fracture Mechanics to model crack propagation and takes its origin from the works 328 

of Dugdale [55], Barenblatt [56]. It is based on two key parameters: tensile strength and work of 329 

separation (or fracture energy) [57,58]. Thus, the CZM incorporates both energy and strength criteria 330 

[59]. Numerous developments have been introduced since the original Dugdale-Barenblatt’s model to 331 

consider compression, shear and mixed loadings [60–65]. The CZM has been widely used because it 332 

avoids stress singularity at the fracture tip and can be easily implemented in a numerical code [66,67] . 333 

The CZM has been used more recently to study fracture propagation or hydric cracking in soil and 334 

rock type materials [68] and for microstructural approach of porous fractured solids [69,70]. 335 

An advanced CZM model was proposed by Pouya and Bemani [63], which covers both normal and 336 

shear loads. This model was successfully applied to the analysis and modeling of a set of tensile and 337 

shear, monotonic and cyclic fracture experiments on different rocks. This model is available in the 338 

numerical code Porofis and was used for the present study.  339 

The following equation is used to simulate the cohesive damage crack behavior: 340 

(1 )d u   R  (44) 



20 
 

where  is the stress vector on the matrix/crack interface surface, n is the normal unit vector on this 341 

surface, R is the joint stiffness tensor and d a scalar damage variable. 342 

The strength criterion F(,d) for this model depends on three parameters R, C and  (which represent 343 

respectively the tensile strength, cohesion and friction angle of the interface) and a function g(d) 344 

controlling the strength degradation with damage variable D. It has the following expression (See 345 

Figure 3a): 346 

2 2 2 2 2tan 2
n c n

F d g d g d C       ( , ) ( ) ( )  (45) 

In mode I propagation, the damage evolution law induces a relation between d and opening un for a 347 

monotonic traction loading given by the following relation: 348 
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 (46) 

where un is the normal component of the displacement discontinuity u through the two crack walls, 349 

0
R

nn

u
R


 is the elastic displacement limit, with Rnn the normal component of the joint stiffness, and β a 350 

parameter related to the ductility of the damage process (see Figure 3b). The function g has the 351 

following expression:  352 

 1 1 1g D d ln d   ( ) ( ) ( )  (47) 

For the intact state, d = 0, g = 1 and a hyperbolic shape criterion can be obtained, which is similar to 353 

those proposed by Ekelen [71] for soils and Carol al. [62] for quasi-brittle materials. At the final 354 

failure state, d  1 and g 0 and purely frictional interface with zero cohesion can be found. 355 
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     356 

(a)      (b)  357 

Figure 3. (a) Evolution of the criterion from the intact condition (green) to a frictional law (blue) 358 

during damage process (red arrows)), and (b) Traction-Separation law of the model for mode I 359 

propagation [63]  360 

 361 

In the context of desiccation cracking, the crack propagation occurs mainly under the mode I and it is 362 

mainly controlled by the parameter R of the model related to the tensile strength of the material. The 363 

parameter C has no significant effect on the propagation process.  364 

The fracture energy dissipation rate G
c
 can be related to the stress intensity factor KIC, the elasticity 365 

modulus and the Poisson ratio in the framework of the LEFM [72]. Moreover, the equivalence of the 366 

LEFM and the CFM has been established in terms of crack propagation. The fracture energy 367 

dissipation rate G
c
 is obtained by the integral of the surface under the traction-separation law and its 368 

expression as a function of cohesive crack parameters is proposed as follows [63]:  369 

 
2

1/ 2 ( 1)c R

nn

G
R

 


    (48) 

The effective stress is formulated to describe the mechanical behavior of the soil matrix and the failure 370 

criterion of the cohesive cracks. The suction is calculated in the matrix from the governing equations 371 

given in the previous section, whereas the crack is supposed to be empty and therefore no fluid 372 
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pressure exists in the crack. The effective stress takes different values in the crack (joint elements) and 373 

in the matrix whereas the continuity of total stress is ensured at the interface between the matrix and 374 

the joint elements.  375 

The crack opening e changes with the deformation from the initial value e0  to:  376 

0 ne e u= +  (49) 

This crack opening change is considered to modify its hydraulic conductivity. The soil matrix is 377 

assumed to be an isotropic elastic linear material obeying Eq.(2).  378 

3.3. Hydro-mechanical coupling 379 

The coupling between mechanical and hydraulic problems is performed by a sequential resolution of 380 

the two problems and the interactions between them. For each time increment, the hydraulic problem 381 

is calculated in the beginning by Eqs. (42) and (43). The outputs corresponding to soil suction, degree 382 

of saturation and hydraulic conductivity of soil are then used as inputs for the mechanical problem. 383 

For the soil matrix, the hydro-mechanical coupling (Eq.(2)) allows updating the effective stress and 384 

calculating the soil strain. The effect of soil strain on the pore pressure field is ignored. The 385 

mechanical problem results are then input into the hydraulic problem to change the crack opening e 386 

(Eq.(43)) and update the hydraulic conductivity of the crack c following the cubic law [52].  387 

4. Comparison between analytical and numerical results 

388 

4.1. Model parameters and boundary conditions for numerical simulation 

389 

The numerical simulation presented here focuses on a single crack propagation supposing that the 390 

crack spacing is known. A rectangular sample of 1 m in width, supposed to represent the crack 391 

spacing, and 4 m in height, supposed to be greater than the ultimate crack depth, is simulated (see 392 

Figure 4). Joint elements are inserted by the code Porofis [48] in the FEM model on the crack 393 

propagation path which is considered to be known in the present work. The initial stiffness of the 394 
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crack, before damage, is high and so the presence of the joint elements in the model does not affect the 395 

deformability of the model before cracking. 396 

For the mechanical boundary conditions: the horizontal displacement is fixed on the two lateral sides; 397 

the vertical displacement is prevented at the bottom of the sample; and the top surface is free to move 398 

to simulate the settlement. For the hydraulic boundary condition, the desiccation is applied on the top 399 

surface of the sample by a pore pressure that decreases with time. The variation of the applied pore 400 

pressure with time can be expressed by the following function:  401 

0(1 )tp p e    
(50) 

where p0 is the final pore pressure on the top surface and t is time. In this equation,  represents the 402 

desiccation rate: a higher  corresponds to a faster desiccation. The geometry and the boundary 403 

condition of the simulation are presented in Figure 4. The mesh is refined around the cohesive crack 404 

line, almost on the first half from the surface in order to better capture the crack propagation.  405 
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 406 

Figure 4: Geometry and boundary conditions of the model 407 

As explained above, the cohesive crack was used to model the desiccation cracks initiation and 408 

propagation. Several studies indicated that the desiccation cracking occurs mainly in opening mode 409 

(mode I) [15,16,19,73] and this mode is also assumed in the present work. Thus, the main parameters 410 

of the cohesive crack are: normal joint stiffness Rnn, tensile strength R, and initial crack opening e0. 411 

The crack tensile strength R was taken to be equal to the soil tensile strength. The initial value of the 412 

normal stiffness Rnn is taken to be sufficiently high, and that of the hydraulic conductivity (related to 413 

the initial opening e0) is sufficiently small so as to have negligible effects on the global elasticity and 414 

permeability of the model before cracking. The parameter in the damage model corresponds to the 415 

ductility of the material and can be obtained from the experimental curves [74]. In this work,  was 416 

taken to be equal to 1, which implies that the tensile stress of the fracture starts to decrease at the onset 417 

of damage (see Figure 3). The parameters Ccoh and  do not affect the mode-I crack propagation 418 

considered in the present work. However, these parameters must satisfy the inequality 419 
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coh / tan RC   for the hyperbolic strength surface. For this reason, Ccoh was chosen as 420 

coh 1.5 tanRC   . 421 

The soil parameters are identical to those used by Konrad & Ayad [19]. The water retention curve is 422 

fitted from the experimental curve [19] with two constants θ, n (m = 1-1/n) of the Van Genuchten 423 

model (Eq.(41)). The Figure 5 shows the water retention curves given by the experimental data [19] 424 

and the model.  425 

 426 

Figure 5 : Water retention curve (Experimental data from [19]) 427 

Table 1 presents the main parameters for the soil studied [19], for the cohesive crack and for the 428 

desiccation loading function used in numerical simulation. In this table, E represents the soil elasticity 429 

modulus,  is the Poisson ratio and ks is the hydraulic conductivity of soil at saturated state. 430 

Table 1: Parameters of the numerical simulation  431 

Soil E (MPa)  (-) ks (m/s) Water retention curve (Van Genuchten model) 

θ  (MPa
-1

) n (-) m (-) Sres (-) 
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10 0.3 5×10-6 310 1.1 0.09 0.02 

 432 

Crack Rtt 

(MPa/m) 

Rnn 

(MPa/m) 

Rtn = Rnt 

(MPa/m) 

R 

(MPa) 

Ccoh 

(MPa) 

 

(°) 

β 

(-) 

e0 

(m) 

1 10000 0 0.01 0.006 20 1 10
-5 

 433 

Desiccation rate p0 (MPa) α (-) 

-0.03 50 

 434 

4.2. Suction evolution and two phases of the desiccation process following the numerical 

435 

approach 

436 

 437 

 438 
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(a) 439 

 440 

 441 

(b) 442 

Figure 6: Suction profile with different suctions at the top surface (following the numerical approach) 443 

The Figure 6a shows the pore pressure distribution, including the deformed shape of the sample for 444 

three suctions at the top surface calculated by the numerical approach. Before cracking, the pore 445 

pressure is almost homogenous in each horizontal section. The suction profiles are presented in the 446 

Figure 6b for various suctions at the top surface. It can be seen that the suction increases (or pore 447 

pressure decreases) gradually on the top surface due to the applied boundary condition. This suction 448 

penetrates from the top to the deeper parts of the sample due to moisture transfer. The highest suction 449 

is always on the top surface, and it decreases gradually with the depth. Two phases can be identified 450 

from Figure 6a. In the first phase (s = 0.01 MPa, for example), the sample presents only settlement 451 

without cracking, and the presence of the cohesive crack does not influence the pore pressure 452 
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distribution. In the second phase (s = 0.0184 MPa), the crack initiated partially by an opening, and the 453 

crack hydraulic conductivity increases by representing higher suction values around its location 454 

(Figure 6a). The suction at the initiation of the crack was about 0.018 MPa. This suction is close to the 455 

air-entry value (0.02 – 0.03 MPa) observed on the water retention curve plotted in the Figure 5. This 456 

result is in agreement with previous experimental observations [10,11,45]. 457 

The mechanism of crack initiation can be further studied in Figure 7 by the stress criterion. Figure 7 458 

shows the tensile stress evolution of all joint elements along the line of the crack from the top surface 459 

to 1 m depth. It can be observed that, from s = 0.008 MPa to s = 0.017 MPa, the tensile stress develops 460 

gradually in the upper part of the model (from y = 0 to y = 0.5 m), and the highest stress is on the top 461 

surface, which corresponds to the desiccation condition (Figure 6). In this period, the tensile stress 462 

increases but remains smaller than the tensile strength (0.01 MPa). Therefore, all joint elements 463 

remain in the elastic phase in which no damage occurs and no crack can be observed. It is the first 464 

phase explained above where the sample presents only settlement without cracking (Figure 6a). When 465 

s = 0.018 MPa, the tensile stress at the top surface (y = 0) reaches the tensile strength (0.01 MPa), the 466 

damage phase begins, and the second phase with the initiation of the crack starts. The propagation of 467 

the crack in the crack initiation phase occurs suddenly. When s = 0.0184 MPa, all joint elements from 468 

y = 0 to y = 0.31 m are damaged. This damage is represented by the stress relaxation. This can be 469 

considered as the critical moment that distinguishes the two phases of the analysis: before and after 470 

crack initiation.  471 

 472 
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 473 

Figure 7: Tensile stress profile at various suctions on top surface following the numerical approach 474 

4.3. Displacements and energy before cracking 

475 

As explained above, the horizontal displacement ux is assumed to be zero and the settlement uy varied 476 

only vertically before cracking. This settlement can be calculated analytically with the soil parameters 477 

and the suction profiles (Eq. (26)). From the given pore pressure distribution presented in Figure 6b, 478 

the settlement with the depth of the model is analytically calculated to compare with the numerical 479 

simulation results (see Figure 8). That shows good agreement between the settlements calculated by 480 

analytical solution (lines) and the ones calculated by numerical simulation (points). The settlement 481 

increases during the desiccation, and the maximum settlement is on the top of the sample.  482 
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483 

Figure 8: Settlement field before cracking  484 

 485 

 486 
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 487 

Figure 9: Elastic strain energy versus suction on the top surface 488 

 489 

The elastic strain energy before cracking can be analytically calculated as a function of the soil 490 

parameters and the suction evolution (Eq. (27)). In the numerical simulation, the elastic strain energy 491 

E
num

 of the sample is calculated by the following equation: 492 

1 1
( ) : : ( ) : :

2 2

num L LE u u dv
 

 
    
 
  R   C  (51) 

where u and R are the opening and normal stiffness of the joint elements. 493 

The Figure 9 shows good agreement between the elastic strain energy evolution for the numerical 494 

simulation and the analytical results.  495 

4.4. Crack depth in the initiation phase 496 

As mentioned above, in this simulation, the crack is initiated when s = 0.0184 MPa. The pore pressure 497 

profile at this moment can be applied in the analytical approach to calculate the energy released by 498 

cracking and to predict the crack depth in its initiation stage for a known half-spacing D.  499 
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The energy evolution of the model during desiccation and the evolution of the crack depth in this 500 

period are initially determined by the numerical simulation. In the numerical simulation, the crack 501 

depth is considered as the distance from the top surface to the last damaged joint element in which the 502 

damage variable is equal to 1. During the desiccation, the tensile stress increases due to the increase of 503 

suction, and the damage process begins when the tensile stress reaches the tensile strength (Figure 7). 504 

The elastic strain energy of the sample is calculated by Eq.(48). Figure 10 shows the elastic strain 505 

energy and crack depth evolution calculated by the numerical simulation. At the beginning, from s = 0 506 

to s = 0.01835 MPa, the elastic strain energy of the sample increases due to the increase of suction 507 

(Figure 10a). During this period, the crack remains closed. At s = 0.01835 MPa, the elastic strain 508 

energy decreases markedly, and the energy is dissipated due to the initiation of a crack with a depth of 509 

0.31 m. It can be seen that this crack is propagated with two main phases: in the first phase, the crack 510 

propagates suddenly in a very short time (instable propagation phase) to reach an ultimate length (see 511 

Figure 10b), and in the second one, a stable and gradual propagation of the crack occurs.  512 

 513 

 514 

Figure 10: Elastic strain energy and crack depth versus suction on the top surface by the numerical 515 

approach 516 

In the analytical approach, the pore pressure profiles numerically calculated (Figure 6b) are applied 517 

(Eq.(40)) to calculate the normalized dissipated energy /L for different crack depths. In the energy 518 

approach, the crack initiates when the energy criterion is satisfied, i.e., /L  G
c
 (Eq.(25)).  519 
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Figure 11 shows the normalized dissipated energy /L (analytically calculated) versus crack depth for 520 

various suctions at the top surface. The fracture energy dissipation rate G
c
 calculated by Eq.(48) is also 521 

plotted in this figure. It can be seen that the energy criterion is satisfied with s = 0.01 MPa when the 522 

peak of the normalized dissipated energy curve /L reaches G
c
. If the energy criterion alone was 523 

sufficient for crack propagation, this state could be the onset of crack propagation. However, Figure 7 524 

shows that, at this moment, the tensile stress is still smaller than the tensile strength. According to the 525 

Leguillon’s theory the two criteria must be satisfied for the crack initiation takes place. This is well 526 

confirmed by the numerical simulation results since, even though the energy criterion is satisfied at 527 

this moment, this crack does not initiate. Then, the energy strain of the sample continues to 528 

accumulate with increasing suction. When, the tensile stress reaches the soil tensile strength (s = 529 

0.01835 MPa), Figure 7, the criteria of both energy and stress are satisfied, and, at this moment 530 

precisely the crack starts to initiate and propagate (instantaneous energy drop and jump in the crack 531 

depth), Figure 10.  532 

It is interesting to note that the energy criterion provides also an information on the crack depth. 533 

According to the energy criterion, the crack depth must satisfy the condition /L ≥ G
c
. Figure 11 534 

shows that, at the crack initiation moment, s  0.01835 MPa, this condition is satisfied for L= 0.08 to 535 

1.65 m. The crack depth L corresponding to the peak value of /L is approximately equal to 0.33 m 536 

for all the curves. This value of the crack depth is close to the one obtained by the numerical approach 537 

(see Figure 10). Note that Konrad &Ayad [19] used LEFM to study the propagation of desiccation 538 

cracks in the same soil and found an ultimate crack depth of approximately 0.30 m with average 539 

spacing of 1-1.2 m (half-spacing is close to 0.5 m, as in the case of the present study). These results 540 

were in agreement with in situ observation [14,16]. 541 

 542 
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 543 

Figure 11: Normalized dissipated energy versus crack depth for various suctions on the top surface 544 

and the fracture energy dissipation rate G
c
 by the analytical approach 545 

4.5. Displacements and energy after crack initiation 

546 

In this section, the proposed approximate analytical solution of the displacement field after crack 547 

initiation is compared with the numerical results. For this purpose, the suction distribution when s = 548 

0.01834 MPa and a crack depth of L = 0.31 m are considered in the analytical solution (Eqs. (32), (34) 549 

and (37)) to calculate the displacement field. The left side of the crack (from x = 0 – 0.5 m) is studied 550 

in this part. As mentioned above, the subdomain 1 
1 

contains the crack with y  L = 0.31 m, and the 551 
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displacements can be calculated by Eq. (32). For the subdomain 2 
2 

below the crack with y > L = 552 

0.31 m, the displacements can be calculated by Eq. (34), and two constants C1 and C2 can be calculated 553 

by Eq. (37). 554 

Figure 12 shows the deformed mesh calculated by the numerical simulation (dashed lines) and the 555 

analytical solution (continuous lines). The displacement presented here is amplified 300 times for a 556 

clear visualization. The horizontal displacement in the crack line (x = 0.5 m) shows the opening of the 557 

crack. In this analytical solution, the horizontal displacement is approximated as a linear function of y. 558 

It can be observed that the horizontal displacement is maximal on the crack line and decreases from 559 

this line to the left side. In addition, the settlement after crack initiation is not uniform in each 560 

horizontal section, but the maximal settlement is obtained on the left side (center of the unit cell 561 

because of the symmetry conditions), and the minimal settlement is obtained on the crack line. A 562 

reasonable agreement between the numerical simulation results and the approximate analytical 563 

solution can be observed.  564 
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Figure 12: Deformed mesh according to the analytical and numerical results 565 

 566 
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4.6. Crack depth versus cracks spacing  567 

To investigate the effect of the half-spacing D on the numerical results, the following values are 568 

considered: 0.4 m, 0.5 m, 0.6 m, 0.75 m and 1.0 m by using different meshes. In these tests, the same 569 

soil parameters and the same boundary conditions of the previous test are used. The numerical results 570 

show that the crack initiation occurs with a similar suction profile for all five tests (s = 0.016 – 0.019 571 

MPa). This suction profile is applied to calculate the normalized dissipated energy /L using Eq. 39. 572 

Figure 13 presents the evolution of the crack depth numerically calculated for the five tests with 573 

different half-spacing D values. At the beginning, the crack is not initiated yet, which corresponds to 574 

the elastic phase of joint elements. When the damage criterion is reached, the crack propagates 575 

markedly to reach the ultimate depth. After this moment, the crack propagates slowly. From this 576 

figure, the ultimate crack depth in the crack initiation phase for each test can be determined by the 577 

numerical simulation. 578 

 579 

 580 

Figure 13: Crack depth versus suction on the top surface for various half-spacing values calculated by 581 

the numerical simulation 582 
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Figure 14 shows the normalized dissipated energy /L versus the crack depth L for various D values 583 

calculated by the analytical approach (Eq.(40). These results allow determining the crack depth 584 

obtained by the energy approach if the crack depth corresponding to the peak of the /L curve is 585 

accepted. Figure 15 presents the crack depth for different half-spacing values calculated by the 586 

numerical simulation and the analytical (energy) approach. A good agreement between the two 587 

approaches confirms that the crack depth analytically calculated is equal to the depth corresponding to 588 

the maximal normalized dissipated energy. From this conclusion, the proposed energy approach can 589 

be used to predict the crack depth in its initiation phase with a given spacing. 590 

 591 

 592 

Figure 14: Normalized dissipated energy versus crack depth at crack initiation for different values of 593 

the half-spacing D by the analytical approach 594 
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 595 

Figure 15: Crack depth versus half-spacing calculated by the numerical and analytical approaches 596 

5. Discussions

 

 

597 

The analytical study in this work is based on the approximation of the displacement field after crack 598 

initiation by simple functions of x and y. A second-degree polynomial function of x with coefficients 599 

depending on y is considered. The dependency on y is also restricted to a second-degree polynomial 600 

function along the crack depth. This approximation could be improved to obtain more accurate results. 601 

However, this simple solution seems to give reasonable values of displacement (Figure 12) and a good 602 

prediction of crack depth compared to the numerical results (Figure 15).  603 

The proposed analytical solutions allow calculating the elastic energy released by cracking which 604 

depends on both crack depth and spacing. They allow predicting a crack depth corresponding to a 605 

given crack spacing and vice versa. The crack spacing can be considered as the distance between two 606 

neighboring opened cracks. Numerically, this spacing can be obtained by placing a set of cohesive 607 

cracks in the model. Some cracks will be opened and the spacing will be detected automatically.  But 608 
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the simulation of the multi-crack case is very challenging. In order to simplify the numerical 609 

simulation for a given crack spacing, a case of a single crack is investigated in this work. The cracking 610 

process is then limited to the initiation and propagation of a single cohesive crack located in the 611 

middle of the sample. Besides, in the present work the crack depth calculated analytically from 612 

fracture energy analysis is compared with that obtained by numerical simulation; this latter combines 613 

both the stress and energy criteria. This result is also in good agreement with the analysis of Konrad & 614 

Ayad based on LEFM [19] and in situ observation [14,16]. As mentioned above, the soil parameters 615 

and the water retention curve used in this study are identical to those used by Konrad & Ayad [19]. 616 

The numerical results show that the crack initiates at a suction on the surface of 18 kPa, which is close 617 

to that observed by Konrad & Ayad [14] on the field (20 kPa). In addition, the value for the crack 618 

depth experimentally observed was 0.3 m and the theoretical value obtained in the present work is also 619 

similar (0.31 m for 1 m spacing introduced in the model).  620 

The proposed energy approach was established by assuming that a set of cracks with the same depth 621 

and same spacing appears instantaneously. This simplifies the problem and allows studying only one 622 

half of a periodic cell containing a crack. In reality, the cracking pattern evolves to form sequentially 623 

different families of cracks ([8,75]). First, primary cracks are developed dividing the soil surface into 624 

cells and then subsequent drying tends to subdivide these cells in the form of secondary and tertiary 625 

crack families. In addition, the crack patterns observed experimentally by Peron et al. [34] showed that 626 

the crack network formation can result from the combination of two processes, “sequential infilling” 627 

and “simultaneous growing,” since the cracks tend to appear either successively or simultaneously. 628 

The sequential infilling occurs to create different families of cracks, but the simultaneous growing can 629 

occur within each family. The “sequential infilling” concept for desiccation cracking should be 630 

invoked only when cells of an intact material with a reduced, well-defined size can be individualized 631 

[34]. The initiation of crack is influenced by the two major factors : stress distribution and presence of 632 

flaws [28]. Therefore, the simultaneous propagation can occur in the long specimens with few flaws 633 

[34]. Crack “simultaneous growing” in large mud slabs, forming a regularly spaced crack pattern 634 
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within a short amount of time, is also a common observation [14,76].The present approach represents 635 

the “simultaneous growing” process which can occur and create the cracks in one family.  636 

The existence of an unstable or instantaneous crack propagation, corresponding to the crack initiation 637 

phase considered in the present work, has already been observed experimentally in [9] where the crack 638 

reached the ultimate depth in a short time. This ultimate depth corresponding to the unstable 639 

propagation was also calculated by theoretical investigations [15,19]. It is interesting to note that, by 640 

using cohesive joints elements, this phenomenon is found automatically as a result of numerical 641 

simulation of the process. It is also interesting to note that the energy criterion is satisfied before the 642 

stress criterion, and thus, at the initiation moment, some energy excess is available to make the 643 

fracture propagate up to the ultimate depth. This vision conforms to Leguillon’s theory [35,77] for 644 

crack initiation conditioned by a double stress and energy criteria. However, there is a difference in the 645 

present study concerning the stress condition. In Leguillon’s theory, the stress on the entire crack 646 

length has to be greater than or equal to the tensile strength of the material. In this study, based on 647 

cohesive zone models, the damage in the joint elements, representing the crack propagation process, is 648 

triggered when the stress in the first element on the top surface of the sample reaches the stress limit. 649 

As a result, the stress condition would be satisfied when the stress reaches the limit just on the soil 650 

surface. The opening of the first element on the top surfaces modifies then the tensile stress profile 651 

inducing the crack propagation (Fig. 6). Besides, according to Amarasiri & Kodikara [24], when the 652 

available strain energy is larger than the required fracture energy for a full crack to develop, the crack 653 

can propagate to the full depth uncontrollably. They also used the cohesive crack method with 654 

softening law to model the desiccation cracking and indicated that in some cases there is more energy 655 

than needed for fracture propagation. In these cases (where the crack opening at which the stress drops 656 

to zero is small), the extra energy is likely to be converted mostly to kinetic energy, and cracks will 657 

propagate instantaneously. However, the kinetic energy is not considered explicitly in the present 658 

work.  659 

6. Conclusions  

660 
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In the present work, a complementary energy approach is proposed to analyze soil desiccation 661 

cracking, which is commonly investigated by a stress approach. It allows predicting the ultimate crack 662 

depth for a given crack spacing in the initiation phase by calculating the elastic strain energies before 663 

and after crack initiation. 664 

The results show that the energy criterion is reached before the stress criterion. However, the crack 665 

initiates when both criteria are satisfied. The energy dissipation depends on the crack spacing and 666 

depth. When the stress condition is satisfied, the energy condition is already satisfied for a set of 667 

possible pair values (depth, spacing). The numerical analysis shows that the crack depth and its related 668 

spacing can be predicted by the maximum dissipated energy per unit crack depth. This assumption is 669 

based on numerical simulation results and requires further investigation. However, the results obtained 670 

by this assumption show good agreement for the crack depth and the displacement field after crack 671 

initiation between the analytical and numerical results.   672 

Despite some limitations, the approximate analytical solution established in this study allows 673 

estimating of the crack depth for given soil parameters, as well as the crack opening and soil 674 

settlement, which are in good agreement with the numerical results. In the future work, the multi-crack 675 

numerical simulation would be considered to confirm the findings of the present work.   676 
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List of symbol: 848 

Symbol Definition 

 Potential 

B Cracks spacing 

b Biot coefficient 

c Tangential hydraulic conductivity of crack 

Ccoh  Cohesion of joint intact 

£   Linear isotropic elastic tensor 

d Damage variable 

D Half-spacing 

e Crack opening 

e0 Initial crack opening  

E Soil elasticity modulus 

E
after

 Elastic strain energy after crack initiation 

E
before

 Elastic strain energy before crack initiation 

E
num

 Numerical elastic strain energy  

f  Volumetric force 

g  gravitational acceleration 

G
c
 Fracture energy dissipation rate 

k Soil hydraulic conductivity 

ks Hydraulic conductivity of soil at saturated state 

KI Stress intensity factor 

KIC
 

Soil’s fracture toughness 

L Ultimate depth of crack 

n  Normal unit vector to the fracture surface 

N Biot modulus 

p Pore pressure 
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p0  Final applied suction on the top surface 

S Degree of saturation 

Sres  Residual degree of saturation 

u  Displacement vector 

un Normal component of displacement  

u0 Elastic displacement limit 

t  Time 

T  Prescribed forces 

R Joint stiffness tensor 

Rnn Normal component of joint stiffness 

v  Discontinuity velocity through two crack faces 

  Constant representing desiccation rate 

β  Parameter related to the material ductility 

s
 Specific rupture energy per unit surface 

 Friction angle 

 Kröneker or Unit tensor 

ε Strain tensor 

ε
0
 ; u

0
  Strain and displacement solutions (before crack initiation) 

ε
s
 ; u

s
  Strain and displacement solutions (after crack initiation) 

 Dissipated energy by cracking 

 Lamé coefficients   

 Poisson ratio 

  Porosity 

θ, n, m  Constants of Van Genuchten model 

 Fluid density 

  Total stress tensor 
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’ Effective stress tensor 

R Tensile strength 
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