Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Discovering Visual Patterns in Art Collections with Spatially-consistent Feature Learning

Abstract : Our goal in this paper is to discover near duplicate patterns in large collections of artworks. This is harder than standard instance mining due to differences in the artistic media (oil, pastel, drawing, etc), and imperfections inherent in the copying process. The key technical insight is to adapt a standard deep feature to this task by fine-tuning it on the specific art collection using self-supervised learning. More specifically, spatial consistency between neighbouring feature matches is used as supervisory fine-tuning signal. The adapted feature leads to more accurate style-invariant matching, and can be used with a standard discovery approach, based on geometric verification, to identify duplicate patterns in the dataset. The approach is evaluated on several different datasets and shows surprisingly good qualitative discovery results. For quantitative evaluation of the method, we annotated 273 near duplicate details in a dataset of 1587 artworks attributed to Jan Brueghel and his workshop. Beyond artwork, we also demonstrate improvement on localization on the Oxford5K photo dataset as well as on historical photograph localization on the Large Time Lags Location (LTLL) dataset.
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-02104041
Contributeur : Xi Shen Connectez-vous pour contacter le contributeur
Soumis le : mardi 16 février 2021 - 15:29:26
Dernière modification le : mercredi 27 octobre 2021 - 12:57:23
Archivage à long terme le : : lundi 17 mai 2021 - 20:12:11

Fichier

Shen_Discovering_Visual_Patter...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

`

Citation

Xi Shen, Alexei A. Efros, Mathieu Aubry. Discovering Visual Patterns in Art Collections with Spatially-consistent Feature Learning. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2019, Long Beach, CA, United States. pp.9270-9279, ⟨10.1109/CVPR.2019.00950⟩. ⟨hal-02104041⟩

Partager

Métriques

Consultations de la notice

102

Téléchargements de fichiers

121