Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

A multilevel algebraic error estimator and the corresponding iterative solver with $p$-robust behavior

Abstract : In this work, we consider conforming finite element discretizations of arbitrary polynomial degree $p \ge 1$ of the Poisson problem. We propose a multilevel a posteriori estimator of the algebraic error. We prove that this estimator is reliable and efficient (represents a two-sided bound of the error), with a constant independent of the degree $p$. We next design a multilevel iterative algebraic solver from our estimator and we show that this solver contracts the algebraic error on each iteration by a factor bounded independently of $p$. Actually, we show that these two results are equivalent. The $p$-robustness results rely on the work of Schöberl et al. [IMA J. Numer. Anal., 28 (2008), pp. 1–24] for one given mesh. We combine this with the design of an algebraic residual lifting constructed over a hierarchy of nested unstructured, possibly highly graded, simplicial meshes. The lifting includes a global coarse-level solve with the lowest polynomial degree one together with local contributions from the subsequent mesh levels. These contributions, of the highest polynomial degree $p$ on the finest mesh, are given as solutions of mutually independent local Dirichlet problems posed over overlapping patches of elements around vertices. The construction of this lifting can be seen as one geometric V-cycle multigrid step with zero pre- and one post-smoothing by (damped) additive Schwarz (block Jacobi). One particular feature of our approach is the optimal choice of the step-size generated from the algebraic residual lifting. Numerical tests are presented to illustrate the theoretical findings.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [52 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02070981
Contributeur : Ani Miraçi <>
Soumis le : mardi 24 mars 2020 - 12:16:24
Dernière modification le : mardi 30 juin 2020 - 03:33:25

Fichier

MirPapVoh_19_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02070981, version 3

Collections

Citation

Ani Miraçi, Jan Papež, Martin Vohralík. A multilevel algebraic error estimator and the corresponding iterative solver with $p$-robust behavior. 2020. ⟨hal-02070981v3⟩

Partager

Métriques

Consultations de la notice

106

Téléchargements de fichiers

42