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Debonding of a circular inclusion: asymmetric propagation of a pair of cracks

V.H.T. Lea, S. Brisarda,∗, A. Pouyaa

aUniversité Paris-Est, Laboratoire Navier, UMR 8205, CNRS, ENPC, IFSTTAR, F-77455 Marne-la-Vallée, France

Abstract

Crack propagation associated with two initially symmetrical cracks located at the interface between an inclusion and the surrounding
matrix, subjected to remote traction, is studied by means of Griffith’s energy criterion within the framework of Linear elastic fracture
mechanics. Using Muskhelishvili’s method of complex potentials, we derive semi-analytical expressions of the stress intensity
factor and energy release rate at the crack-tip. Finally, the discussion of the crack propagation mode is investigated. Based on
these results, we discuss the mode of propagation of the cracks. Our analysis points at the possibility of a single-sided, rather than
simultaneous, symmetric crack growth, even if both initial configuration and loading are symmetric.

Keywords: Interfacial crack, Complex potentials, Stress intensity factor, Energy release rate, Griffith’s energy criterion,

1. Introduction

A wide range of industrial materials as well as geomaterials
fall into the category of matrix-inclusion composites. For such
materials, debonding (interfacial cracking) is central to damage
propagation and ultimate failure. From the perspective of mod-
elling, it is therefore essential to be able to accurately describe
the overall behavior of matrix-inclusion composites with par-
tially cracked interfaces. The first step towards this goal is the
analysis of interfacial cracks located at the boundary of a single
inclusion, embedded in an infinite matrix.

Perlman and Sih (1967) and Toya (1974) have made signif-
icant contributions to the problem of a circular inclusion sub-
jected to a uniform remote stress (plane, linear elasticity). These
authors used the complex variable method of Muskhelishvili
(1953) (see also Milne-Thomson, 1968) to derive closed-form
solutions. More recently, Prasad and Simha (2002, 2003) used
the same approach to analyze the case of a point load acting
anywhere in the matrix. Similarly, Theotokoglou and Theotokoglou
(2002) studied the case of a single interface crack and a non-
uniform far field. They used the obtained solution to study the
interaction between a curved interface crack and a straight bulk
crack. This solution was later extended to a periodic array of
fibers by Kushch et al. (2010). Finally, Hasebe et al. (1986);
Hasebe and Yamamoto (2014, 2015) recently studied branch-
ing into the matrix. However, their approach, based on confor-
mal mapping, seems to be significantly more involved than the
approach of Perlman and Sih (1967).

Like fracture of homogeneous materials, fracture of bima-
terials is governed by the asymptotic behavior of the stresses
near the crack tip. Unlike homogeneous materials, though, the
crack opening derived from a linear elastic analysis exhibits an
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oscillatory character near the crack tip, owing to the presence
of a riε factor [r: distance to the crack tip; ε: bimaterial constant
of Williams (1959)]. These oscillations make the linear elastic
solution unphysical, since they result in the interpenetration of
the upper and lower crack faces near the crack tip (Sun and Jin,
2012). However, as argued by e.g. Rice (1988), the solution re-
mains relevant for the purpose of analyzing crack propagation.

The state of stress at the tip of interfacial cracks combines
both modes I and II, and the energy release rate G , combined
with Irwin’s formula (Irwin, 1957), which is known to extend to
interfacial cracks (Malyshev and Salganik, 1965; Sun and Jih,
1987), was used to carry out this analysis.

The motivation for this work is the development of a mi-
cromechanical model for composites accounting for partially
bounded inclusions and propagation of interfacial cracks. The
basic building block for such a model is the fundamental so-
lution to the problem of a single, partially bonded inclusion.
In the case of uniaxial tension, hasty symmetry considerations
would predict that two symmetrical cracks will develop (see
figure 1 with β1 = β2). However, many studies suggest that,
even under uniaxial tension, cracks may nucleate and propagate
asymmetrically (Leguillon, 2002; Mantič, 2009; Kushch et al.,
2011a; Garcı́a et al., 2015).

The present work is therefore an investigation of the fun-
damental solution to the problem of two coaxial arc cracks of
differing lengths around the interface of a circular inclusion,
embedded in a homogeneous matrix and subjected to a remote
stress. Within the framework of the Muskhelisvili complex po-
tentials, we thus extend two special cases already studied in
the literature: indeed, taking first β2 = 0, then β1 = β2 (see
figure 1), we retrieve the solutions of Perlman and Sih (1967);
Toya (1974); Prasad and Simha (2003) for a single crack and
of Prasad and Simha (2002) for two cracks that have the same
length. Propagation of the crack(s) is then analyzed by means
of energetic arguments.

The paper is organised as follows. In section 2, we briefly
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Figure 1: Two asymmetrical cracks at the inclusion-matrix interface under uni-
form stress at infinity

overview the derivation of our fundamental solution. In sec-
tion 3, we deduce from this solution the complex stress inten-
sity factors at the crack tip along an inclusion-matrix interface
and the total energy release rate. The resulting semi-analytical
expressions are compared with direct numerical simulation by
the finite element method and the displacement extrapolation
method (Ryoji and Sang-Bong, 1989; Gager, 2010). As an ap-
plication, using energy-based arguments, section 4 finally dis-
cusses the symmetric vs. asymmetric propagation of two ini-
tially symmetric interfacial cracks.

2. Formulation and solution of problem

We consider the problem of a circular inclusion (radius:
a) embedded in an infinite matrix, and subjected to a uniform
stress at infinity. The matrix-inclusion interface is cracked along
arcs L1 and L2. Both cracks are symmetrical about the horizon-
tal axis; the arc cracks Li (i = 1, 2) subtend an angle 2βi (see
figure 1). The Young modulus and Poisson ratio of the inclu-
sion (resp. the matrix) are denoted E1 and ν1 (resp. E2 and ν2).
Finally, it will be convenient to introduce the domains S + (resp.
S −) occupied by the inclusion (resp. the matrix).

The remainder of this section is devoted to the derivation
of the solution to this problem. Following Prasad and Simha
(2002) who studied the case of two identical cracks, we use the
method of complex potential functions (Muskhelishvili, 1953;
Milne-Thomson, 1968).

Before we proceed with the derivation, it should be noted
that symmetry about the horizontal axis is not necessary. The
general solution of Perlman and Sih (1967) applies even to un-
symmetric cases. However the symmetry assumption allows us
to go farther than these general solutions and to derive semi-
analytical expressions of the stress intensity factors. These so-
lutions are crucial for the discussion of stability.

2.1. General form of the solution
Following the notation of Milne-Thomson (1968), the dis-

placement u and stress σ are expressed in terms of the complex
functions W and w as follows

(σrr) j + (σrθ) j = W j(z) + W j(z), (1)

2
[
(σrr) j + i(σrθ) j

]
= W j(z) + W j(z) − zW

′
j(z) − (z/z)w j(z), (2)

4µ j
∂

∂θ

[
(ux) j + i(uy) j

]
= iz

[
κ jW j(z) −W j(z) + zW

′
j(z)

+ (z/z)w j(z)
]
, (3)

where j = 1 for z ∈ S + (inclusion) and j = 2 for z ∈ S − (matrix)
and

κ j, plane stress =
3 − ν j

1 + ν j
and κ j, plane strain = 3 − 4ν j. (4)

We will also use the following bi-material constants

α =
µ1 + κ1µ2

µ2 + κ2µ1
, m =

µ1(1 + κ2)
µ2(1 + κ1)

and ε =
lnα
2π

, (5)

where µi = Ei/[2(1 + νi)], i = 1, 2 denotes the shear modulus,
Ei denotes the Young modulus and νi denotes the Poisson ratio;
ε is known as the oscillatory index.

For circular cracks, it is convenient to introduce the func-
tions Ω j defined as follows (Perlman and Sih, 1967; Prasad and
Simha, 2002)

Ω j(z) = −W j

(a2

z

)
+

a2

z
W
′
j

(a2

z

)
+

a2

z2 w j

(a2

z

)
. (6)

Perlman and Sih (1967) derived the general expression of
W1, W2, Ω1 and Ω2 for a set of n circular cracks. Following the
notation of Prasad and Simha (2002), these expressions read,
for n = 2

(1 + α)W1(z) = mQ(z) + χ(z)P(z), (7)
(1 + α)Ω1(z) = mQ(z) − αχ(z)P(z), (8)
(1 + α)W2(z) = Q(z) + αχ(z)P(z), (9)
(1 + α)Ω2(z) = Q(z) − χ(z)P(z), (10)

where we have introduced the Plemelj function (z1 = aeiβ1 , z2 =

aei(β2−π))

χ(z) = (z − z1)−
1
2 +iε(z − z1)−

1
2−iε(z − z2)−

1
2 +iε(z − z2)−

1
2−iε , (11)

and

Q(z) = e0+
t1
z

+
t2
z2 , P(z) = P2z2+P1z+P0+

P−1

z
+

P−2

z2 , (12)

e0, t1, t2, P−2, . . . , P2 being 8 constants to be determined. This
is discussed in the next section.

2.2. Determination of the integration constants
The 8 integration constants introduced above are found from:

i. the behavior at infinity of W2 and w2 (4 equations), ii. the an-
alyticity of W1 and w1 at z = 0 (3 equations) and iii. the single-
valuedness of the displacements (1 equation). These three items
are briefly described below.
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Behavior at infinity of W2 and w2. From Milne-Thomson (1968,
chap. IV, §4.10), these functions behave as follows

W2(z) = A∞ + O(z−2) (z→ ∞), (13)

w2(z) = B∞ + O(z−2) (z→ ∞), (14)

where

2A∞ = σ∞xx + σ∞yy and B∞ = σ∞yy − σ∞xx + 2iσ∞xy, (15)

and σ∞ denotes the remote stress.
In the present section, we will make use of the asymptotic

expansions of the Plemelj function χ at infinity and about the
origin

χ(z) = z−2[1 + z−1F21 + O(z−2)] (z→ ∞), (16)

χ(z) = F10
(
1 + zF11 + z2F12

)
+ O(z3) (z→ 0), (17)

where the symbols Fi j were introduced by Prasad and Simha
(2002) for β1 = β2. For β1 , β2, we find

a2F10 = − exp
[
2ε (β1 + β2)

]
, (18)

aF11 = cos β1 − cos β2 + 2ε
(
sin β1 − sin β2

)
, (19)

a2F12 = ε2(2 − cos 2β1 − cos 2β2 − 4 sin β1 sin β2
)

+ 2ε
[
sin 2β1 + sin 2β2 − sin(β1 + β2)

]
+ 1

2 + 3
4
(
cos 2β1 + cos 2β2

) − cos β1 cos β2, (20)

a−1F21 = cos β1 − cos β2 − 2ε
(
sin β1 − sin β2

)
. (21)

Plugging expansion (16) into equation (9) and identifying
with equation (13), we find

αP2 + e0 = (1 + α) A∞ and αP1 + αF21P2 + t1 = 0. (22)

Then, combining equations (6), (13) and (14) delivers the
following expansion of Ω2 at z = 0

Ω2(z) =
a2

z2 B∞ + O(1) (z→ 0), (23)

which upon identification with equation (10) leads to

−F10P−2 + t2 = (1 + α) a2B∞, (24)
F10F11P−2 + F10P−1 − t1 = 0. (25)

Analyticity of W1 and w1 at z = 0. We finally express that both
W1 and w1 must be analytic at z = 0. Expanding equation (7)
and expressing that the negative power of z must vanish lead to

F10P−2+m t2 = 0 and F10F11P−2+F10P−1+m t1 = 0. (26)

To express the analyticity of w1 at z = 0, we combine equa-
tions (6) with the asymptotic expansions of equations (7) and
(8) at z→ 0 and z→ ∞, respectively. We get

F10F12P−2 + F10
(
F11P−1 + P0

) − αP2 + m
(
e0 + e0

)
= 0, (27)

and

αP1 + αF21P2 − m t1 = 0. (28)

Equations (22), (24), (25), (26) and (28) then lead to

e0 = (1 + α) A∞ − αP2, t1 = 0, t2 =
1 + α

1 + m
a2B∞, (29)

P−2 = − m
F10

t2, P−1 =
m F11

F10
t2, P1 = −F21P2, (30)

and it is seen that there remains only two unknown integration
constants, namely: P0 and P2, which are related through equa-
tion (27)

α
(
1 + 2m

)<(P2) − iα=(P2) − F10P0 = m
1 + α

1 + m
[
2
(
1 + m

)
A∞

+
(
F2

11 − F12
)
a2B∞

]
, (31)

where < and = denote the real and imaginary parts of their
argument.

Single-valuedness of the displacements. The remaining equa-
tion is found from the condition of single-valuedness of the dis-
placements (Perlman and Sih, 1967)

∫
L j

χ+(t)
(
P2t2 + P1t + P0 + P−1t−1 + P−2t−2)dt = 0, (32)

where it is recalled that L j ( j = 1, 2) denotes one of the two arc
cracks, while χ+ is defined on L1 ∪ L2 as follows

χ+(aeiθ) = lim
r
<→a−

χ+(reiθ). (33)

Selecting crack L1 (located between z = ae−iβ1 and z =

aeiβ1 ) in equation (32), we get the condition

I2P2 + I1P1 + I0P0 + I−1P−1 + I−2P−2 = 0, (34)

where

Ik = ak
∫ β1

−β1

cos
[
ε ln f1(β1, β2, θ) − kθ

]√
f2(β1, β2, θ)

dθ, (35)

for k = −2,−1, 0, 1, 2, with

f1(β1, β2, θ) = g1(β1, β2, θ)/g2(β1, β2, θ), (36)
f2(β1, β2, θ) = g1(β1, β2, θ) g2(β1, β2, θ), (37)

g1(β1, β2, θ) = sin 1
2
(
β1 − θ) cos 1

2
(
β2 − θ) (38)

g2(β1, β2, θ) = sin 1
2
(
β1 + θ

)
cos 1

2
(
β2 + θ

)
. (39)

Integrals (35) are singular; indeed, when θ → β1, the ar-
gument of the logarithm tends to 0, and the numerator of the
integrand oscillates at a frequency that grows exponentially.
In order to minimize round-off errors, numerical evaluation of
these integrals should normally require that: i. the contribu-
tion of each oscillation be computed and stored, ii. positive
and negative contributions (ordered by increasing magnitude)
be summed separately, iii. the sum of all positive contributions
be added to the sum of all negative contributions. Finally, it
should be noted that a rigorous bound on the numerical error
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can be produced by means of standard results on alternating
series.

However, in the present case, the contribution of each new
oscillation decreases exponentially, to the point that even the
first oscillation vanishes up to machine precision. The above
described rigorous approach therefore turned out to be unnec-
essary, and we relied without further precautions on the stan-
dard quad function from the scipy.integrate Python pack-
age1 (wich is a wrapper around the Fortran QUADPACK library)
to compute the integrals Ik.

Expression of P2. Solving equations (31) and (34) finally leads
to

<(P2) =
{
F10

[(
F12I0 − I−2

)<(P−2) +
(
F11I0 − I−1

)<(P−1)
]

+ 2m
(
1 + α

)
I0A∞

}(
2αmI0 − F10F21I1 + αI0

+ F10I2
)−1 (40)

=(P2) = − F10
[(

F12I0 − I−2
)=(P−2) +

(
F11I0 − I−1

)=(P−1)
]

· (F10F21I1 + αI0 − F10I2
)−1
, (41)

and P0 is then deduced from e.g. equation (34).

In the next section, the above results are used to express the
stress intensity factors, from which the total energy release rate
is then deduced. The latter is eventually used in section 4 to
analyse the crack propagation.

3. Stress intensity factors and energy release rate

3.1. Complex stress intensity factor

The analytical solution for a plane interface crack between
two elastic isotropic materials was obtained by Williams (1959)
who found the stresses along the bonded part of the interface
and the relative displacements of two lips of the crack, ∆ui(s) =

ui(s, ϕ = π) − ui(s, ϕ = −π). According to this solution, the
asymptotic expression for the stress and relative displacement
when s→ 0 (s is the distance from the tip) is the following:

σnn(s, ϕ = 0) + iσnt(s, ϕ = 0) =
K√
2π

siε−1/2, (42)

∆un(s) + i∆ut(s) =
8(

1 + 2iε
)

cosh(πε)E∗
K√
2π

siε+1/2, (43)

where s and ϕ are the polar coordinates with pole at the crack-
tip (see Figure 2, left) and 2/E∗ = 1/E∗1 + 1/E∗2 (E∗j = E j

for plane stress problems, E∗j = E j/(1 − ν2
j ) for plane strain

problems).
In the above expressions, K denotes the complex stress in-

tensity factor, with “awkwardly complex” (Rice, 1988) physical
dimensions: MPa · m1/2−iε . It is customary to define stress in-
tensity factors KI and KII in the classical sense (with physical

1https://docs.scipy.org/doc/scipy/reference/tutorial/

integrate.html, last retrieved 2019-01-24.

s

t
n

t

crack tip

Crack tip

n

Figure 2: The local coordinate system (n, t) at the crack tip

dimensions: MPa · √m) through the introduction of an addi-
tional reference length ` (Rice, 1988)

KI + iKII = `iεK . (44)

Selecting an appropriate value for the reference length ` is
in general a difficult task, for which there is no clear method-
ology. However, for the present study, ` can be chosen arbi-
trarily. Indeed, in section 3.3, we compare analytical values
of KI and KII with finite element estimates; for the purpose of
this comparison, ` should merely be seen as a normalization
constant. Then, in sections 3.4 and 4, our analysis of the prop-
agation of cracks is based on the energy release rate G and the
interfacial thoughness Gc. Neither the energy release rate [see
equation (53)], nor the interfacial toughness (which is assumed
constant) depend on `. We therefore chose arbitrarily ` = a in
the remainder of this paper.

The asymptotic expansions (42) and (43) hold for curved
cracks as well. In the present case, σnn and σnt can be related
to σrr and σrθ as follows (see Figure 2, right)

σnn + iσnt = σrr − iσrθ. (45)

From equations (2) and (6), the traction on the bonded part
of the interface can be expressed as

2
[
(σrr)1 + i(σrθ)1

]
(aeiθ) = W+

1 (aeiθ) −Ω−1 (aeiθ), (46)

where β1 < θ < π − β2 (or −π + β2 < θ < −β1). Furthermore,
superscripts + and − in functions W1 and Ω1 denote the limit
values when z → aeiθ from z ∈ S + (inclusion) and z ∈ S −

(matrix), respectively.
Substituting in equation (46) the expressions (7) and (8) of

the complex potentials W1 and Ω1 and using the continuity of
P, Q and χ (in the bonded part of the interface) delivers

σrr + iσrθ = 1
2χ(aeiθ)P(aeiθ). (47)

Then the complex stress intensity factor K at the crack tip
z1 = aeiβ1 is obtained from an asymptotic expansion of χ(aeiθ),
for θ

>→ β1:

aiεK = KI − iKII

=
−i
√

2π exp
[
ε(β1 + β2) − i(εψ + β1)

]
P(aeiβ1 )

4a
√

2a sin β1 cos 1
2
(
β1 + β2

)
cos 1

2
(
β1 − β2

) , (48a)

4
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where

ψ = ln
cos 1

2
(
β1 − β2

)
2 sin β1 cos 1

2
(
β1 + β2

) . (48b)

It is readily verified that the results of Prasad and Simha
(2003) (single crack) and Prasad and Simha (2002) (two identi-
cal cracks) are retrieved from equation (48), if we let β2 = 0 or
β2 = β1 = β, respectively.

3.2. Validity of the solution

Owing to the siε factor in equation (43), the displacements
of the crack surfaces exhibit an oscillatory character, leading
to the upper and lower crack surfaces to overlap near the crack
tip. This is physically unrealistic, and the linear elastic solution
presented above should be replaced with a non-linear solution
accounting for contact. However, as argued by Rice (1988), the
linear elastic solution delivers an acceptable approximation of
the true solution if the size of the contact area remains small
compared with the total crack length.

Let sc be the size of the contact zone; it is the largest value
of s such that ∆un(s) = 0 and

sc ≤ 2aβ1 (49)

(the contact zone must be shorter than the crack). It can readily
be found that sc maximizes under the constraint (49) the fol-
lowing quantity (Sun and Qian, 1997)

sc = exp
[
1
ε

{
tan−1

(<(K) + 2ε=(K)
=(K) − 2ε<(K)

)
+ nπ

}]
, (50)

for n = . . . ,−2,−1, 0, 1, 2, . . .. The above expression does not
depend on the reference length `, as emphasized by the fact
that we used the complex stress-intensity factor K to express
this value rather than KI and KII.

In the case of a hard inclusion subjected to a uniaxial re-
mote stress along the x-axis, we have plotted sc in Figure 3 for
various values of β1 and β2 (for each curve, β2 is fixed, while β1
varies). This figure clearly shows that the extent of the contact
zone remains negligible for values of β1 up to about 55◦. As a
consequence, it will always be assumed in the remainder of this
paper that the cracks are such that β1, β2 ≤ 55◦, so that the lin-
ear elastic solution derived above is an excellent approximation
to the true (non-linear) solution.

3.3. Comparison with a finite element analysis

We performed a finite element analysis of the above prob-
lem with various configurations of the two cracks to check the
consistency of our analytical results. We used the finite element
code Porofis (Pouya, 2015) to perform plane strains simula-
tions.

The model is depicted on figure 4. In order to minimize
boundary effects, we selected a large domain size H = 40a.
Uniaxial tractions σxx = σ∞xx are applied to the left and right
edges of this domain while the upper and lower edges are stress-
free. We used three-node, linear elements and compensated for

0 10 20 30 40 50 60 70
β1

0.000

0.002

0.004

0.006

0.008

0.010

s c
/(

2a
β

1)

β2 = 0◦

β2 = 20◦

β2 = 40◦

β2 = 60◦

β2 = 80◦

β2 = β1

Figure 3: Size of the contact zone sc for a hard inclusion subjected to a uniaxial
remote stress along the x-axis.
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Figure 4: Geometry of the numerical simulations described in section 3.3.

their low accuracy (quadratic elements would have been better-
suited) with a fine mesh (mesh size ∼ 0.001a near the boundary,
away from the crack-tips; mesh size ' 10−5a near the crack-
tips).Various crack geometries were considered (each resulting
in a different mesh):

1. a single crack, i.e β2 = 0 and β1 = 5◦, 10◦, 15◦, . . . , 55◦,
2. two symmetrical cracks, i.e β1 = β2 = 5◦, 10◦, 15◦, . . . ,

55◦,
3. two asymmetrical cracks: β2 = 30◦ and β1 = 5◦, 10◦, 15◦,

. . . , 55◦,

and figure 5 shows the mesh that was used for β1 = 40◦ and
β2 = 30◦. For each geometry, the stress intensity factors are
estimated for the various combinations of material properties

1. E1 = E2 and ν1 = ν2 = 0.25 (homogeneous case),
2. E1 = 10E2, ν1 = 0.2 and ν2 = 0.3 (hard inclusion),
3. E2 = 10E1, ν1 = 0.2 and ν2 = 0.3 (soft inclusion).
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Crack tip

Inclusion

Matrix

Figure 5: Example of triangular mesh that was generated for the asymmetric
case β1 = 40◦ and β2 = 30◦.

We estimated the stress intensity factors KI and KII from
the quantities QI(s) and QII(s) defined as follows [see equa-
tion (43)]:

QI + iQII =
1 + 2iε

8

√
2πE∗ cosh(πε)

(a
s

)iε(
∆un + i∆ut

)
, (51)

where ∆un(s) and ∆ut(s) denote the normal and tangent com-
ponents of the displacement discontinuity (s: arc-length from
crack tip), which are outputs of the numerical code. As s → 0,
this quantity should behave as

QI + iQII ∼ (
KI + iKII

)√
s, s→ 0. (52)

Figure 6 plots nodal values of QI and QII as a function of√
s. As expected, both quantities vary quasi-linearly with

√
s,

which allows to compute KI and KII through linear regression.
To do so, we selected nodes that are both not too close to the
crack-tip (where the quality of the fit deteriorates, owing to
the singularity) and not too far from the crack-tip [where the
asymptotic behavior (52) no longer holds]. We found that the
range 0.03 ≤ √s/a ≤ 0.06 resulted in a satisfactory fit for all
cases considered here.

Figures 7 and 8 show good agreement between the stress
intensity factors thus estimated and the analytical formula (48)
for β2 = 30◦ and the whole range of β1-values listed above.
More extensive comparison (not shown here) confirms that this
good agreement carries through the whole range of β2-values.

3.4. Total energy release rate

Following Sun and Jin (2012), we consider a crack propaga-
tion criterion based on the energy release rate. The total energy
release rate of a bimaterial interface crack can be related to the
complex stress intensity factor through the following extension
of Irwin’s formula (Malyshev and Salganik, 1965):

G =
1

E∗
KK

cosh2(πε)
. (53)

Figure 9 plots, for a hard inclusion under uniaxial far field
stress σ∞xx, the total energy release rate at the crack-tip z1 = eiβ1 .
For each solid curve in this figure, β2 is fixed, while β1 varies
from 0◦ to 60◦. The broken line refers to the energy release rate
for the symmetric case β1 = β2.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08√
s/a

0.00

0.01
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0.06

Q I
,Q

II

QI

QII

Figure 6: Linear regression of the numerical quantities QI and QII, which
should behave linearly w.r.t

√
s. The quality of the fit deteriorates for nodes that

are too close or too far from the crack-tip. Therefore, only the nodes located
in the shaded area are used to perform the linear regression. (hard inclusion,
β1 = 40◦, β2 = 30◦)
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Figure 7: KI and KII vs. β1 (two asymmetrical cracks, β2 = 30◦, hard inclu-
sion).
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Figure 8: KI and KII vs. β1 (two asymmetrical cracks, β2 = 30◦, soft inclusion).

6



0 10 20 30 40 50 60
β1

0

1

2

3

4

G
E
?

a(
σ
∞ xx

)2

β2 = 0◦
β2 = 20◦

β2 = 40◦

β2 = 60◦
β2 = β1

Figure 9: Normalized energy release rate (hard inclusion, uniaxial stress at
infinity).

The plot β2 = 0◦ represents the classical results of Toya
(1974) (single crack). Observation of figure 9 shows that the en-
ergy release rate is a decreasing function of β2 (β1 being fixed).
This can be explained by the fact that, for the same far field
stress, a greater value of β2 decreases the stress intensities at z1.
Note that the same trends are observed for the homogeneous
and the soft inclusion cases (figures not reproduced here).

4. Discussion: symmetric versus asymmetric propagation

In this section, we provide a simple application that illus-
trates how the above analytical results can be used. We con-
sider a partially bonded circular inclusion, as depicted in Fig-
ure 1, with β1 = β2 = β0 (symmetric initial configuration).
It is emphasized that we do not assume that debonding from
β1 = β2 = 0 to β1 = β2 = β0 > 0 occured through a crack nucle-
ation/propagation process. Rather, we assume that the sample
was created with a partially bonded interface and therefore dis-
card any discussion regarding stable vs. unstable propagation
of the cracks from βi = 0 to βi = β0. However contrived, this
example lends itself to an interesting analysis, namely the dis-
cussion of symmetric versus asymmetric crack propagation.

More precisely, the inclusion is subjected to a uniaxial re-
mote tension σ∞xx in the x-direction (Figure 10). When the load-
ing reaches a critical value, cracks 1 and 2 start to propagate. In-
troducing the increments δβ1 and δβ2 of the crack angles, hasty
symmetry considerations suggest that δβ1 = δβ2. The analysis
proposed below shows that in fact, the situation may be more
complex, with two possible outcomes: i. symmetric propaga-
tion (δβ1 = δβ2 > 0) and asymmetric propagation (δβ1 > 0
and δβ2 = 0, or δβ2 > 0 and δβ1 = 0) where only one crack
propagates. Note that these results are supported (and in fact,
motivated) by finite element simulations (not shown here) using
a cohesive zone model.

Our discussion is based on energetic arguments, under the
following assumptions:

1. The selected propagation mode minimizes the total en-
ergy for a prescribed total crack length creation, as ar-
gued by e.g. Griffith (1921); Erdogan and Sih (1963).
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Figure 10: Discussion of the crack growth mode (σC denotes the critical value
of the stress at infinity that results in propagation).

2. Branching of the cracks into the matrix or the inclusion
is not considered.

3. Both cracks propagate symmetrically with respect to the
x-axis.

4. The critical value Gc is assumed constant.

It should be noted that Assumption 3 is a rather strong as-
sumption for which we have no theoretical justification. How-
ever, our numerical simulations seem to confirm that symmetry
will first be broken about the y-axis, rather than the x-axis, as
we intuitively thought.

The total energy Π of the system, to be minimized accord-
ing to assumption 1, is the sum of the potential energy Wp and
the dissipated energy Ws. Owing to assumption 4, we have
Ws(β1, β2) = 2a (β1 + β2) Gc, and

Π(β1, β2) = Wp(β1, β2) + 2a (β1 + β2) Gc. (54)

Starting from an initial configuration (β1, β2), propagation
will occur if a nearby configuration (β1 + δβ1, β2 + δβ2) such
that Π(β1 + δβ1, β2 + δβ2) < Π(β1, β2) can be exhibited with
δβi ≥ 0 (i = 1, 2). Since we explore only nearby states, the
energy Π can be expanded about the initial state (β1, β2):

Π(β1 + δβ1, β2 + δβ2) ' ∂Wp

∂β1
δβ1 +

∂Wp

∂β2
δβ2 + 2a(δβ1 + δβ2)Gc

+
∂2Wp

∂β2
1

δβ2
1

2
+

∂2Wp

∂β1∂β2
δβ1δβ2 +

∂2Wp

∂β2
2

δβ2
2

2
, (55)

where the derivatives of Wp are evaluated at β1, β2. Introducing
the energy release rate Gi(β1, β2), (i = 1, 2) at the tips of crack
Li, we have the classical relation

Gi(β1, β2) = − 1
2a

∂Wp

∂βi
, (56)

where assumption 3 has been used (which accounts for the fac-
tor 2 in the above equation). Combining equations (55) and
(56), we find

Π(β1 + δβ1, β2 + δβ2) ' Π(β1, β2)
+ 2a

(
Gc −G1

)
δβ1 + 2a

(
Gc −G2

)
δβ2

− a
∂G1

∂β1
δβ2

1 − 2a
∂G1

∂β2
δβ1δβ2 − a

∂G2

∂β2
δβ2

2, (57)

which shows that propagation can occur only if G1 = Gc or
G2 = Gc. In the present case, β1 = β2 = β0, which means that

G1 = G2 = Gc and
∂G1

∂β1
=
∂G2

∂β2
(β1 = β2 = β0) (58)
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at the onset of propagation. Plugging into equation (57), we
then have

Π(β0 + δβ1, β0 + δβ2) ' Π(β0, β0) − a
(
δβ2

1 + δβ2
2
)∂G1

∂β1

∣∣∣∣∣
β1=β2=β0

− 2aδβ1δβ2
∂G1

∂β2

∣∣∣∣∣
β1=β2=β0

.

(59)

According to assumption 1, the propagation mode is such
that the energy decrease is maximized, the total length of cracks
created being prescribed. In other words, if the total propaga-
tion length δθ is considered, we consider propagation modes of
the form

δβ1 = λδθ, δβ2 = (1 − λ) δθ, (60)

where 0 ≤ λ ≤ 1, and minimize Π(β0 +λδθ, β0 + (1−λ) δθ) with
respect to λ. From equations (59) and (60),

Π(β0 + λδθ, β0 + (1 − λ) δθ) ' Π(β0, β0) − aδθ2 ∂G1

∂β1

∣∣∣∣∣
β1=β2=β0

+ 2aλ
(
1 − λ)Ψ(β0)δθ2,

(61)

where Ψ(β0) =
∂G1

∂β1

∣∣∣∣∣
β1=β2=β0

− ∂G1

∂β2

∣∣∣∣∣
β1=β2=β0

. (62)

Minimization of the above quantity with respect to λ is straight-
forward, and we get

• if Ψ(β0) < 0 then λ = 1
2 : the propagation is symmetric,

• if Ψ(β0) > 0 then λ = 0 or λ = 1: the propagation is
asymmetric.

As an illustration of the above discussion, we consider the
case of a hard inclusion (see section 3.3), with β0 = 30◦. The
matrix is subjected to a uniaxial remote stress σ∞xx, and the en-
ergy release rate G1 can be expressed as follows:

Gi = (σ∞xx)2aĜi(β1, β2). (63)

Similarly,

Ψ(β0) = (σ∞xx)2aΨ̂(β0) with Ψ̂(β0) =
∂Ĝ1

∂β1

∣∣∣∣∣
β1=β2=β0

−∂Ĝ1

∂β2

∣∣∣∣∣
β1=β2=β0

.

(64)

We found numerically that in this case Ψ̂(β0) = 0.00176 > 0.
Therefore, propagation is asymmetric. It should be noted that
despite our thorough numerical investigations, we were not able
to produce a case for which symmetric propagation would oc-
cur. This might be related to assumption 4, which might be an
over-simplifcation (Hutchinson and Suo, 1991).

To close this discussion, it should be mentioned that this
analysis is restricted to the onset of the propagation of inter-
facial cracks. In order to investigate the full equilibrium path
beyond the critical load, we would need to assess wether prop-
agation is stable or unstable. This again requires a more realis-
tic propagation criterion, since we observed that Assumption 4
(Gc = const.) tends to favor unstable propagation.

5. Conclusion

The solution to the linear elastic equilibrium of a partially
bonded, circular inclusion embedded in a homogeneous matrix
and subjected to a uniform stress at infinity was investigated
by means of the method of complex potentials (Muskhelishvili,
1953). The analysis was simplified by considering two coaxial
cracks, albeit with different lengths. These potentials are then
used to determine the stress intensity factors and the energy re-
lease rate at the crack tips.

The solution obtained in this paper extends those previously
established by Perlman and Sih (1967); Toya (1974); Prasad
and Simha (2003) (single crack) and Prasad and Simha (2002)
(two coaxial cracks of equal lengths).

Starting from an initial configuration where the two cracks
have equal length, the energy criterion of linear elastic fracture
mechanics is then used to analyse the propagation of cracks
under a remote loading that is symmetric. It is shown that one-
sided crack growth is sometimes more favorable than symmet-
ric crack growth.

The solution presented here is the basic building block of
micromechanical damage models taking into account partial
debonding of the inclusions. This will be investigated in fu-
ture works. Another interesting perspective would be to investi-
gate crack propagation with a more realistic criterion (see, e.g.,
Hutchinson and Suo, 1991). Finally, we would like to com-
bine the present analysis of the crack propagation to the analy-
sis of the crack initiation that was performed by Mantič (2009)
and Garcı́a et al. (2015). In the latter reference, using the cou-
pled stress and energy criterion of Leguillon (2002), the authors
conclude that asymmetric, rather than symmetric crack nucle-
ation is often to be expected. They attribute the differences with
previous studies (Kushch et al., 2011a,b; Bouhala et al., 2013;
Carpinteri et al., 2005) to the “smoothness” of the cohesive zone
models that have been used. This point ought to be investigated
more thoroughly in future studies.
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