Y. Song, C. A. Davy, D. Troadec, A. Blanchenet, F. Skoczylas et al., Characterization of the fine pore structure of COx claystone, Marine and Petroleum Geology, vol.65, pp.63-82, 2015.

Y. Song, C. A. Davy, D. Troadec, P. Bertier, and F. Skoczylas, Understanding fluid transport through claystones from their 3D nanoscopic pore network, Microporous and Mesoporous Materials, vol.228, pp.64-85, 2016.
DOI : 10.1016/j.micromeso.2016.03.023

URL : https://hal.archives-ouvertes.fr/hal-01303468

Y. Song, C. A. Davy, and D. Troadec, Gas Breakthrough Pressure (GBP) through claystones: correlation with FIB/SEM imaging of the pore volume, Oil and Gas Science and Technology (OGST), vol.71, pp.51-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358980

K. Scrivener and A. Nonat, Hydration of cementitious materials, present and future, Cement and Concrete Research, vol.41, pp.651-665, 2011.

F. Brue, C. A. Davy, F. Skoczylas, N. Burlion, and X. Bourbon, Effect of temperature on the water retention properties of two high performance concretes, vol.42, pp.384-396, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00669722

Y. Song, C. A. Davy, and D. Troadec, Understanding fluid transport through a high performance concrete (HPC) from its 3D mesoscale pore network. Cement and Concrete Research, under revision, 2017.
DOI : 10.1016/j.micromeso.2016.03.023

J. A. Larbi, Microstructure of the interfacial zone around aggregate particles in concrete. Heron, vol.38, pp.1-69, 1993.

K. Scrivener and K. M. Nemati, The percolation of pore space in the cement paste/aggregate interfacial zone of concrete, Cement and Concrete Research, vol.26, issue.1, p.23, 1996.

W. Chen, J. Liu, F. Brue, F. Skoczylas, C. A. Davy et al., Water retention and gas relative permeability of two industrial concretes, Cement and Concrete Research, vol.42, issue.7, pp.1001-1013, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00702563

P. Mehta and P. J. Monteiro, Concrete: microstructure, properties, and materials, 2006.

H. F. Taylor, Cement Chemistry, 1997.

P. J. Mcdonald, V. Rodin, and A. Valori, Characterisation of intra-and inter-C-S-H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content, Cement and Concrete Research, vol.40, issue.12, pp.1656-1663, 2010.

M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-reinoso et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416682

V. Baroghel-bouny, Water vapour sorption experiments on hardened cementitious materials-Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure, Cement and Concrete Research, vol.37, pp.414-437, 2007.

S. Diamond, Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials, Cement and Concrete Research, vol.30, issue.10, pp.1517-1525, 2000.

M. H. Yio, M. J. Mac, H. S. Wong, and N. R. Buenfeld, 3d imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning, Journal of Microscopy, vol.258, issue.2, pp.151-169, 2015.

E. Gallucci, K. Scrivener, A. Groso, M. Stampanoni, and G. Margaritondo, , pp.3-24

, imental investigation of the microstructure of cement pastes using synchrotron X-ray microtomography (microCT), Cement and Concrete Research, vol.37, pp.360-368, 2007.

L. Holzer, P. Gasser, and B. Münch, Quantification of capillary pores and hadley grains in cement paste using FIB-nanotomography, pp.509-516, 2006.

L. Holzer, B. Münch, A. Leemann, and P. Gasser, Quantification of capillary porosity in cement paste using high resolution 3D-microscopy: Potential and limitations of FIB-nanotomography, p.247, 2006.

L. Holzer and M. Cantoni, Nanofabrication using Focused Ion and Electron Beams, pp.410-435, 2012.

E. Boehm-courjault, J. E. Rossen, and K. Scrivener, Composition and morphology of C-S-H in C3S pastes hydrated by water/isopropanol mixes using electron microscopy

, Proceedings of the 15th Euroseminar on Microscopy Applied to Building Materials (EMABM), pp.279-286, 2015.

S. Bae, R. Taylor, D. Shapiro, P. Denes, J. Joseph et al., Soft X-ray Ptychographic Imaging and Morphological Quantification of Calcium Silicate Hydrates (C-S-H), Journal of the American Ceramic Society, vol.98, issue.12, pp.4090-4095, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01484137

C. Rössler, J. Stark, F. Steiniger, and W. Tichelaar, Limited-Dose Electron Microscopy Reveals the Crystallinity of Fibrous C-S-H Phases, Journal of the American Ceramic Society, vol.89, issue.2, pp.627-632, 2006.

L. Holzer, B. Münch, M. Rizzi, R. Wepf, and P. Marschall, , p.25

. Graule, 3D-microstructure analysis of hydrated bentonite with cryo-stabilized pore water, Applied Clay Science, vol.47, issue.3, pp.330-342, 2010.

C. Rössler, F. Steiniger, and H. M. Ludwig, Characterization of C-S-H and C-AS-H phases by electron microscopy imaging, diffraction and energy dispersive X-ray spectroscopy, Journal of the American Ceramic Society, vol.100, p.17331742, 2017.

J. Zhang and G. W. Scherer, Comparison of methods for arresting hydration of cement, Cement and Concrete Research, vol.41, pp.1024-1036, 2011.

M. S. Diallo, C. J. Glinka, W. A. Goddard, and J. H. Johnson, Characterization of nanoparticles and colloids in aquatic systems 1. Small angle neutron scattering investigations of Suwannee River fulvic acid aggreggates in aqueous solutions, Journal of Nanoparticle Research, vol.7, pp.435-448, 2007.

L. Michot, I. Bihannic, S. Maddi, S. S. Funari, C. Baravian et al., Liquid-crystalline aqueous clay suspensions, Proceedings of the National Academy of Sciences of the United States of America, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01121441

C. Rivì-ere, C. Wilhelm, F. Cousin, V. Dupuis, F. Gazeau et al., Internal structure of magnetic endosomes, European Physics Journal E, vol.22, pp.1-10, 2007.

S. Brisard, R. S. Shae, I. Bihannic, L. Michot, P. Guttmann et al., Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales, American Mineralogist, vol.97, pp.480-483, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00722357

D. Pearson and A. J. Allen, A study of ultrafine porosity in hydrated cements using small angle neutron scattering, Journal of Materials Science, vol.20, pp.303-315, 1985.

P. Levitz, G. Ehret, S. K. Sinha, and J. M. Drake, Porous Vycor glass: The microstructure as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption, The Journal of Chemicals Physics, vol.95, p.6151, 1991.

M. Y. Lin, S. K. Sinha, J. M. Drake, X. Wu, P. Thiyagarajan et al., Study of phase separation of a binary fluid mixture in confined geometry, Physical Review Letters, vol.72, issue.14, p.2207, 1994.

P. Levitz, Statistical modeling of Pore network. Copyright WILEY-VCH Verlag GmbH, 69469 Weinheirn, 2002.

A. P. Radlinski, M. A. Ioannidis, A. L. Hinde, M. Hainbuchner, M. Baron et al., Angström-to-millimeter characterization of sedimentary rock microstructure, Journal of Colloidal and Interface Science, vol.274, pp.607-612, 2004.

S. Brisard and P. Levitz, Small-angle scattering of dense, polydisperse granular porous media: Computation free of size effects, Physical Review E, vol.87, issue.1, p.13305, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00779317

G. Porod, General theory, Small angle X-ray scattering, pp.17-51, 1982.

P. Levitz, Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport, Advances in Colloid and Interface Science, pp.71-106, 1998.

J. C. Robinet, P. Sardini, D. Coelho, J. C. Parneix, D. Prêt et al., Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo-Oxfordian mudstone
URL : https://hal.archives-ouvertes.fr/hal-00827642

, Water Resources Research, vol.48, 2012.

Y. Zhang, C. A. Davy, G. Tricot, C. Albert-mercier, N. Henry et al., On shrinkage and structure changes of pure and blended Portland cements and concretes, Journal of the American Ceramic Society, 2017.

F. Brue, C. A. Davy, F. Skoczylas, N. Burlion, and X. Bourbon, Five year drying of high performance concretes: effects of temperature and cement-type on shrinkage, Cement and Concrete Research, vol.99, pp.70-85, 2017.

D. A. Matthijs-de, C. T. Winter, M. N. Schneijdenberg, B. Lebbink, A. J. Lich et al., Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging, Journal of Microscopy, vol.233, p.372383, 2009.

M. Lukas, L. Keller, R. Holzer, P. Wepf, and . Gasser, 3D geometry and topology of pore pathways in Opalinus clay: Implications for mass transport, Applied Clay Science, vol.52, pp.85-95, 2011.

P. Lukas-m-keller, R. Schuetz, M. D. Erni, F. Rossell, M. Lucas et al., Characterization of multi-scale microstructural features in Opalinus clay, Microporous and Mesoporous Materials, vol.170, pp.83-94, 2013.

I. Cousin, P. Levitz, and A. Bruand, Three-dimensional analysis of a loamy-clay soil using pore and solid chord distributions, European Journal of Soil Science, vol.47, pp.439-452, 1996.

L. Pothuaud, P. Porion, E. Lespessailles, C. L. Benhamou, and P. Levitz, A new method for three-dimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture, Journal of Microscopy, vol.199, p.28, 2000.

P. Levitz, Toolbox for 3D imaging and modeling of porous media: Relationship with transport properties, Cement and Concrete Research, vol.37, pp.351-359, 2007.

P. Levitz, V. Tariel, M. Stampanoni, and E. Gallucci, Topology of evolving pore networks, Eur. Phys. J. Appl. Phys, vol.60, p.24202, 2012.

P. Debye, H. R. Anderson, and H. Brumberger, Scattering by an inhomogeneous solid. II. The correlation function and its application, Journal of Applied Physics, vol.28, issue.6, pp.679-683, 1957.

F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proceedings of the IEEE, vol.66, issue.1, pp.51-83, 1978.

L. Moisan, Periodic plus smooth image decomposition, Journal of Mathematical Imaging and Vision, vol.39, issue.2, pp.161-179, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00388020

S. M'jahad, Y. Zhang, C. A. Davy, F. Skoczylas, and X. Bourbon, Water retention and gas migration of two high performance concretes after diffuse damage, Journal of Materials in Civil Engineering, 2015.

P. Levitz and D. Tchoubar, From chord distribution to small angle scattering, Journal de Physique I, vol.2, pp.771-790, 1992.

A. J. Allen, C. G. Windsor, V. Rainey, D. Pearson, D. D. Double et al., A small-angle neutron scattering study of cement porosities, Journal of Physics D: Applied Physics, vol.15, issue.9, pp.1817-1834, 1982.

D. Pearson and A. J. Allen, A study of ultrafine porosity in hydrated cements using small-angle neutron-scattering, Journal of Materials Science, vol.20, issue.1, p.29, 1985.

A. J. Allen, R. C. Oberthur, D. Pearson, P. Schofield, and C. R. Wilding, Development of the fine porosity and gel structure of hydrating cement systems, Philosophical Magazine B, vol.56, issue.3, pp.263-288, 1987.

A. J. Allen, Time-resolved phenomena in cements, clays and porous rocks, Journal of Applied Crystallography, vol.24, pp.624-634, 1991.

J. J. Thomas, H. M. Jennings, and A. J. Allen, The surface area of cement paste as measured by neutron scattering: evidence for two C-S-H morphologies, Cement and Concrete Research, vol.28, issue.6, pp.897-905, 1998.

A. J. Allen and R. A. Livingston, Relationship between differences in silica fume additives and fine-scale microstructural evolution in cement based materials, Advanced Cement Based Materials, vol.8, issue.3-4, pp.118-131, 1998.

A. J. Allen and J. J. Thomas, Analysis of C-S-H gel and cement paste by small-angle neutron scattering, Cementitious Materials as model porous media: Nanostructure and Transport processes, vol.37, pp.319-324, 2005.

A. J. Allen, J. J. Thomas, and H. M. Jennings, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nature Materials, vol.6, issue.4, pp.311-316, 2007.

P. D. Tennis and H. M. Jennings, A model for two types of csh in the microstructure of portland cement pastes, Cem. Concr. Res, vol.30, issue.6, pp.855-863, 2000.

J. J. Thomas, H. M. Jennings, and A. J. Allen, Determination of the neutron scattering contrast of hydrated Portland cement paste using H2O/D2O exchange, Advanced Cement Based Materials, vol.7, issue.3-4, p.30, 1998.

J. J. Thomas, J. J. Chen, A. J. Allen, and H. M. Jennings, Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes, vol.34, pp.2297-2307, 2004.

R. Maggion, Etude de l'Evolution Microtexturale de Pâtes de Silicate Tricalcique Hydraté, 1992.

K. Ioannidou, K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero et al., Mesoscale texture of cement hydrates, Proceedings of the National Academy of Sciences of the United States of America, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455017

B. Münch and L. Holzer, Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion, Journal of the American Ceramic Society, vol.91, issue.12, pp.4059-4067, 2008.

G. Camps, Etude des interactions chemo-mécaniques pour la simulation du cycle de vie d'unélémentunélément de stockage en béton, 2008.

/. Sem-slice and . .. View-t-m-procedure, 40 3 'Periodic plus smooth' decomposition of a segmented image of the FIB/SEM stack cement3. The figure shows a slice u of the initial image (left), as well as its periodic (middle) and smooth (right) components p and s. For the sake of illustration, this decomposition is computed in 2D, not 3D, on a small, 256 × 256, region of interest. Besides, the four quadrants of the image have been swapped, in order to emphasize the lack of periodicity of the initial image, as indicated by the jumps along the horizontal and vertical median axes. These jumps are smeared in the periodic component p, while the smooth component s is essentially constant far from the boundaries. The same color scale is used for all three images, FIB/SEM images, before and after segmentation by the Otsu algorithm, of CEMI HPC for sample, vol.39, p.3

.. .. , 46 9 Retraction graphs from the FIB/SEM segmented images of CEMI HPC for sample (a): cement1; (b): cement2; (c): cement3; and (d): cement4.. .. . 47 10 Chord length distributions (in a log-linear diagram), obtained from the FIB/SEM segmented images of a CEMI HPC

, with and without PMMA resin-impregnation; (b): HPC dried at 20 o C and stepwisely down to 30% RH for five years, compared to pure Portland mature cement paste dried at 20 o C and 43% RH, Experimental SAXS results on samples II and III: HPC dried at 20 o C and stepwisely down to 30% RH for five years, p.49

, Experimental SAXS results on Samples II and IV: HPC dried at either 20 o C and stepwisely down to 30% RH for five years, or at 80 o C and stepwisely down to 12% RH for five years

. , Comparison of I(q) plots given by experimental SAXS (80 o C ; 12% RH) or by 3D numerical computations from FIB/SEM segmented images (Samples cement1, cement2, cement3 and cement4)