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cLMA FST Béni-Mellal, Sultan Moulay Slimane University, Morocco

∗ Correspondig author : aitbella.fatimzehrae@gmail.com

Abstract

In this paper, we investigate two new reflectance and illumination decompo-
sition models based on a nonlocal partial differential equation (PDE) applied
to text images. Taking into consideration the higher regularity level of the
illumination compared to the reflectance, we propose a nonlocal PDE which
deals with repetitive structures and textures that characterize the text image
much better compared to the classical local PDEs. The aim of this approach
is to use the repetitive features of the reflectance to efficiently extract it from
the nonuniform illumination. This idea is motivated by extending the range
of application of the nonlocal operators to such problem. Numerical exper-
iments on both grayscale and color text images show the performance and
strength of the proposed nonlocal PDE.

Keywords: Nonlocal operators, Partial differential equation, Text image,
Viscosity solutions theory

1. Introduction

In image analysis, reflectance and illumination decomposition is a basic
process which aims to enhance the image by reducing or removing the effects
of the nonuniform illumination. This technique, which is named the Retinex
problem, represents a necessary pretreatment step in a wide range of image
processing applications.
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The image decomposition is considered as an ill-posed problem since it
consists in extracting two unknown parts from an observed image. The
Retinex theory was first proposed by Land and McCann in [27] to address
and improve the quality of an image when the lighting conditions are not
satisfactory [26, 33]. The main idea of this theory is to consider the human
visual system as a color perception where we can define the reflectance as-
sociated to a field in which both illumination and reflectance are unknown.
Indeed, for a given scene, our visual system detects and sees the same color
even if the illuminations conditions vary. This explains that the color of the
objects is considered invariant in spite of illumination transformations.

The main goal of Retinex theory is to decompose a given image u into
two components represented by the following model:

u(x, y) = I(x, y)R(x, y). (1)

The model assumes that the observed image u is the product of two main
components [18], namely the illumination I and the reflectance image R.
According to the single-scale Retinex algorithm, the reflectance is estimated
as described by the following equation:

log(Ri(x, y)) = log(ui(x, y))− log(F (x, y) ∗ ui(x, y)), (2)

where ∗ is the convolution operator, Ri is the reflectance image on the ith

channel and F is a Gaussian filter defined by

F (x, y) = C exp−(x
2+y2

σ2 ), (3)

where C is a normalization factor.
This single-scale Retinex formula is extended to a multi-scale version in
[24, 40]. This approach is pursued and introduced by Brelstaff [4] and Horn
[19], who proposed a Retinex algorithm based on Poisson equation. In 2003,
Kimmel and Elad proposed a variational Retinex approach [25]; to form a
penalty functional, the authors call into question some hypotheses about the
illumination image: the illumination is spatially smooth, it is close to the
intensity image u and I ≥ u, moreover they assume that the illumination
continues smoothly as a constant beyond the image boundaries. Other ap-
proaches are presented using the same principle. First, Ma and Osher have
introduced a total variation regularized formulation and an efficient algo-
rithm based on the split Bregman method, then, they took advantage of
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the nonlocal total variation to enhance the resulting images [31]. Further,
Chen et al have used a TV-L1 based variational Retinex approach [31] . More
recently, Liang and Zhang suggested a reflectance and illumination decompo-
sition model for the Retinex problem using a convex variational model based
on high-order total variation and L1 decomposition [28]. This method can
effectively decompose the gradient component of images into salient edges
and slightly smoother illumination field.

Another famous method to correct the non-uniform illumination is the
Homomorphic filtering. This approach was introduced by Oppenheim et Al
[37], the main idea of this technique is to decompose the image into high
and low frequencies components, as a result the enhanced image is obtained
through a high-pass filter in order to remove the illumination component.
The improvement is then achieved by the simultaneous compression of the
intensity range and the contrast enhancement. This method gave reasonable
results and have been used in many applications [12, 10, 17].

On the other hand and precisely in document-image processing, many
approaches are proposed to enhance the quality of a document-image. This
generates a text which is easier to read in order to extract it thereafter using
an optical character recognition (OCR). In 1995, W. Jiang has investigated
a thresholding and enhancement method [22] which consists of converting
text images of low spatial resolution to bi-level images of higher spatial res-
olution. In the same principle, a simple algorithm based on empirical mode
decomposition was proposed in [39] to improve the illumination problem for
document-image. However, there are several other methods specified for
document-image enhancement with different degrees of success, see for ex-
amples [41, 7, 23, 11].

The main objective of this paper is to provide an improved nonlocal ap-
proach to remove the shadow from a document-image. Nonlocal operators
have received much attention in the past decade. Such operators were first
introduced by Gilboa and Osher [16]. The purpose of their paper is the use
of nonlocal operators to treat signal and image processing by adopting the
so called nonlocal PDE. Convinced by the effectiveness and efficiency of the
nonlocal operators in dealing better with image textures, we introduce two
new nonlocal PDEs to enhance the text quality and make it more meaningful
and expressive for the human eye. These two nonlocal PDEs take into consid-
eration the fact that illumination varies more smoothly than reflectance and
also consider the effect of the illumination on image features such as texture.
This can help the model to be able to take into account the surroundings of
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the object much better compared to some classical approaches.
The paper is organized as follows. In section 2, we will focus on introduc-

ing a local model which we aim to extend to the nonlocal case, we recall some
essential and basic definitions and properties of viscosity solutions theory and
we prove the existence of a unique solution of this problem, section 3 deals
with the formulation of the new nonlocal models, in section 4, two algorithms
are presented to solve the proposed nonlocal models, and in order to assess
the validity of the proposed approach we will present some numerical tests
in section 5, finally we shall sum up by a conclusion where we will outline
the big points covered in the paper.

2. Problem Formulation

We consider a document-image u acquired by a camera phone. In general,
many degradation factors are involved by this acquisition, such as : noise,
non-uniform illumination and motion blur. Note that in this paper, the blur
is not considered. In fact, the studied model is based on the separation of
the two components of the image: the illumination I and the reflectance R

u(x, y) = I(x, y)R(x, y) + n(x, y), (4)

where n is the noise. As discussed above, we firstly neglect the noise and we
apply the logarithm function, we obtain then the additive model

log(u(x, y)) = log(I(x, y)) + log(R(x, y)). (5)

Our aim is to consider a decomposition approach to recover the illumination
I by estimating the term ” log I”. In particular, we focus on extracting
illumination I using a nonlocal PDE in a well posed functional framework.
Our proposed model is considered as a nonlocal version of the PDE proposed
in [32]. The idea behind this choice is related to recently developed nonlocal
operators [16]. Therefore, in the following, we recall the studied PDE and
also we present some theoretical results. The local PDE is defined by





∂u

∂t
= max(0,Δu) in Ω× (0, T )

∂u

∂n
= 0 on ∂Ω× (0, T )

u(., 0) = u0 in Ω

(6)
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where Ω is a bounded open subset of R2 and Δ is the Laplacian operator
defined by

Δu =
∂2u

∂x2
+

∂2u

∂y2
. (7)

The method proposed in [32] which aims to resolve the equation (6) sup-
poses that the document-image u has been acquired by a cameraphone. The
authors consider two problem types; namely: image distortions and noise.
Especially, they address the so-called non uniform illumination or variations
of brightness. In image processing applications, a shadow is considered as a
region with low lightness and high gradient contours. There are in fact two
kinds of shadows, the own shadow and the shadows arising from the acquisi-
tion process. Own shadow occurs when the light hits a surface with a slope
change. Otherwise, the brightness of pixels decreases when the angle of inci-
dence deviates from the normal of the surface. While the brightness reaches
its minimum value in the case when the incident light and the surface normal
are orthogonal. A shadow always occurs when the light source is obscured
by an object before the light reflection on the surface. Taking into account
that the image contains only text, the background is preponderant compared
to the text in the image (or there is much more background than text in the
image). Also knowing that the intensity of the background is superior to
the intensity of the text (light background on dark writing), it is easy to
approximate the background. Indeed, intuitively, in order to estimate the
background, we replace each pixel by considering the maximum mean of its
neighboring pixels and we iterate that is to say if un

ij represents the intensity
of the image in the spatial location (i, j) at the nth iteration, we get:

un+1
ij = max

�
un
ij, �u1,n

ij , �u2,n
ij , �u3,n

ij , �u4,n
ij

�
, (8)

where �uk is the mean calculated in the kth direction using the neighboring
pixels (see Fig.1). By subtracting un

ij from both sides of the equation (8),
the discrete derivatives in all directions appear and we get the discretized
version of the equation:

∂u

∂t
=

1

2
max

�
0,

∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂x2
+

∂2u

∂y2
+ 2

∂2u

∂x∂y
,
∂2u

∂x2
+

∂2u

∂y2
− 2

∂2u

∂x∂y

�

(9)
in a similar way, considering only the horizontal and vertical directions, one
can easily get the equation (6).
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Figure 1: The mean at the neighboring pixels of the image u.

Realeyes 3D company and M. El Rhabi have successfully implemented
this equation as an embedded application for document scanning in more
than 150 million smartphones in the world from 2006 to 2010. In this paper,
as a first step, we choose a simplified form of this equation which concides
with equation (6). Then, we rewrite (9) in its non local formulation which
we analyse.

The equation (6) has demonstrated its robustness in the extraction of
the variable luminance and it has given quite satisfactory results (see [32]).
However, the theoretical aspect of this equation has not been investigated,
which left a lack of information on the behavior and the existence of the solu-
tion. As a first contribution in this work, we are interested in the theoretical
side of this model. The complexity to show the existence of a solution to
the equation (6) comes from the fact that we cannot say anything about the
maximum of two operators. We intend here to find a continuous viscosity
solution of (6). We first give a brief overview of some essential notions of the
viscosity solutions theory [8, 15, 2].
The theory deals with some partial differential equations of the form :

F (x, u,∇u,∇2u) = 0, (10)

where x is defined in an open subset Ω of Rn. F is a real-valued function
on D = Ω × R × Rn × Sn, where Sn stands for the set of symmetric n × n
matrices, u denotes the real-valued unknown function on Ω, ∇u and ∇2u
designate respectively, the gradient and the Hessian matrix of u.
The function F is called degenerate elliptic if it verifies the following inequal-
ity:

F (x, r, p,X) ≤ F (x, r, p, Y ) for Y ≤ X, (11)
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where Y ≤ X signifies:

< Xξ, ξ >≤< Y ξ, ξ > ∀ξ ∈ Rn. (12)

If F is degenerate elliptic, we can say that it is proper if:

F (x, r, p,X) ≤ F (x, s, p, Y ) for Y ≤ X, r ≤ s. (13)

Let u : E → R ∪ {±∞}, where E is a set of a metric space. The upper
semi-continuous envelope u∗, and the lower semi-continuous envelope u∗ of u
are given respectively by

u∗(y) = lim
r→0

sup{u(z)/ z ∈ B(y, r) ∩ E},

u∗(y) = lim
r→0

inf{u(z)/ z ∈ B(y, r) ∩ E},

where B(y, r) is a closed ball of radius r centred at y ∈ E.

Definition 1. [15] Let Ω be an open set in Rn and T > 0 a fixed time
parameter.
Let F : Ω× [0, T ]× R× Rn × Sn → R be a continuous function.
Let U be an open set in Ω×]0, T [.
A function u : U → R ∪ {−∞} is a viscosity sub-solution of

∂u

∂t
+ F (x, t, u,∇u,∇2u) = 0, (14)

in U if:
• u∗(x, t) < ∞ for (x, t) ∈ U .
• If (ϕ, x̂, t̂) ∈ C2(U)× U satisfies

max
U

(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂). (15)

then
∂ϕ

∂t
(x̂, t̂) + F (x̂, t̂, u∗(x̂, t̂),∇ϕ(x̂, t̂),∇2ϕ(x̂, t̂)) ≤ 0. (16)

Definition 2. [15] A function u : U → R∪{+∞} is a viscosity supersolution
of (14) in U , if
• u∗(x, t) > −∞ for (x, t) ∈ U .
• If (ϕ, x̂, t̂) ∈ C2(U)× U satisfies

min
U

(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂), (17)

then
∂ϕ

∂t
(x̂, t̂) + F (x̂, t̂, u∗(x̂, t̂),∇ϕ(x̂, t̂),∇2ϕ(x̂, t̂)) ≥ 0 (18)
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Definition 3. [15] A continuous function u : U → R ∪ {±∞} is a viscosity
solution of (14) in U , if it is both a viscosity subsolution and a viscosity
supersolution of (14) in U .

We apply theorem 3.1 in [21] to get the following existence result:

Theorem 1. Let Ω be a regular bounded open subset of R2.
Let u ∈ USC([0, T [×Ω) (upper semicontinuous), and v ∈ LSC([0, T [×Ω)
(lower semicontinuous), be, respectively, a viscosity sub and a supersolutions
of

∂u

∂t
−max(0,Δu) = 0 in Ω×]0, T [ (19)

and
∂u

∂n
= 0 on ∂Ω×]0, T [ (20)

If
u(x, 0) ≤ v(x, 0) for x ∈ Ω (21)

then
u ≤ v in ]0, T [×Ω

Moreover, for each u0 ∈ C(Ω), there exists a unique continuous viscosity
solution u ∈ C([0, T [×Ω) of (6).

Proof
First of all, we use the following decomposition of the max operator

max(0,Δu) = H(Δu)Δu (22)

where H is the Heaviside step function, defined by

∀ x ∈ R, H(x) =

�
0 if x < 0
1 if x ≥ 0

(23)

Afterwards, we consider the function F : Sn →]−∞, 0], given by:

F (X) = −H(trace(X))trace(X). (24)
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According to the theorem 2.1 in [21], we have to prove that F is continuous
and there exists a continuous function w : [0,∞[→ [0,∞[ satisfying w(0) = 0,
such that if X, Y ∈ Sn and µ1, µ2 ∈ [0,∞[ satisfy

�
X 0
0 Y

�
≤ µ1

�
I −I
−I I

�
+ µ2

�
I 0
0 I

�
, (25)

then
F (X)− F (−Y ) ≥ −w(µ2). (26)

We start then by the continuity which is evident, since the functions

f : Sn → R
X �→ trace(X)

and
g : R → ]−∞, 0]

x �→ −H(x)x

are continuous. Now, we suppose that there exist µ1, µ2 ∈ [0,∞[ such that
the inequality (25) is satisfied.

We multiply both sides of the inequality by the matrix

�
I I
I I

�
,

We then apply the trace operator, we obtain

trace(X) + trace(Y ) ≤ 2nµ2. (27)

Afterwards, taking the decreasing function g(x) = −H(x)x yields

−H(2nµ2)2nµ2 = −2nµ2

≤ −H(trace(X) + trace(Y ))(trace(X) + trace(Y ))

≤ 1

2
(−trace(X)− trace(Y )− |trace(X) + trace(Y )|)

≤ 1

2
(−trace(X)− trace(Y )− |trace(X)|+ |trace(Y )|)

= F (X)− F (−Y ). (28)

Finally, we take w(r) = 2nr which satisfies w(0) = 0.
According to the theorem 2.1 and theorem 3.1 in [21], the results of compari-
son and existence of a unique viscosity solution is reached. �

As demonstrated in [32], the used PDE (6) has given good results, but
does not preserve well the fine details of the text. This can be interpreted
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by the use of a local image reconstruction algorithm using observations in a
neighborhood of a pixel of the interest. However, in some cases the selection
of the neigborhood plays a major role in the quality of the image recon-
stitution. This led us to think to the nonlocal version of the equation (6).
In the nonlocal techniques, algorithms analyse data in a larger neigborhood
and collect the observations from the whole image, searching similar features,
which is much better and accurate. Indeed, the nonlocal methods, compared
to local methods, are more effective, in particular to restore fine and repet-
itive structures of the image, which is the case of document-images. These
approaches which are called also patch methods, allow to characterize a pixel
with a vector of attributes wider than the intensity or color value of the pixel
only. A patch representing a pixel is considered as a square sub-image of the
original image, centered at this pixel, of a selected width. The patch-based
methods were first used in the texture synthesis [9]. Also, they were then
used for filtering and restoring degraded image [5]. More recently, it have
also been extended to inpainting problems [16]. In the following section, we
introduce the proposed nonlocal model to extract the illumination I and we
give a result of the existence and uniqueness of the solution.

3. The proposed nonlocal approaches

In this section, we introduce the two nonlocal PDEs and we give some
theoretical results. We start by the definition of the first model.

3.1. The first model

As discussed above, we propose a new model for document-image en-
hancing. Therefore, we intend to obtain a new nonlocal generalization of the
local model presented in [32]. As a preliminary, we recall some definitions of
nonlocal operators introduced by Gilboa and Osher [16].
Let Ω ⊂ R2, and u : Ω → R denote a real function.
The nonlocal gradient ∇wu(x) at x ∈ Ω is defined as the vector of all partial
derivatives ∇wu(x, .):

(∇wu)(x, y) := (u(y)− u(x))
�
w(x, y), y ∈ Ω, (29)

where w stands for a symmetric and positive weight function.
For any pair of v1, v2 : Ω× Ω → R, one defines

(v1.v2)(x) :=

�

Ω

v1(x, y)v2(x, y)dy, (30)
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and the inner product

< v1, v2 > :=

�

Ω×Ω

v1(x, y)v2(x, y)dxdy. (31)

With the above definition of inner product and nonlocal gradient, the non-
local divergence of v : Ω × Ω → R at x is defined as the negative adjoint of
the nonlocal gradient:

(divw v)(x) :=

�

Ω

(v(x, y)− v(y, x))
�
w(x, y)dy. (32)

The nonlocal Laplacian of u : Ω → R is then defined by:

(Δwu)(x) :=
1

2
divw((∇wu)(x)) =

�

Ω

(u(y)− u(x))w(x, y)dy. (33)

At this point, we can use these operators to introduce the proposed nonlocal
PDE. Indeed, to estimate the variable illumination we introduce the following
model: �

∂u

∂t
= max(0,Δwu) in Ω× [0,∞[

u(., 0) = u0 in Ω
(34)

where u0 ∈ L2(Ω) is a given degraded image. This problem is seen as an
evolution equation with homogeneous Neumann boundary condition, which
mean that when integrating in Ω, we suppose that there is no flux across the
boundary. Before resolving this PDE, we have to check the existence and
uniqueness of the solution. We are now ready to state our main result

Theorem 2. Let Ω be a bounded open subset of R2. Then, the problem (34)
admits a unique generalized global solution u ∈ C([0,+∞[;L2(Ω)).

Proof
Basically, we use the following decomposition of the max operator

max(0,Δwu) =
1

2
(Δwu + | Δwu |) (35)

According to the definition of Δwu and (35), we consider the bounded linear
operator A given by

Au =
1

2
u(.)

�

Ω

w(., y)dy. (36)
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The operator A is the infinitesimal generator of S(t) = e−tA, t ≥ 0. On the
other hand, the function:

f(u) =
1

2
(

�

Ω

u(y)w(., y)dy + |
�

Ω

(u(y)− u)w(., y)dy|) (37)

is an M-Lipschitz continuous function, indeed ∀t > 0, ∀u, v ∈ L2(Ω):

| f(u(t))− f(v(t)) |L2(Ω) ≤ | Ω || w |L∞(Ω×Ω) (2 | u− v |L1(Ω) + | u− v |L2(Ω))

≤ | Ω || w |L∞(Ω×Ω) (2c+ 1) | u− v |L2(Ω)

We introduce now the operator ψ given by:

ψ(u)(t) = S(t)u0 +

� t

0

S(t− s)f(u(s))ds. (38)

We shall show that ψ maps

Eα = {u ∈ C([0,∞[;L2(Ω)); | u |Eα< +∞}
equipped with the norm | u |Eα= sup

t
(e−αt | u(t) |L2(Ω)) into Eα ∀α > 0.

Eα is a complete space since it is a closed subset of C([0,∞[;L2(Ω)).
we have

∀t > 0, | ψ(u)(t) |L2(Ω) ≤ | S(t)u0 |L2(Ω) +

� t

0

� S(t− s) �L(L2(Ω))| f(u(s)) |L2(Ω) ds

≤ | u0 |L2(Ω) +

� t

0

| f(u(s)) |L2(Ω) ds

≤ | u0 |L2(Ω) +

� t

0

(| f(u(s))− f(0) |L2(Ω) + | f(0) |L2(Ω))ds

≤ | u0 |L2(Ω) +

� t

0

(M | u(s) |L2(Ω) +C)ds. (39)

We multiply this last inequality by e−αt for t > 0. We obtain then :

∀t > 0; e−αt | ψ(u)(t) |L2(Ω) ≤ e−αt | u0 |L2(Ω) +

� t

0

e−α(t−s)e−αs(M | u(s) |L2(Ω) +C)ds

≤ e−αt | u0 |L2(Ω)

+ M sup
s
(e−αs | u(s) |L2(Ω))

� t

0

e−α(t−s)ds+ tCe−αt

≤ | u0 |L2(Ω) +
1

α
M | u |Eα +C sup

t
(te−αt). (40)
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Thus
sup
t>0

e−αt | ψ(u)(t) |L2(Ω)< +∞. (41)

Therefore, we can define the function ψ as follows, ∀α > 0:

ψ : Eα → Eα

Now, we shall show that ψ is a contraction on Eα: let u, v ∈ Eα and t ≥ 0,
we have

| ψ(u)(t)− ψ(v)(t) |L2(Ω) = |
� t

0

S(t− s)(f(u(s))− f(v(s)))ds |L2(Ω)

≤ M

� t

0

| u(s)− v(s) |L2(Ω) ds. (42)

Hence

∀t > 0, e−αt | ψ(u)(t)− ψ(v)(t) |L2(Ω)≤
M

α
| u− v |Eα . (43)

This shows that the operator ψ is a contraction on Eα if α > M . Conse-
quently, using the Banach fixed-point theorem [38] we deduce the existence
of a unique fixed point of ψ in Eα. This fixed point is the desired solution of
the integral equation

u(t) = S(t)u0 +

� t

0

S(t− s)f(u(s))ds (44)

Which concludes the proof. �

3.2. The second model

We conclude this section by presenting another new nonlocal model using
the nonlocal second derivatives. The main idea is to take into consideration
the second order opposite derivatives instead of considering only the nonlocal
Laplacian operator. In fact, we consider all the directions presented in Fig.1.
This technique is inspired by the benefits of considering the different direc-
tions in a document-image to handle the complexity of text texture in the
degraded image. In [16], Gilboa and Osher derived also the nonlocal second
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order derivatives. Let u : Ω ⊂ R2 → R be a function, and w : Ω×Ω → R be
a nonnegative and symmetric weight function, then for i = 1, 2:

�
∂2u

∂x2
i

�

w

:= ∇w(∇w(u).∇w(xi)).∇w(xi)

= ∇w(

�

Ω

(u(y)− u(x))w(x, y)(yi − xi)dy).∇w(xi) (45)

Following the same idea, we establish the following text enhancement model
to extract the variable illumination from an image:




∂u

∂t
= max(0, (

∂2u

∂x2
1

)w, (
∂2u

∂x2
2

)w, (
∂2u

∂x2
1

)w + (
∂2u

∂x2
2

)w + 2(
∂2u

∂x1x2

)w, (
∂2u

∂x2
1

)w

+(
∂2u

∂x2
2

)w − 2(
∂2u

∂x1x2

)w) in Ω× (0, T )

u(, 0) = u0 in Ω
(46)

In the next section, we describe briefly the proposed algorithms for solving
the problems (34) and (46).

4. Numerical implementation

We begin by defining the weight function to measure the similarities be-
tween the pixels which is generally based on a gray level intensity vector
comparison between two pixels. A pixel is characterized by its neighboring
pixels belonging to a neighborhood window centered at its position, and the
weight is calculated using the difference between these patches. Indeed, sev-
eral forms of weight functions can be used [43, 6]. Note that the choice of
the weight function is crucial for the success of non-local methods. In this
paper, we propose a non-negative real-valued and symmetric weight function
depending on the spatial distance only:

w(x, y) = exp

�− | x− y |2
h

�
, (47)

where u : Ω → R is a given image, Ω ∈ R2 is a bounded open domain and h
is a positive parameter.
Before introducing the two proposed algorithms, we consider the following
discretization of the nonlocal Laplacian operator:

�w(ui) =
�

j∈Ni

(uj − ui)wi,j j ∈ Ni, (48)
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where ui is the value of a pixel i (1 ≤ i ≤ N), Ni = {j : |i− j| ≤ r} denotes
the neighbors set of the pixel i, and wi,j is the discretized form of the weight
function :

wi,j = exp

�− | i− j |2
h

�
. (49)

To discretize the non-local second derivative operators, we give the discretized
version of the non-local gradient:

∇w(ui) = (uj − ui)
√
wi,j j ∈ Ni, (50)

and the discrete inner product for vectors is given by:

(v1.v2)i :=
�

j∈Ni

(v1i,jv2i,j) j ∈ Ni. (51)

The second order discretized nonlocal derivatives are given by:

(ui)
��

k,l = ∇w(∇w(ui).∇w(ik)).∇w(il) k, l ∈ {1, 2}, (52)

where ik is the kth component of the pixel i and

∇w(ik)(j) = (jk − ik)
√
wi,j j ∈ Ni. (53)

Now we are ready to implement the two proposed algorithms based on the
discretization form of non-local operators given above. We give firstly the
algorithm 1 for solving the problem (34) as follows:
Algorithm 1 for solving (34)
Input : The acquired image u
initialization : We set I0 = log(u+ 1) and choose dt > 0, h > 0
Compute :
In+1
i = Ini + dtmax(0,Δw(I

n
i )) i = 1, ..., N

Output : The illumination I.
The reflectance R = exp(log(u+ 1)− I)

In the same way, the algorithm 2 is given for resolving the second model
in (46) using the nonlocal second order derivatives instead of the nonlocal
Laplacian operator:
Algorithm 2 for solving (46)
Input : The acquired image u
initialization : We set I0 = log(u+ 1) and choose dt > 0, h > 0
Compute :

In+1
i = Ini + dtmax(0, (Ini )

��

1,1 , (I
n
i )

��

2,2 , (I
n
i )

��

1,1 + (Ini )
��

2,2 + 2 (Ini )
��

1,2 ,

(Ini )
��

1,1 + (Ini )
��

2,2 − 2 (Ini )
��

1,2) i = 1, ..., N

Output : The reflectance image R = exp(log(u+ 1)− I)
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5. Numerical results

This section is devoted to the experimental part to test the two proposed
nonlocal algorithms. Our aim is to confirm the performance and the robust-
ness of the nonlocal models compared to some local methods in extracting
the reflectance of a document-image.
The considered images in the reflectance and illumination decomposition
problem are assumed to be degraded images acquired under variable illu-
mination. For that, we consider six document-images taken in low light
conditions. The first four images are given in grayscale level while the two
last ones are color document-images. We compare the two nonlocal algo-
rithms with some available methods in the literature, namely the variational
method proposed in [25] (called Variational Retinex), the multiscale Retinex
approach [40] (MSRetinex) and two Retinex methods based on partial differ-
ential equations proposed in [34, 29] (Screened Poisson Equation) and (PDE
Retinex) respectively.
Figs. 2-7 show the obtained results using the two proposed algorithms com-
pared to the other methods. Throughout this section, for the proposed meth-
ods, we set h = 80, while the numerical results by the variational Retinex
method are reported with α = 0.0001 and β = 0.1, we set the threshold
parameter t = 4 for the PDE-Retinex model, and λ = 0.0001 the tradeoff
parameter for the Screened Poisson Equation, while the parameters in the
implementation of Multiscale Retinex are chosen as follows:

parameter N σ1 σ2 σ3 α β wn G b
value 3 15 80 250 125 46 1/3 192 -30

Note that for the first four grayscale images, we consider also a binarization
step to show better the estimated text. In the following, we investigate a
quantitative comparison in terms of OCR using the restored images in the
previous tests apart the handwriting images. Optical Character Recognition
tools are efficiently used to convert an image file or PDF file into editable
and searchable text format. However, there are many limitations of OCR
that can lead to inaccurate or missing text, the OCR engines fail usually to
take into account blurry documents, colored paper, mathematical formulas
or handwritten text.
The table 1 compares the character recognition rates for the grayscale images
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using three different types of OCR tools, the ”Abbyy FineReader 12” 1, the
software ”Tesseract” 2 and the free web-based optical character recognition
software ”OnlineOCR.net” 3 that return a text with the best confidence
rating. The rate ”%” is obtained by a careful calculation of the correct
characters from the OCR output. The table proves, as might be expected,
and identically to the visual comparison in the six different examples, that
the two non-local approaches can better recover the degraded text compared
to the other approaches, providing then promising numerical results. In
comparison, considering the greyscale images, we established that the two
proposed methods can reduce the effects of the nonuniform illumination to
a greater degree than the other methods. The model based on the nonlocal
second derivatives seemed to enhance better color document-images than the
first nonlocal model. Our two nonlocal methods, while different, performed
comparably at estimating the reflectance part.

1https://en.wikipedia.org/wiki/ABBYY FineReader
2https://en.wikipedia.org/wiki/Tesseract (software)
3https://www.onlineocr.net/
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Figure 2: From top to bottom, (a) the original image ’Proposition’, the recovered re-
flectance by (b) MSRetinex [40], (c) Variational Retinex [25], (d) Screened Poisson Equa-
tion [34], (e) PDE Retinex [29], (f) local laplacian model [32], (g) the local derivatives
model [32], (h) the first proposed nonlocal laplacian model, (i) the second proposed non-
local derivatives model
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Figure 3: From top to bottom, (a) the original image ’Exercise’, the recovered reflectance
by (b) MSRetinex [40], (c) Variational Retinex [25], (d) Screened Poisson Equation [34],
(e) PDE Retinex [29], (f) local laplacian model [32], (g) the local derivatives model [32], (h)
the first proposed nonlocal laplacian model, (i) the second proposed nonlocal derivatives
model
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Figure 4: From top to bottom and from left to right, (a) the original image ’Phrase’, the
recovered reflectance by (b) MSRetinex [40], (c) Variational Retinex [25], (d) Screened
Poisson Equation [34], (e) PDE Retinex [29], (f) local laplacian model [32], (g) the local
derivatives model [32], (h) the first proposed nonlocal laplacian model, (i) the second
proposed nonlocal derivatives model

20



Figure 5: From top to bottom and from left to right, (a) the original image ’Text’, the
recovered reflectance by (b) MSRetinex [40], (c) Variational Retinex [25], (d) Screened
Poisson Equation [34], (e) PDE Retinex [29], (f) local laplacian model [32], (g) the local
derivatives model [32], (h) the first proposed nonlocal laplacian model, (i) the second
proposed nonlocal derivatives model
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Figure 6: From top to bottom and from left to right, (a) the original image ’Exercise 7’,
the recovered reflectance by (b) MSRetinex [40], (c) Variational Retinex [25], (d) Screened
Poisson Equation [34], (e) PDE Retinex [29], (f) local laplacian model [32], (g) the local
derivatives model [32], (h) the first proposed nonlocal laplacian model, (i) the second
proposed nonlocal derivatives model
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Figure 7: From top to bottom and from left to right, (a) the original image ’Board’, the
recovered reflectance by (b) MSRetinex [40], (c) Variational Retinex [25], (d) Screened
Poisson Equation [34], (e) PDE Retinex [29], (f) local laplacian model [32], (g) the local
derivatives model [32], (h) the first proposed nonlocal laplacian model, (i) the second
proposed nonlocal derivatives model
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Image Method FineReader % OnlineOCR % Tesseract %
the original 72.11 77.88 0
MSRetinex 82.69 95.19 0
Var. Retinex 95.19 95.19 82.69

Screned Poisson Equ 91.35 82.96 0
Proposition PDE Retinex 0 0 0

L.Laplacian Model 96.15 98.08 75
L.Derivatives Model 96.15 98.08 80.77

The proposed Model 1 97.11 98.08 75
The proposed Model 2 98.08 96.15 76.92

the original 0 0 0
MSRetinex 76.67 97.5 0
Var. Retinex 98.33 95.83 10

Screned Poisson Equ 98.33 100 0
Exercise PDE Retinex 0 0 0

L.Laplacian Model 95.83 93.33 37.5
L.Derivatives Model 93.33 95 40.83

The proposed Model 1 100 100 82.5
The proposed Model 2 99.17 97.5 82.5

the original 0 0 0
MSRetinex 95 100 0
Var. Retinex 100 95 60

Screned Poisson Equ 35 0 0
Phrase PDE Retinex 0 60 0

L.Laplacian Model 45 60 50
L.Derivatives Model 50 60 55

The proposed Model 1 100 100 100
The proposed Model 2 100 100 100

the original 39.2 62.4 0
MSRetinex 92 95.2 43.2
Var. Retinex 99.19 100 89.6

Screned Poisson Equ 56.8 64.8 0
Text PDE Retinex 18.4 31.2 0

L.Laplacian Model 68.8 99.19 85.6
L.Derivatives Model 68.8 99.19 86.4

The proposed Model 1 99.19 100 98.39
The proposed Model 2 100 100 98.39

Table 1: OCR accuracy results
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6. Conclusion

In the present paper, an existence result for the local PDE’s text en-
hancement model proposed in (6) was given, then, based on the nonlocal
operators properties, two nonlocal models were proposed to estimate the re-
flectance image. Moreover, the two nonlocal algorithms are simple, easy to
implement and give quite satisfactory results compared to some available
methods, which gives confidence in the efficiency of our models. Beyond the
two proposed nonlocal PDEs, we could also extend these two models to other
PDEs with more regularity properties.

References

[1] Gilles Aubert and Pierre Kornprobst. Mathematical problems in image
processing: partial differential equations and the calculus of variations,
volume 147. Springer Science & Business Media, 2006.

[2] M Bardi, MG Crandall, LC Evans, HM Soner, and PE Souganidis. Vis-
cosity solutions and applications. lectures given at the 2nd cime session
held in montecatini terme, june 12–20, 1995. edited by i. capuzzo dol-
cetta and pl lions. Lecture Notes in Mathematics, 1660.

[3] Andrew Blake. On lightness computation in mondrian world. In Central
and peripheral mechanisms of colour vision, pages 45–59. Springer, 1985.

[4] Gavin Brelstaff and Andrew Blake. Computing lightness. Pattern Recog-
nition Letters, 5(2):129–138, 1987.

[5] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm
for image denoising. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 2, pages
60–65. IEEE, 2005.

[6] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. Nonlocal im-
age and movie denoising. International journal of computer vision,
76(2):123–139, 2008.

[7] Gulcin Caner and Ismail Haritaoglu. Shape-dna: Effective charac-
ter restoration and enhancement for arabic text documents. In Pat-
tern Recognition (ICPR), 2010 20th International Conference on, pages
2053–2056. IEEE, 2010.

25



[8] Michael G Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide
to viscosity solutions of second order partial differential equations. Bul-
letin of the American Mathematical Society, 27(1):1–67, 1992.

[9] Alexei A Efros and Thomas K Leung. Texture synthesis by non-
parametric sampling. In Computer Vision, 1999. The Proceedings of
the Seventh IEEE International Conference on, volume 2, pages 1033–
1038. IEEE, 1999.

[10] Chun-Nian Fan and Fu-Yan Zhang. Homomorphic filtering based illumi-
nation normalization method for face recognition. Pattern Recognition
Letters, 32(10):1468–1479, 2011.

[11] Ya-Ru Fan, Ting-Zhu Huang, Tian-Hui Ma, and Xi-Le Zhao. Cartoon–
texture image decomposition via non-convex low-rank texture regular-
ization. Journal of the Franklin Institute, 354(7):3170–3187, 2017.

[12] R Fries and J Modestino. Image enhancement by stochastic homomor-
phic filtering. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 27(6):625–637, 1979.

[13] R Fries and J Modestino. Image enhancement by stochastic homomor-
phic filtering. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 27(6):625–637, 1979.

[14] Marius Ghergu and Vicentiu Radulescu. Nonlinear PDEs: Mathematical
models in biology, chemistry and population genetics. Springer Science
& Business Media, 2011.

[15] Yoshikazu Giga. Surface evolution equations: A level set approach, vol-
ume 99. Springer Science & Business Media, 2006.

[16] Guy Gilboa and Stanley Osher. Nonlocal operators with applications
to image processing. Multiscale Modeling & Simulation, 7(3):1005–1028,
2008.

[17] Pelin Gorgel, Ahmet Sertbas, and Osman N Ucan. A wavelet-based
mammographic image denoising and enhancement with homomorphic
filtering. Journal of medical systems, 34(6):993–1002, 2010.

[18] Berthold Horn. Robot vision. MIT press, 1986.

26



[19] Berthold KP Horn. Determining lightness from an image. Computer
graphics and image processing, 3(4):277–299, 1974.

[20] Yali Huang, Yuehua Gao, Hong Wang, Dongmei Hao, Jinhui Zhao, and
Zhen Zhao. Enhancement of ultrasonic image based on the multi-scale
retinex theory. In Recent Advances in Computer Science and Informa-
tion Engineering, pages 115–120. Springer, 2012.

[21] Hitoshi Ishii and Moto-Hiko Sato. Nonlinear oblique derivative prob-
lems for singular degenerate parabolic equations on a general domain.
Nonlinear Analysis: Theory, Methods & Applications, 57(7):1077–1098,
2004.

[22] Wei W Cindy Jiang. Thresholding and enhancement of text images
for character recognition. In Acoustics, Speech, and Signal Processing,
1995. ICASSP-95., 1995 International Conference on, volume 4, pages
2395–2398. IEEE, 1995.

[23] Wei W Cindy Jiang. Thresholding and enhancement of text images
for character recognition. In Acoustics, Speech, and Signal Processing,
1995. ICASSP-95., 1995 International Conference on, volume 4, pages
2395–2398. IEEE, 1995.

[24] Daniel J Jobson, Zia-ur Rahman, and Glenn A Woodell. A multiscale
retinex for bridging the gap between color images and the human obser-
vation of scenes. IEEE Transactions on Image processing, 6(7):965–976,
1997.

[25] Ron Kimmel, Michael Elad, Doron Shaked, Renato Keshet, and Irwin
Sobel. A variational framework for retinex. International Journal of
computer vision, 52(1):7–23, 2003.

[26] Edwin H Land. The retinex theory of color vision. Scientific American,
237(6):108–129, 1977.

[27] Edwin H Land and John J McCann. Lightness and retinex theory. Josa,
61(1):1–11, 1971.

[28] Jingwei Liang and Xiaoqun Zhang. Retinex by higher order total varia-
tion lˆ{1} decomposition. Journal of Mathematical Imaging and Vision,
52(3):345–355, 2015.

27



[29] Nicolas Limare, Ana Belén Petro, Catalina Sbert, and Jean-Michel
Morel. Retinex poisson equation: a model for color perception. Im-
age Processing On Line, 1:39–50, 2011.

[30] Guowen Ma and Jinfeng Yang. Shadow removal using retinex theory.
In Intelligent Visual Surveillance (IVS), 2011 Third Chinese Conference
on, pages 25–28. IEEE, 2011.

[31] Wenye Ma and Stanley Osher. A tv bregman iterative model of retinex
theory. Ucla Cam Report, pages 10–13, 2010.

[32] Zouhir Mahani, Jalal Zahid, Sahar Saoud, Mohammed El Rhabi, and
Abdelilah Hakim. Text enhancement by pde’s based methods. Image
and Signal Processing, pages 65–76, 2012.

[33] John McCann. Lessons learned from mondrians applied to real images
and color gamuts. In Color and imaging conference, volume 1999, pages
1–8. Society for Imaging Science and Technology, 1999.

[34] Jean-Michel Morel, Ana-Belen Petro, and Catalina Sbert. Screened pois-
son equation for image contrast enhancement. Image Processing On
Line, 4:16–29, 2014.

[35] Michael K Ng and Wei Wang. A total variation model for retinex. SIAM
Journal on Imaging Sciences, 4(1):345–365, 2011.

[36] Uche Nnolim and Peter Lee. Homomorphic filtering of colour images
using a spatial filter kernel in the hsi colour space. In Instrumenta-
tion and Measurement Technology Conference Proceedings, 2008. IMTC
2008. IEEE, pages 1738–1743. IEEE, 2008.

[37] A van Oppenheim, Ronald Schafer, and Thomas Stockham. Nonlinear
filtering of multiplied and convolved signals. IEEE transactions on audio
and electroacoustics, 16(3):437–466, 1968.

[38] A. Pazy. Semigroups of linear operators and applications to partial
differential equations. 1983.

[39] Soo-Chang Pei, Mary Tzeng, and Yu-Zhe Hsiao. Enhancement of un-
even lighting text image using line-based empirical mode decomposition.
In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE In-
ternational Conference on, pages 1249–1252. IEEE, 2011.

28



[40] Ana Belén Petro, Catalina Sbert, and Jean-Michel Morel. Multiscale
retinex. Image Processing On Line, pages 71–88, 2014.

[41] Aishwarya Visvanathan, T Chattopadhyay, and Ujjwal Bhattacharya.
Enhancement of camera captured text images with specular reflection.
In Computer Vision, Pattern Recognition, Image Processing and Graph-
ics (NCVPRIPG), 2013 Fourth National Conference on, pages 1–4.
IEEE, 2013.

[42] Guoxin Xue, Pei Xue, and Qiang Liu. A method to improve the retinex
image enhancement algorithm based on wavelet theory. In Computa-
tional Intelligence and Design (ISCID), 2010 International Symposium
on, volume 1, pages 182–185. IEEE, 2010.

[43] Leonid Yaroslavsky. Digital picture processing: an introduction, vol-
ume 9. Springer Science & Business Media, 2012.

Conflict of interest

The authors declare that they have no conflict of interest.

29


