Microplastic contamination in the Seine River estuary
Soline Alligant, Johnny Gasperi, Aline Gangnery, Franck Maheux, Benjamin Simon, Marie-Pierre Halm-Lemeille, Maria El Rakwe, Catherine Dreanno, Jerome Cachot, Bruno Tassin

To cite this version:
Soline Alligant, Johnny Gasperi, Aline Gangnery, Franck Maheux, Benjamin Simon, et al.. Microplastic contamination in the Seine River estuary. International Conference on Estuaries and Coasts 2018 (ICEC 2018), Aug 2018, Caen, France. hal-01873428

HAL Id: hal-01873428
https://hal-enpc.archives-ouvertes.fr/hal-01873428
Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Microplastic contamination in the Seine River estuary

PLASTIC-SEINE PROJECT (2017-2020), FUNDED BY GIP SEINE-AVAL
The microplastic problem

- First article on plastic debris in 1972 (Carpenter et al., 1972)
- 2009: Microplastics = particles < 5 mm
- Fragmentation mechanism:
 - Mechanical erosion
 - Photo-degradation
 - Biodegradation
- First studies on marine environment then on continental waters
- Now: growing interest for estuaries

(Cole et al., 2013)

Chris Jordan (via U.S. Fish ans Wildlife Service Headquarters)
Project aims:
- Status of abiotic compartment contamination on the Seine continuum
- Inventory of the contamination of the food network in the Seine River estuary

Seine River estuary:
- From Poses to Le Havre
- Semi-diurnal tides
- Salinity gradient & hydrodynamics
- Possible microplastics transfer area from fresh water to marine environment

Figure 1: limit of the Seine River estuary (Fisson et al., 2014)
Materials & methods

- Material
 - Plancton net modified, 300 µm mesh, collecting upper 15 cm (surface water)
 - Classic plancton net, 300 µm collecting upper 50 cm (subsurface water)

- Methods
 - 3 sampling sites
 - Ebb and rising tide
 - Tide coefficient: 71
 - Flow: 256 m3.s$^{-1}$
Treatment protocol

Figure 3: samples treatment protocol (Dris, 2016)
Concentrations of microplastics in the Seine River estuary

Table 1: estimations of microplastics concentrations in the Seine River estuary

<table>
<thead>
<tr>
<th>Location</th>
<th>Tide</th>
<th>Time (s)</th>
<th>Current speed (m.s(^{-1}))</th>
<th>Collected Volume (m(^3))</th>
<th>Particles number</th>
<th>Levels (particles.m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Roque</td>
<td>Ebb tide</td>
<td>367</td>
<td>1.3</td>
<td>91</td>
<td>258</td>
<td>2.8</td>
</tr>
<tr>
<td>Subsurface water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Roque</td>
<td>483</td>
<td>1.5</td>
<td>38</td>
<td>268</td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>Subsurface water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vieux-Port</td>
<td>Rising tide</td>
<td>364</td>
<td>1.04</td>
<td>74</td>
<td>639</td>
<td>8.6</td>
</tr>
<tr>
<td>Surface water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vieux-Port</td>
<td>481</td>
<td>0.55</td>
<td>14</td>
<td>619</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Subsurface water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Bouille</td>
<td>Ebb tide</td>
<td>367</td>
<td>0.46</td>
<td>5</td>
<td>55</td>
<td>1.7</td>
</tr>
<tr>
<td>Surface water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Bouille</td>
<td>476</td>
<td>0.48</td>
<td>20</td>
<td>24</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Subsurface water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Concentrations in microplastics between 1.7 and 45.0 particles.m\(^{-3}\)
- High variability of current speed and volume collected
- Maximum concentrations at Vieux-Port
- Compare to literature:
 - Greater Paris area → 0.88 to 1.57 particles.m\(^{-3}\) (Dris, 2016)
 - Tamar estuary, England: 0.74 particles.m\(^{-3}\) (Sadri et Thompson, 2014)
Size distribution of microplastics in the Seine River estuary

- High proportion of microplastics < 1 mm

Figure 4: Maximum length of particles (µm) at La Roque

Figure 5: Maximum length of particles (µm) at Vieux-Port

Figure 6: Maximum length of particles (µm) at La Bouille
Shape distribution of microplastics in the Seine River estuary

Figure 8: Shape distribution of particles sampled in May 2017, exterior: surface water, interior: subsurface water.

- Dominance of spheres at Vieux-Port → casual pollution ?
- Prevalance of fragments at La Roque and La Bouille
- Twice as many films in subsurface water at La Bouille

Figure 7: shapes of microplastics 1a) & 1b) fragment; 1c) sphere; 1d) film; 2) foam (Marine & Environmental Research Institute)
Conclusions and prospects

CONCLUSIONS

- Levels of contamination higher than in the literature
- High proportion of particles < 1 mm
- Potential heterogeneity in shape distribution depending on depth

PROSPECTS

- Characterization of particles is in progress
- Confirm/infirm shape distribution heterogeneity
- Evaluation of the potential role of the salinity gradient on the distribution dynamics of microplastics in the water column
Thank you for your attention
References

