V. Kumar, Algorithms for constraint-satisfaction problems: A survey, AI magazine, vol.13, issue.1, p.32, 1992.

A. E. Eiben and Z. Ruttkay, Constraint satisfaction problems, 1997.

M. Dorigo, Optimization, learning and natural algorithms, 1992.

A. Roli, C. Blum, and M. Dorigo, Aco for maximal constraint satisfaction problems, 2001.

L. Schoofs and B. Naudts, Ant colonies are good at solving constraint satisfaction problems, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol.2, pp.1190-1195, 2000.

M. Afshar, Partially constrained ant colony optimization algorithm for the solution of constrained optimization problems: Application to storm water network design, Advances in Water Resources, vol.30, issue.4, pp.954-965, 2007.

G. Deng and W. Lin, Ant colony optimization-based algorithm for airline crew scheduling problem, Expert Systems with Applications, vol.38, issue.5, pp.5787-5793, 2011.

M. Khichane, P. Albert, and C. Solnon, An ACO-Based Reactive Framework for Ant Colony Optimization: First Experiments on Constraint Satisfaction Problems, Learning and Intelligent Optimization, pp.119-133, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01437618

C. Solnon, Ants can solve constraint satisfaction problems, IEEE Trans. Evolutionary Computation, vol.6, issue.4, pp.347-357, 2002.

K. Ye, C. Zhang, J. Ning, and X. Liu, Ant-colony algorithm with a strengthened negative-feedback mechanism for constraint-satisfaction problems, Information Sciences, vol.406, pp.29-41, 2017.

Q. Zhang and C. Zhang, An improved ant colony optimization algorithm with strengthened pheromone updating mechanism for constraint satisfaction problem, Neural Computing and Applications, 2017.

S. Khan, M. Bilal, M. Sharif, M. Sajid, and R. Baig, Solution of NQueen problem using ACO, Multitopic Conference, pp.1-5, 2009.

A. González-pardo and D. Camacho, A new CSP graph-based representation for ant colony optimization, Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013, pp.689-696, 2013.

N. Rojas-morales, M. Riff, and E. Montero, Ants can learn from the opposite, Proceedings of the Genetic and Evolutionary Computation Conference 2016, ser. GECCO '16, pp.389-396, 2016.

T. Stützle and H. Hoos, MAX-MIN Ant System, Future Generation Computer Systems, vol.16, issue.8, pp.889-914, 2000.

I. P. Gent, E. Macintyre, P. Prosser, B. M. Smith, and T. Walsh, Random constraint satisfaction: Flaws and structure, Constraints, vol.6, issue.4, pp.345-372, 2001.

E. Macintyre, P. Prosser, B. Smith, and T. Walsh, Random constraint satisfaction: Theory meets practice, Principles and Practice of Constraint Programming-CP98, 4th International Conference, vol.1520, pp.325-339, 1998.

E. Montero and M. Riff, A new algorithm for reducing metaheuristic design effort, Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013, pp.3283-3290, 2013.

T. Bartz-beielstein and M. Preuss, Experimental research in evolutionary computation, Genetic and Evolutionary Computation Conference, pp.3001-3020, 2007.

N. Rojas-morales, M. Riff, and E. Montero, A survey and classification of opposition-based metaheuristics, Computers & Industrial Engineering, vol.110, pp.424-435, 2017.