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ABSTRACT

Cloud cover is a serious impediment in land surface anal-
ysis from Remote Sensing images either causing complete
obstruction (thick clouds) with loss of information or blurry
effects when being semi-transparent (thin clouds). While
thick clouds require complete pixel replacement, thin cloud
removal is fairly challenging as the atmospheric and land-
cover information is inter-twined. In this paper, we address
this problem and propose a Cloud-GAN to learn the mapping
between cloudy images and cloud-free images. The adver-
sarial loss in the proposed method constrains the distribution
of generated images to be close enough to the underlying
distribution of the non-cloudy images. An additional cycle
consistency loss is used to further restrain the generator to
predict cloud-free images only of the same scene as reflected
in the cloudy images. Our method not only rejects the ne-
cessity of any paired (cloud/cloud-free) training dataset but
also avoids the need of any additional (expensive) spectral
source of information such as Synthetic Aperture Radar im-
agery which is cloud penetrable. Lastly, we demonstrate the
efficacy of our technique by training on an openly available
and fairly new Sentinel-2 Imagery dataset consisting of real
clouds. We also show significant improvement in PSNR val-
ues after removing clouds on synthetic images thus validating
the competency of our methodology.

Index Terms— Cloud Removal, Generative Adversarial
Networks, Deep Learning, Sentinel-2 Imagery.

1. INTRODUCTION

Remote Sensing (RS) imagery is pivotal for varied challeng-
ing tasks such as recognizing footprints of buildings [1],
detecting changes in temporarily apart scenes [2] or seman-
tic segmentation in aerial scenes [3]. Such images are often
plagued by films of clouds that partially or completely ob-
struct the scene. This can be quite annoying for RS experts,
especially while observing a city like Paris which witnesses
cloudy weather for a major part of the year. Thus, it clearly
necessitates the requirement for an automatic technique that
detects and removes the cloudy regions in a scene and re-
places them with a neat in-painting of the underlying scene.

----> Cloud-GAN ---->}8

Fig. 1: Cloud-GAN can effectively remove clouds from thin cloudy satellite
imagery without supervision using ground truth

Predicting a scene beneath a cloud is an under-constrained
problem and unless we have some prior information, it is
largely quite complex to replace clouds with correct under-
lying details. A way out has been by using multi-temporal
images of the same region as done by [4] through a Multi-
Temporal Dictionary Learning. [5] used Synthetic Aperture
Radar (SAR) Imagery owing to the fact that it can easily pen-
etrate through the clouds. However, SAR imagery is difficult
to interpret and have a lower spatial resolution compared to
RGB imagery. Additionally, [6, 7] studied the thin cloud re-
moval problem in the literature. However, most of these ap-
proaches were based on conventional hand crafted methods
and are limited in terms of performance.

Generative Adversarial Networks (GANSs) [8] have gained
immense popularity owing to their remarkable capability in
modeling the mapping function between input and output im-
ages belonging to target domains. Using an adversarial loss,
the GAN’s can be trained to produce fake images which are
indistinguishable from the real images of target domain. [9]
used McGANSs to predict cloud-free RGB images as well
as cloud masks from the input cloudy image. The authors
trained the model using pair of cloud-free image and synthet-
ically produced cloudy images (by adding Perlin noise to the
original RGB images). Additionally, they also utilize Near-
Infrared (NIR) imagery, which is closer to visible range and
possess partial cloud penetration capabilities. However, such
kind of synthetic clouds produced using Perlin noise, are not
realistic and significantly different from actual clouds seen
in visible light images. Nevertheless, composing a dataset
of real clouds and their cloud-free counterparts is quite a
herculean task.
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Fig. 2: Network Architecture: Generatorxay and Generatoryox rep-
resent mapping function G : X — Y & F' : Y — X respectively.
Discriminator X and Discriminator Y represent D x and Dy respectively.

We overcome this hurdle, by improvising upon a novel
technique, which together with the adversarial loss from tra-
ditional GANs, employs a more recent cycle consistent loss
[10], to convert thin cloudy images to cloud-free RGB im-
ages. Having a cycle consistency loss constrains the problem,
such that if an image is transformed from input domain to
target and then back to the input domain, it should look alike
to the original image. An additional advantage of our method
is that it absolves us from the requirement of an explicit
paired cloudy/cloud-free dataset. Moreover, our methodol-
ogy doesn’t require any sort of cloud-penetration sources of
imagery such as SAR or NIR. We simply utilize visible range
imagery from a fairly new open source dataset (Sentinel-2)
to report impressive results (figure 1 and 3) clearly showcas-
ing the efficacy of our results. We also report quantitative
results on synthetically generated cloudy images, showcasing
a significant improvement in PSNR values in Figure 5.

2. PROPOSED FRAMEWORK AND
METHODOLOGY

Our proposed framework broadly consists of modeling a map-
ping function that can translate cloudy images into cloud-free
visible range images.

Assuming cloudy images belong to domain X and cloud-
free images to domain Y, we define two mapping func-

tions G : X — Y and F : Y — X which are mod-
eled using two generator networks, Generatorxsy and
Generatoryox, respectively, as illustrated in the figure 2.
Training dataset is composed of {z;};Y; and {y;}}Z, sam-
ples where z; € X and y; € Y and pgaia(x) and paaia ()
are their data distributions respectively. Also, we have two
Discriminator networks, Discriminator X (D x) and Discrim-
inator Y (Dy) that distinguish between real data (x and y)
and adversaries generated by the two generators i.e. G(x) and
E(y).

Hence, in a way the generators and the discriminators
compete with each other until they reach to a nash equilib-
rium. At this instant, the generator is effectively able to match
the distribution of generated images (G(x) & G(y)) to the dis-
tribution of targeted images (Ddata (V) &Pdata () respectively)
and thus, fool the discriminator. We specifically utilize Least
Square GAN’s (LSGAN’s), which have shown [11] to gen-
erate higher quality images with a much more stable learning
process compared to regular GANs. The adversarial objective
function is formulated as:

n]%in Lisgan(Dy, X,Y) = Eyepo(D(y) — 1%+
Y

Exwpdam(x) [D(G(.’L‘))Q]
min Lpsgan (G, X,Y) = Eanpyyr,(|(D(G(2)) = 1)%]
(1)

Similarly, for mapping function F and discriminator Dx, we
have objective given by:

minLpsgan(Dx, Y, X),min Liscan (B Y, X) - (2)
X

Adversarial objective alone is quite under-constrained as
the same input can be mapped to any random permutation of
target images. Thus, we additionally use a cycle consistency
loss which restrains the generator to map a given input x; to
a desired output y;. In Figure 2 (a), the loss constrains the
generated Cyclic X to match Input X ie. 2 — G(z) —
F(G(x)) = =z, called as forward consistency. Similarly, for
backward consistency, y — F(y) — G(F(y)) = y. We
formulate the cycle consistency objective as:

i1 Leye (G F) = Erpyna | (F(G@) ]+

Eypiuralll (G(F(y)) = yll,]

Combining the Generator objectives from equations 1 and 2
and cyclic-consistency loss, our final Generator objective is:

3)

min Lgen (G, F) = Lrsean (G, X, Y)+
G,F (4)
LLSGAN (F7 Y7 X) + )\Lcyc(Gv F)

where ) is a regularizing factor that weights the cyclic term
with respect to Generative term of the adversarial objective
function.



3. TRAINING AND IMPLEMENTATION DETAILS

3.1. Dataset

Our dataset is composed of high resolution Level-1C Sentinel-
2 imagery ranging between the year 2015 till 2017. Sentinel-2
is a multi-spectral dataset, with each spectral band is stored
as a separate image [12]. For our experiments, we choose
images only from visible bands i.e. Blue (B2), Green (B3),
Red (B4) all of which have 10 meters of spatial resolution.

Most of our cloud-free images are selected with 0-5%
cover while for cloudy images we chose range anywhere be-
tween 10 to 100. All the images are downloaded over the
Paris region as it is easy to get quite a range of cloudy images.
We choose 20 cloudy and 13 cloudless images for training.
We then extract 512 x 512 patches from these images. After
filtering of unwanted ones, a total of 1677 patches for each
cloud and cloud-free dataset were extracted while for testing
we had 837 patches. For computational efficiency in training,
we resize them to 256 x 256.

3.2. Network Architectures

We imbibe the architecture and the naming convention sim-
ilar to what have been used by [10]. Generator architecture,
uses 6 blocks for 128 x 128 training images and 9 blocks for
256 x 256 or higher resolution images. Additionally, a re-
flection pad is imbibed to avoid artifacts. The Discriminator
architecture consists of a 70 x 70 PatchGAN [8], classifying
70 x 70 patches as real or fake data. Thus, it can effectively
be applied to any input size image and has lesser number of
parameters.

3.3. Training

Initialization of weights was done through a Gaussian distri-
bution with mean 0 and standard deviation 0.02. Optimiza-
tion was carried out using ADAM [13], with a batch size of
1 and A = 10 for all experiments. We perform training from
scratch using a learning rate of 0.0002 up-to 200 epochs. The
learning rate was kept constant for the first 100 epochs after
which it linearly decays to zero until the last epoch. Also, as
illustrated in [10] model oscillations are avoided by using a
history of generated images (50) rather than only one.

4. RESULTS AND DISCUSSIONS

We present the results obtained using Cloud-GAN in Figure 3
(for real clouds) and 4 (for synthetic clouds). Without using
any corresponding Cloud-Free pair for a cloudy image, our
Cloud-GAN efficiently removes thin clouds spread through-
out a scene, as shown in row III, IV, V in Figure 3. More
interestingly, it effectively detects small cloudy patches and
replaces them with the underlying ground details, as depicted
in row I and II in Figure 3. Cloud-GAN interestingly is able

to retain finer details like patches of urban settlements, river,
fields (row IV) while getting rid of the cloudy film. In some
cases e.g., row II, the generated image from our method is
more natural and visually more pleasing than the original im-
age which is a byproduct of our method.

We cannot report any quantitative results on the real
dataset since we lack paired cloudy-cloud-free images. How-
ever, to compensate for that, we report results on 5 synthetic
scenes, composed by addition of Perlin noise to cloud free
images. We provide the corresponding PSNR results in Fig-
ure 5. We observe that even though we trained our model
on real dataset, our model substantially outperforms on all
synthetic scenes by a significant margin. Figure 4 shows two
of these test scenes. Note that we do not provide comparison
with [9], due to the unavailability of their code and dataset.

We additionally show some special instances of thick
cloud (Figure 6) where our model fails to yield credible re-
sults. In Figure 6 row I, we see that the model contends by
generating an over-smoothed image when the clouds are too
opaque. In Figure 6 row II, the model fails completely to
produce an image as the clouds have occupied most of the
visible area. One of the reasons can be that the network finds
no closest sample in the target dataset and hence predicts
a spatially smooth region under the cloud or some random
noise. The only way to solve this is by the addition of an ex-
tra source such as SAR images which can penetrate through
these clouds and give us details of the underlying ground
details.

5. CONCLUSIONS

We have proposed a novel technique to remove thin clouds
from Sentinel-2 imagery. Our cloud removal technique
is employed without using any explicit dataset of paired
Cloudy/Cloud-Free images as performed in the past. Our
model nullifies the requirement of creating and training
on synthetic dataset which is not truly realistic. Our input
sources are purely visible range images without any prereq-
uisite for SAR or other cloud-penetration sources. However,
presence of thick clouds do necessitate need of an additional
high wavelength imagery to gain some knowledge about the
underlying ground information which we leave as a topic
of future research. Lastly, we report PSNR results on some
synthetic test scenes where we see significant improvement
in performance thus validating the efficacy of our results.
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