, References

B. Miled, D. Ryckelynck, and S. Cantournet, A priori hyper-reduction method for coupled viscoelastic???viscoplastic composites, Computers & Structures, vol.119, pp.95-103, 2013.
DOI : 10.1016/j.compstruc.2012.11.017

URL : https://hal.archives-ouvertes.fr/hal-00790175

P. Ladeveze, Nonlinear Computational Structural Mechanics -new approaches and non-incremental methods of calculation, Mechanical Engineering Series, 1999.

F. Chinesta, P. Lavevèze, and C. Elias, A short review in model order reduction based on proper generalized decomposition. Archives od computational methods in engineering, pp.395-404, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004940

B. Brice, F. Bordeu, C. Francisco, L. Adrien, and A. Poitou, Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity, Comput. Methods Appl. Mech. Eng, vol.201, pp.2041-2053, 2012.

M. Bernadette and L. Trabucho, A Galerkin spectral approximation in linearized beam theory, Math. Model. Numer. Anal, vol.26, issue.3, pp.425-446, 1992.

F. Mohammed-khalil, L. Arthur, F. Agnès, C. Xavier, and S. Karam, A model reduction technique for beam analysis with the asymptotic expansion method, Comput. Struct, vol.172, pp.11-28, 2016.

C. Grégoire, L. Arthur, S. Karam, F. M. Khalil, and C. Xavier, Higher-order beam model with eigenstrains: theory and illustrations, ZAMM -Journal of Applied Mathematics and Mechanics, 2018.

A. Nadai, Journal of Rheology, vol.2, issue.4, 1931.
DOI : 10.1122/1.2116408

D. G. Christopherson, A Theoretical Investigation of Plastic Torsion in an I-Beam, The Aeronautical Journal, vol.101, issue.353, pp.1-4, 1940.
DOI : 10.1098/rspa.1938.0176

W. Sokolovsky, Theory of plasticity, 1946.

J. O. Smith and O. M. Sidebottom, Inelastic behaviour of load-carrying members, 1965.

R. Hill and M. P. Siebel, On the plastic distortion of solid bars by combined bending and twisting, Journal of the Mechanics and Physics of Solids, vol.1, issue.3, pp.207-214, 1953.
DOI : 10.1016/0022-5096(53)90038-6

N. S. Boulton, Plastic twisting and bending of an I-beam in which the warp is restricted, International Journal of Mechanical Sciences, vol.4, issue.6, pp.491-502, 1962.
DOI : 10.1016/S0020-7403(62)80011-3

B. Jeremy and B. Patrick, Yield surface approximation for lower and upper bound yield design of 3D composite frame structures, Computers and Structures, vol.129, pp.86-98, 2013.

?. Boris and H. Miroslav, Analytical solutions in elasto-plastic bending of beams with rectangular cross section, Applied Mathematical Modelling, vol.33, issue.3, pp.1749-1760, 2009.

C. Olsen-poul, Rigid plastic analysis of plane frame structures, Computer Methods in Applied Mechanics and Engineering, vol.179, issue.1-2, pp.19-30, 1999.
DOI : 10.1016/S0045-7825(99)00039-0

J. H. Argyris, B. Boni, U. Hindenlang, and M. Kleiber, Finite element analysis of two- and three-dimensional elasto-plastic frames???the natural approach, Computer Methods in Applied Mechanics and Engineering, vol.35, issue.2, pp.221-248, 1982.
DOI : 10.1016/0045-7825(82)90135-9

M. Papadrakakis and V. Papadopoulos, A computationally efficient method for the limit elasto plastic analysis of space frames, Computational Mechanics, vol.1118, issue.2, pp.132-141, 1995.
DOI : 10.1007/BF00365867

A. S. Gendy and A. F. Saleeb, Generalized yield surface representations in the elasto-plastic three-dimensional analysis of frames, Computers & Structures, vol.49, issue.2, pp.351-362, 1993.
DOI : 10.1016/0045-7949(93)90114-S

B. Klaus-jürgen and C. Anil, On the displacement formulation of torsion of shafts with rectangular cross-sections, International Journal for Numerical Methods in Engineering, vol.18, issue.10, pp.1565-1568, 1982.

J. Mazars, P. Kotronis, F. Ragueneau, and G. Casaux, Using multifiber beams to account for shear and torsion, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.52, pp.7264-7281, 2006.
DOI : 10.1016/j.cma.2005.05.053

URL : https://hal.archives-ouvertes.fr/hal-00115380

B. Klaus-jürgen, W. Philippe, and M. , On elastic-plastic analysis of I-beams in bending and torsion, Computers and Structures, vol.17, issue.5, pp.711-718, 1983.

C. Erasmo, G. Gaetano, and P. Marco, Beam Structures, 2011.

B. Shunsuke and K. Tateo, Plastic analysis of torsion of a prismatic beam, International Journal for Numerical Methods in Engineering, vol.18, issue.6, pp.927-944, 1982.

T. George, C. , B. Nick, and G. , Elastic-plastic analysis of functionally graded bars under torsional loading, Composite Structures, vol.176, pp.254-267, 2017.

J. C. Michel and P. Suquet, Nonuniform transformation field analysis, International Journal of Solids and Structures, vol.40, issue.25, pp.6937-6955, 2003.
DOI : 10.1016/S0020-7683(03)00346-9

URL : https://hal.archives-ouvertes.fr/hal-00088331

J. C. Michel and P. Suquet, Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.48-51, pp.5477-5502, 2004.
DOI : 10.1016/j.cma.2003.12.071

URL : https://hal.archives-ouvertes.fr/hal-00088245

S. Roussette, J. C. Michel, and P. Suquet, Nonuniform transformation field analysis of elastic???viscoplastic composites, Composites Science and Technology, vol.69, issue.1, pp.22-27, 2009.
DOI : 10.1016/j.compscitech.2007.10.032

URL : https://hal.archives-ouvertes.fr/hal-00499000

F. Felix and L. Matthias, Reduced basis hybrid computational homogenization based on a mixed incremental formulation, Computer Methods in Applied Mechanics and Engineering, vol.260, pp.143-154, 2013.

F. Felix, H. Max, and L. Matthias, GPU accelerated computational homogenization based on a variational approach in a reduced basis framework, Computer Methods in Applied Mechanics and Engineering, vol.278, pp.186-217, 2014.

O. C. Zienkiewicz, The finite element method. McGraw-Hill London, 1977.

R. V. Mises, Mechanik der festen Körper im plastisch-deformablen Zustand, Mathematisch-Physikalische Klasse, vol.1913, pp.582-592, 1913.

M. L. Wilkins, Methods in Computational Physicsch. Calculation of Elastic-Plastic Flow, pp.211-263, 1964.

R. Krieg and S. Key, Implementation of a Time Dependent Plasticity Theory into Structural Computer Programs. Constitutive equations in viscoplasticity: Computational and engineering aspects, pp.125-137, 1976.

J. C. Simo and R. L. Taylor, Consistent tangent operators for rate-independent elastoplasticity, Computer Methods in Applied Mechanics and Engineering, vol.48, issue.1, pp.101-118, 1985.
DOI : 10.1016/0045-7825(85)90070-2

H. Thomas, J. R. , T. Robert, and L. , Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis, Computers & Structures, vol.8, issue.2, pp.169-173, 1978.