Exemplar-Based Image Inpainting using an Affine Invariant Similarity Measure - École des Ponts ParisTech Access content directly
Book Sections Year : 2017

Exemplar-Based Image Inpainting using an Affine Invariant Similarity Measure


Patch-based approaches are used in state-of-the-art methods for image inpainting. This paper presents a new method for exemplar-based image inpainting using transformed patches. The transformation is determined for each patch in a fully automatic way from a surrounding texture content. We build upon a recent affine invariant patch similarity measure that performs an appropriate patch comparison by automatically adapting the size and shape of the patches. As a consequence, it intrinsically extends the set of available source patches to copy information from. We incorporate this measure into a variational formulation for inpainting and present a numerical algorithm for optimizing it. We show that our method can be applied to complete a perspectively distorted texture as well as to automatically inpaint one view of a scene using other view of the same scene as a source. We present experimental results both for gray and color images, and a comparison with some exemplar-based image inpainting methods.
Fichier principal
Vignette du fichier
CCIS Lecture Notes.pdf (5.85 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01829625 , version 1 (04-07-2018)


  • HAL Id : hal-01829625 , version 1


Vadim Fedorov, Pablo Arias, Gabriele Facciolo, Coloma Ballester. Exemplar-Based Image Inpainting using an Affine Invariant Similarity Measure. Computer Vision, Imaging and Computer Graphics Theory and Applications 11th International Joint Conference, VISIGRAPP 2016, Rome, Italy, February 27 – 29, 2016, Revised Selected Papers , 2017, Communications in Computer and Information Science book series. ⟨hal-01829625⟩
489 View
292 Download


Gmail Facebook Twitter LinkedIn More