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Abstract A numerical model for Thermo-Hydro-Mechanical (THM) strong cou-
plings in an elasto-plastic Cosserat continuum is developed in order to explore
the influence of frictional heating and thermal pore fluid pressurization on the
strain localization phenomenon. This model allows specifically to study the com-
plete stress-strain response of a rock specimen as well as the size of the strain
localization zone for a rock taking into account its microstructure. The numer-
ical implementation in a finite element code is presented, matching adequately
analytical solutions or results from other simulations found in the literature. Two
different applications of the numerical model are also presented to highlight its
capabilities. The first one is a biaxial test on a saturated weak sandstone, for
which the influence on the stress-strain response of the characteristic size of the
microstructure and of thermal pressurization is investigated. The second one is
the rapid shearing of a mature fault zone in the brittle part of the lithosphere. In
this example, the evolution of the thickness of the localized zone and the influence
of the permeability change on the stress-strain response are studied.
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0] Volume of the specimen

wy Cosserat rotations

Wi Tensor of rotations of the microstructure
£2;; Macroscopic rotation tensor

Density of the porous material

i Test functions
p
o Effective mean stress

Oij Symmetric part of the total stress tensor

Tij Total stress tensor

Tlig] Antisymmetric part of the total stress tensor

T Generalized deviatoric stress invariant for Cosserat continua
T{j Effective stress tensor

Eij Symmetric part of the strain tensor

13 Parameter that enables to switch between different hardening

1 Introduction

Thermo-Hydro-Mechanical (THM) couplings play a major role in various applica-
tions in rock mechanics like for instance reservoir mechanics (Longuemare et al,
2002), fault mechanics (Sulem et al, 2011), geothermal energy (Tung et al, 2017) or
nuclear waste disposals (Menaceur et al, 2016). The reason is that the conditions of
temperature and the presence of pore fluids greatly affect the mechanical response
and vice versa. These couplings are particularly relevant in the context of strain
localization, which is one of the most important feature encountered in the rocks of
the lithosphere and is encountered at different scales (Regenauer-Lieb et al, 2017).
Beyond some level of deformation, the strength of the material decreases and this
softening of the rock resistance leads to a localization of the deformation into nar-
row zones. This softening behavior of the material is not limited to mechanical
processes and can be enhanced by multi-physical couplings.

A first approach to study strain localization consists in looking at the possi-
ble critical conditions for which the constitutive equations of the material allow
the formation of deformation bands (Rice, 1975). In many cases, though, it is
interesting to track the evolution of the system after the onset of localization.
The full stress-strain response of the material is essential in many rock mechanics
applications (Goodman, 1989), even in the absence of THM couplings. For that
purpose, we need to simulate numerically the solution of a nonlinear boundary
value problem, which is a challenging task due to the complications that arise due
to softening. Indeed, the classical continuum theory cannot be used because the
governing system of equations is ill-posed (Vardoulakis, 1985) and a regulariza-
tion of the problem is needed to alleviate mesh dependency (de Borst, 1991), i.e.
localization in only one element.

This pathology leads to nonphysical results and can be remediated by resorting
to appropriate theories (Miihlhaus and Vardoulakis, 1987; Pijaudier and Bazant,
1987; Needleman, 1988). Among these theories, Cosserat continuum is particularly
suitable for modeling the microstructure of granular rocks (Papanastasiou and
Vardoulakis, 1992; Papanastasiou and Zervos, 2016; Stefanou et al, 2017).

In this paper, we present a numerical model that can address strain localization
phenomena in rocks modeled as a Cosserat continuum and considering THM cou-
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plings. Special attention is devoted to the validation of the numerical tool against
analytical solutions and numerical results from the literature. Two specific exam-
ples of application are also developed: biaxial loading on sandstone specimens and
seismic slip in fault gouges.

2 Constitutive model formulation

In this section a brief summary of the governing equations is given. A more detailed
presentation can be found in Stefanou et al (2017); Rattez et al (2018a).

2.1 Cosserat continuum

As compared to the classical (Cauchy) continuum, in a 3D-Cosserat continuum
each material point has three additional rotational degrees of freedom wj related
to the tensor of rotation of the microstructure wy; by:

wij = —€ijk Wk (1)

where e;;1, is the Levi-Civita symbol and the indices are equal to 1,2,3.
Several kinematic fields are introduced: the deformation tensor ~y;; - which is
split into its symmetric ;) = €:; and antisymmetric part «y[;;) - and the curvature

tensor r;; - also split into split its symmetric x(;;) and antisymmetric part ;).

1 1
eij = 5(uig tuja) Qi = 5(uig — i)
Vig) = ij —wij ki = Wiy
Vij = €ij + Vig) = Uij — Wij = Ui + €ijk Wi )

The macroscopic strain and rotation tensors (g;; and §2;;) are obtained as the
symmetric and antisymmetric part of the displacement gradient as in the classical
Cauchy continuum. ~;; is the difference between the global rotation (2;; and the
rotation of the microstructure wy;. The curvature k;; is defined as the gradient
of the vector of Cosserat rotations and represents the gradient of microscopic
deformations.

Correspondingly the stress tensor 7;; is also divided into its symmetric oy
and antisymmetric part 7(;;. The symmetric part corresponds to the macroscopic
stresses (the ones that are considered in Cauchy continuum). Besides the stress
tensor, a couple stress tensor ;; is introduced which is energy conjugate to the
curvature.

Neglecting the volumetric forces acting on the medium and inertia terms, the
momentum balance equations are written as follows (Stefanou et al, 2017):

Tijg =0 (3)

fij,j — €ijk Tk =0 (4)
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2.2 Constitutive equations for a Cosserat continuum

The general constitutive equations for a linear isotropic elastic Cosserat continuum
are defined by 6 coefficients: the two classical deformation moduli, K and G, and
four new coefficients L, M, M. and G. (Mindlin, 1964). The effective stress tensor

7! i; and couple stress tensor u;; can be expressed as:

7i; = Cijr v and  pig = M ki (5)
The effective stress tensor is linked to the total stress tensor by 7/; = Tij + pdij.
Cfjri is the elastic stiffness tensor and M, the elastic flexural bending rigidity

tensor:

Gk = (L — M)5zg5kz + (M + M:)dinds
+(M — Mc)6idjk (6)
ik = (K — _G)6136kl + (G + Ge)
+(G = Ge)dadjn (7)

0ik051

For an isotropic Cosserat continuum, we introduce 6 coefficients. 3 of them have
the dimensions of stress (K,G and G.) and the other 3 the dimensions of length
squared times stress (L, M and M.). Thus, any ratio of L, M or M. to K, G or
G. will introduce a material parameter with dimension of length squared (Cowin,

1970). For geomaterials, we usually consider R = ,/% as a characteristic length

related to the microstructure of the material (Unterreiner, 1994). Moreover, we
assume that M = M, to ensure that no out-of-plane couple stresses are produced
during the shearing of a layer (invariance in 1 and z3 directions).

A flow theory of plasticity for granular media with Cosserat microstructure
can be derived by keeping the same definitions for the yield surface and the plastic
potential as in the classical theory, but by generalizing the stress and strain in-
variants to Cosserat continua (Miithlhaus and Vardoulakis, 1987). We decompose
the deformation and curvature rate tensors into elastic, plastic and thermal parts
(small strains theory):

Yij = Yij + 5 + ’thgh and ki = ki + (8)

The thermal strain rate is ’yfjh =aT 0;; with a the coefficient of thermal
expansion. The effect of temperature on the curvature tensor is neglected herein.

The generalized deviatoric strain and stress second invariants are generalized
as:

1
T = \/h1 sij 8ij + ha sij sji + ﬁ(hB, Mij Mij + hami; mji)

’ypf\/gle &+ g€l el +R2(3kfjkfj ga kP EP) 9)

ij i 17 gt

where s;;, mqj, e;; and k;; are the deviatoric parts of the effective stress, couple-
stress, strain and curvature respectively. h; and g; are coefficients determined
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by micro-mechanical considerations (Vardoulakis and Sulem, 1995; Rattez et al,
2018a). With the above definition of the second deviatoric stress invariants, a
Drucker Prager plasticity model can be derived as in Miithlhaus and Vardoulakis
(1987), or a von Mises plasticity model as in de Borst (1991).

2.3 Mass balance equation

We consider a porous medium consisting of two phases, i.e. the solid skeleton and
the pore fluid.

The mass balance of the fluid phase leads to the following form of the equation
for the pore pressure p:

o _, o ANOT 10
ot v PR ey T e ot

(10)

where ¢, = x/(n! %) is the hydraulic diffusivity, 5 = n8¢ 4+ (1 — n)B*® is the
mixture compressibility, \* = nAf +(1—n)\® is the coefficient of thermal expansion
of the soil-water mixture (Vardoulakis, 1986). x is the intrinsic permeability of
the porous medium, and ' is the viscosity of the pore fluid. 87 and 8° are the
compressibilities per unit volume of the pore fluid and the solid phase respectively
and A, \* are the thermal expansivities per unit volume. n is the eulerian porosity
of the medium.

2.4 Energy balance equation

The energy balance equation yields the following form of the evolution equation
for the temperature 7"

oT . .
PC(E — conTii) = T8 + pight (11)

where ¢, = ’;—(Tj is the thermal diffusivity, kr is the thermal conductivity of the
material, pC is the specific heat per unit volume of the material in its reference

state.

3 Finite element implementation and validation tests

In this section, the numerical implementation of a Cosserat continuum with THM
couplings is presented and tested through a series of simulations based on various
benchmarks for the different physical couplings. The tests are summarized in this
section.
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3.1 Numerical implementation

A displacement-rotation-temperature-pore pressure incremental finite element for-
mulation is used to numerically integrate the model presented in the previous sec-
tion. The integration in time is implicit using the backward Euler method, which
is implemented in REDBACK (Poulet et al, 2016).

The weak form of the linear and angular momentum balance equations Egs. 3-4
is written as (Godio et al, 2015):

—/ 7‘@‘1/)@de +/ Tijnﬂ/)ids =0 (12)

2 0N

—/ uij¢i7jd9+/ mjnmdS—/ EijkTikPid2 =0 (13)
2 Yo Q

The energy and fluid mass balance equations are also written in their weak
forms:

/ pYdS2 + Chy(/ D,it,idS2 —/ p,inipdS) — /\—*/ T”LﬂdQ—F i*/ evthd2 =0
2 2 282 /8 2 6 (9]
(14)
/ Tyds2 + cth(/ Tt idS2 — / T inivpdS) — L/ (TiAE + pigil;),id2 = 0
Q Q an rC Jo (15)
15

where 1 and ); are tests functions. cpy, ¢h, pC, f* and \* are considered constant
herein.

Linear Lagrange test functions are chosen for all the fields and full integration
is performed. Quadratic interpolation functions could be used as well for the dis-
placement field, linear for the Cosserat rotations and linear or constant for the
pressure and temperature fields in order to assure compatible interpolation order
and lead to a more efficient formulation. Moreover, reduced integration could be
also used to improve performance (see (Godio et al, 2015) for a detailed discus-
sion). However, the mesh convergence analyses performed herein, show acceptable
performance and convergence despite the use of linear shape functions for all the
fields.

3.2 Mechanical tests
As a first step, the implementation of the equations for a Cosserat continuum
and of the constitutive laws are checked. For elasticity, the numerical results are

compared to the analytical solution of shearing of an elastic layer and for plasticity
with results found in the literature.

3.2.1 Elasticity tests

The numerical results are compared with an analytical solution called the bound-
ary layer effect in Cosserat continua described in Vardoulakis and Sulem (1995).



140

145

150

8 Hadrien Rattez et al.

We consider the shearing of an elastic infinite layer of thickness h in plane strain
conditions. The geometry is described in Fig. 2.

We use the stress-strain relationships of a 2D-linear isotropic elastic Cosserat
medium in plane strain conditions.

All mechanical properties are assumed to be independent from the z; coordi-
nates, which results in 711 = 0 and k31 = 0. We also assume that 72 = 0 at the
top and u2 = 0 at the bottom, which results in 711 = 722 = 722 = 0 everywhere in
the layer.

In that case, the equilibrium equations can be reduced to only two equations:

887;22 =0 or 712 = constant = 7, (16)
sz ol — 71 = 0 (17)
0x2

Then, we insert the constitutive equations to obtain a coupled system of partial
differential equations in w1 and w3 :

0%uy ows
(G + Gc)a—xg +2G. D2 = 0 (18)
O*w§ c Our

The general solution of this system is:

Tc

§ K, 66.12 Ko e—d.zz 5 (20)

QGC Kl S.xo KQ —5.x9 Te
- “C (22 N —— + —x2 + K 21
w=arals e 5 ¢ )t gTt s (21)

— /_G G
where 6 = 2 m
The four constants (K1, Ko, K3 and 7.) are determined from the boundary
conditions in u; and wsg.

At the bottom of the layer (z2 = 0), the displacement is equal to 0 and the
Cosserat rotation is constrained to be equal to the rigid body rotation.

1 3’(1,1

u1($2 = 0) =0 and w§(m2 = O) = 921($2 = O) = _58—332(

x2 =0) (22)

At the top of the layer (x2 = h), the displacement is imposed equal to 0.01lmm
and the Cosserat rotation is equal to -0.1. It corresponds to an interface with a
particular roughness (Vardoulakis et al, 1992; Vardoulakis and Unterreiner, 1995).

ui(ze = h) =0.0lmm and w5(z2=0)=-0.1 (23)

The set of parameters chosen as an example are given in Table 1.

We choose a characteristic length R (or bending length) one order of magnitude
less than the thickness of the band and we observe that the Cosserat effects are
confined in a layer of size about three times R adjacent to the upper boundary,
where the rotation and displacement are imposed.

For the geometry of the numerical simulation, we consider a cube of dimensions
1*1*1 mm?® with 50 elements along xa-direction, 10 along z;-direction and 1 along
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Parameters | values | units
G 10 GPa
Ge 20 GPa

h 10—3 m

R 10—4 m

M G R? kN

Table 1 Values of the parameters used for the boundary layer elastic test

x3-direction. We prescribe periodic boundaries in the x1- and x3-directions. We

have 6 variables in our model (u1, u2, us, Wi, ws, ws), thus their values or the

values of their derivatives have to be imposed at the top and bottom edges.
Bottom edge (z2=0) :

ur=0; u2=0; wuz3=0; wi=0; w;=0; ws= o (24)
Top edge (z2=h) :

u—hl - 0.01; g—";z —0: uz=0; w$=0; wi=0; w§=—0.1 (25)

In Fig. 3(a), the results for the displacements are plotted on the deformed
mesh. In Figs. 3(b), we compare the values obtained for w§ with the analytical
solution presented above. The difference between the numerical and the analytical
solutions is negligible. Moreover, a mesh convergence analysis is conducted for
the value of the Cosserat rotation at z2 = 0.9 (see Fig. 4), which shows that the
relative error is less than 1.2 % for 40 elements and decreases to 0.01 % for 400
elements (see also Godio et al (2015) for a mesh convergence in terms of modal
frequencies with Cosserat continuum).

3.2.2 Plasticity tests

The Drucker-Prager plastic model for three dimensional Cosserat continua is devel-
oped in Rattez et al (2018a) assuming a hardening law arising from the evolution
of the friction coefficient. In order to compare with results in the literature that
consider a von Mises yield criterion, we assume the following expression for the
yield criterion:

F =14 po(l+hsq€) — (1 + hsq(1 =€) (26)
Q=7+ Bo(1+hsgf) — c(1+ hsq(1 = §)) (27)
where 0 = T+ and 7 is the generalized second invariant of the deviatoric

stresses. £ is a parameter that allows us either to have a hardening on the friction
coefficient (£ = 1) as for the Drucker-Prager model derived in Rattez et al (2018a),
or on the cohesion (§ = 0) as for the von Mises yield criterion. hs is a parameter
controlling the magnitude of the hardening/softening rate and ¢ is the hardening
variable (chosen as ¢ = 4% ).

As an example, we consider an infinite layer of height h = 60mm subjected to
pure shear at constant velocity V (see Fig. 5). The same material parameters with
Godio et al (2016) are chosen in order to have a comparison.
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The yield criterion is based on a von Mises model adapted for Cosserat con-
tinua, as in de Borst et al (2012). In equation 26, we consider £ = 0, 4 = 0 in
order to have the same expression.

F=1—c(") (28)

where c is the equivalent plastic stress (or cohesion) that depends linearly on v? the
equivalent plastic strain. The coefficients in the stress invariant are h; = ha = %,
hz = % and hsa = 0. In the plastic strain invariant they are g1 = g2 = %, gz = %
and g4 = 0. These values for the coefficients differ from Miihlhaus and Vardoulakis
(1987); Mithlhaus (1986); Vardoulakis and Sulem (1995), because of the use of a
von Mises criterion for which yielding occurs when 7 reaches the yield strength
of the material in simple tension, leading to the conditions hy + ho = % and
g1+ g2 = % In the other papers, yielding is chosen to occur when 7 reaches the
yield strength of the material in pure shear, leading to the conditions hy + ho = %
and g1 + g2 = 2.

In this purely mechanical example, a linear softening rule is chosen to exhibit
a localization of the deformations. The initial cohesion is ¢ = 100 MPa and the
hardening modulus is hs = —4.

The elastic properties of the material are K = 4000 MPa, G = 4000 MPa and
G = 2000 MPa. The internal length of the microstructured continuum is chosen
to be R = 2.5 mm.

We investigate, first, the mesh-convergence of the model, which is the one of the
most interesting features of the Cosserat continua. A three-dimensional geometry
is considered with periodic boundary conditions for the right, left, front and back
side of the cube. A regular mesh is chosen with one element in directions x1 and
x3, and a range of 32 to 300 in the direction xz. In Fig. 6(b), the shear stress 712 at
the top of the layer is plotted versus the normalized horizontal displacement at the

top. The plastic regime is reached for 712 = % as expected and shows a softening

behavior, exactly like Godio et al (2016) and de Borst (1991). The results for 200
and 300 elements in the vertical direction exhibit no clear difference, showing a
mesh-convergence.

In Fig. 6(a), the Cosserat rotation around direction x3 is plotted on the de-
formed mesh for 712 = 26MPa after softening. The magnitude of the rotations is
higher inside the zone of localized deformations as observed experimentally (Hall
et al, 2010).

In Fig. 7, the shear strain 712 is plotted along the height of the layer for different
discretizations and for 712 = 26MPa after softening. The deformation profile is
practically identical for 80 and 200 elements showing also a mesh convergence.

In Fig. 8(a), we present the stress-strain evolution of the shear layer discretized
with only one element. This allows to test the implementation of the harden-
ing/softening constitutive behavior. Both the static Mithlhaus-Vardoulakis and de
Borst coefficients for the shear stress and shear strain generalized invariants are
used and a hardening/softening coefficient of 4/-4 MPa is used. We observe that
the yield criterion is reached for 712 = Lg considering de Borst coefficients and
712 = ¢ considering Miihlhaus-Vardoulakis choice of coefficients.

In Fig. 8(b), we plot the generalized stress invariant 7 as a function of the
generalized plastic strain invariant «y,. The slopes in this diagram enable us to
verify that the value of the hardening modulus is the one expected.
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3.3 Thermo-Mechanical tests

These tests concern the verification of the coupling between the energy balance
equation and the mechanical equations (Egs. 12, 13 and 15).

First, we look at the heating of a rod of length 10mm with a section of 1 x 1mm?
(Fig. 9).

For the first test, the evolution of temperature at the middle of the rod is
compared to the solution obtained analytically using series (Fig. 10(a)) (Kreyszig,
2006). A good agreement is found. In Fig. 10(b), we plot the evolution of the
displacement at the free end of the rod for ¢;p, = 1 mm2/s. It tends to a value of
2.5 x 10~ ?mm as expected (thermal expansion coefficient: 2.5 x 1072/°C).

Additional tests are performed, for the same geometry of the rod, but with
different boundary conditions. In these tests the normal displacements of all faces
are fixed except on one side as shown in Fig. 11. The rod is no longer free to
expand in all directions and the precluded deformations cause the development of
stresses that can be calculated analytically in elasticity.

The deformation along the x3-axis of the rod is given by:

3K
Y33 = ——p=aAT (29)
K +1G

and the stresses perpendicular to the axis of the rod are:

Ti1 = T2z = (K — %G)’YSS —3KaAT (30)

Therefore, when the temperature reaches a steady state AT = 1°C, we obtain
v33 = 3.75x 1072 and 711 = 792 = —1.125 x 10" *MPa (with K = 3MPa and
G = 1.5MPa). These values are in agreement with the results of the numerical
simulation shown in Fig. 12.

The two last tests are dedicated to Thermo-Mechanical couplings considering
an elasto-plastic behavior in order to explore the influence of a temperature rise
on the plastic behavior of the material. The configuration for the first test is the
one shown in Fig. 11, but this time a yield stress (cohesion) is set to 0.01MPa.
Perfect plasticity is considered in this example, but with no plastic dissipation in
the energy balance equation. In Fig. 13, the results for the stress and displacement
are compared. We observe that 711 remains constant after reaching the value of
0.01MPa. The development of plastic deformations also has a consequence on the
displacement in the rod axis direction (z3), which is higher than that for the elastic
rod. Nevertheless, no difference is observed for the evolution of the temperature as
the mechanical dissipation term is neglected in this example. Thus, no feedback
between the mechanical behavior and the energy balance is possible.

In order to have an insight into the feedback of the mechanics on the energy
balance equation (due to the plastic dissipation term), a shear test is modeled. The
same parameters as the plastic tests with a height of 60mm and only one element
is considered for the mesh in the vertical direction. For simplicity, we neglect heat
diffusion and only consider the effect of plastic dissipation on the temperature
change:

oT )

PCo = oij€h; + TGy Mk (31)
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P
From this test, we verify the value of the mechanical dissipation 712 AX;Q at each

time step. Moreover, from the energy balance equation (Eq. 31), the temperature

»
increase between two time steps in the plastic regime is equal to % (with

pC taken equal to 1 MPa/°C here). The comparison of this expression and of the
actual temperature increase is plotted in Fig. 14 showing no difference.

3.4 Hydro-Mechanical tests

Three tests have been designed in order to check the Hydro-Mechanical (HM) cou-
plings (Egs. 12, 13 and 14). An undrained oedometer configuration is considered.
The geometry and boundary conditions are shown in Fig. 15.

No mass diffusion is considered in these tests and, therefore, the mass conser-
vation equation becomes:

o _ 1 0e
ot~ pr ot

(32)

A cubic single element of dimensions 1 x 1 x 1 mm? representing a fully satu-
rated sample with its lateral displacements prevented is considered. Moreover, all
boundaries are impervious. A constant downward velocity vs is applied on the top
boundary.

The deformation of the cube in the direction of the applied velocity is:

vst

V33 = — I (33)

The effective normal stresses are linked to the elastic deformation by:

2G

T =Th = (K — ?)733 (34)
4G

a3 = (K + ?)733 (35)

No shear stresses are developed and the rise in pore pressure is:

Y33

e (36)
We consider first two tests with an elastic behavior for the material. The compari-
son of the pore pressure rise compared to the analytical solution is plotted in Fig. 16
and the two evolution match perfectly (vs = 10 ?*mm.s~" and 8*=2MPa™').

The solution in terms of total stresses is validated against analytical results is
shown in Fig. 17(a).

A last test is designed for HM couplings considering an elasto-plastic behavior
and allows us to test the numerical implementation of the plastic constitutive
behavior and its coupling with the pore pressure. In this test a cohesion of 0.1MPa
is considered with zero friction.

In oedometric conditions, the generalized shear stress invariant is equal to:

P2 ) oy~ 72 "
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Combining Eqgs. 37, 34 and 3.4 the yield criterion is reached at a time:

. V3cL
2Gv3 Q(hl —+ hg)

(38)

which is equal to 3.33s for the parameters considered here (G = 1.5MPa, vz =
10"?mm.s~! and de Borst coefficients in the invariant). This value is compatible
with the numerical results presented in Fig. 17(b).

3.5 Thermo-Hydro-Mechanical tests

In order to test the implementation of THM couplings, we consider a shear test
taking into account the full set of equations of our model (Egs. 14, 15, 12 and 13).
Similar to the shearing test for Thermo-Mechanical couplings, a height of 60mm
with only one element in the vertical direction is considered. Assuming no heat
and fluid flux (undrained adiabatic case), we obtain:

*
op _ A or 59)
ot p* ot

In this test, we focus on the thermal pressurization term in the mass balance
equation. The coefficient 2—: is taken equal to 0.5 MPa/°C. The results for the
pressure and temperature are plotted in Fig. 18. We can see that there is a ratio
of 0.5 MPa/°C between the two graphs, which corresponds to the value of the
thermal pressurization coefficient. We observe here that the plastic dissipation in-
duces an increase of temperature, which leads to a pore pressure increase (thermal
pressurization).

4 Examples of numerical simulations

In order to illustrate the capabilities of the proposed model in geomechanical
applications, two different problems are considered in this section. The first one
is a standard biaxial test for a weak sandstone. The second is an infinite sheared
layer modeling a mature fault zone in the brittle part of the lithosphere.

4.1 Biaxial test for sandstones

Sandstones are sedimentary rocks formed by cemented sand grains. These grains
present diameters within the range of 0.0625 mm to 2 mm according to Udden-
Wentworth particle size classification (Wentworth, 1922). Due to this microstruc-
ture, one of the main deformation mechanisms observed in sandstones is a granular
flow characterized by grain sliding and rolling (Fossen et al, 2007). Therefore, a
Cosserat continuum appears to be an appropriate framework to describe this class
of materials. Moreover, because of their generally high porosity and permeabil-
ity, many of the oil, gas, and groundwater reservoirs in the world are found in
sandstones (Bjorlykke, 2010). The study of deformation bands is thus of primary
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importance for hydrogeologists due to hydraulic properties modifications, which
usually accompany their development (e.g. permeability reduction) and can act as
barriers or channels to fluid flow.

The conditions of temperature and pore pressure at the depth of the reser-
voirs influence their mechanical behavior. A Thermo-Hydro-Mechanical model is
necessary to capture correctly the behavior of the medium at depth.

In this study, we consider a Drucker-Prager yield surface that can describe the
behavior of geomaterials that exhibit dilatancy when sheared like sandstones at
low confining pressures. It should be noted that this yield surface is not suitable to
describe compactional shear bands formed at higher confining pressures (Stefanou
and Sulem, 2014a). In this case, a yield surface presenting a cap at high mean
stresses is necessary (Issen and Rudnicki, 2000).

We consider a biaxial geometry and the mechanical parameters are derived
from triaxial compression test carried in Castlegate sandstone and described in
Zervos et al (2001). The geometry and the boundary conditions are shown in
Fig. 19. The specimen has a height of 10cm and a width of 5cm. A displacement is
progressively imposed at the top boundary with a constant velocity. The normal
displacement at the bottom boundary are precluded as well as the horizontal
displacement of the point at the bottom right corner.

A Drucker-Prager yield surface is chosen as it adequately captures the behavior
of the sandstone at shearing.

F=1+po' —c (40)
The coefficients in the generalized stress invariant 7 are hy = hs = % and
hy = ha = —%. The coefficients the generalized plastic strain invariant y* are

g1 = g3 = % and g2 = g4 = % The cohesion ¢ evolves with the equivalent plastic

strain following a hyperbolic law (Zervos et al, 2001):

(I - K"y

Ko + K3zvyP (41)

c=co+

where Ko and K3 are coefficients calibrated against experimental results, Ko =

1.323x107% and K3 = 6.1271 x 1072, ¢g is a threshold value for the cohesion that

governs the initiation of the plastic behavior, taken here equal to 6.25 MPa. K; is

an open parameter that defines the hardening (or softening) rate of the material.
Its influence on the stress-strain response is shown in Fig. 21.

Based on micromechanical considerations that enable to link the internal lengths
of Cosserat continua to the mean grain size of a granular medium (e.g. (Rattez
et al, 2018a)), it is possible to investigate qualitatively the influence of the charac-
teristic size of the microstructure on the overall stress-strain response of the system
and the shear band thickness. This is accomplished by varying the representative
mean grain size, as shown in Fig. 22.

The softening behavior of the stress-strain diagram is more pronounced for
smaller grains as the shear band tends to be thinner. The elastic part and the
hardening part of the diagrams are not affected by the grain size. The difference
in the shear band size is illustrated in Fig. 23, where the generalized plastic strain
invariant is plotted on the deformed mesh for the same value of the shear stress
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(T12=40MPa after softening). In Rattez et al (2018b), the shear band size is evalu-
ated using the plastic strain rate P as a proxy, because it allows an instantaneous
evaluation of the localization process (v depends on the deformation history).
Therefore, a thinner plastic zone as obtained in the case of the smaller grain size
corresponds to the specimen in which a thinner zone of localized deformation has
formed.

In order to trigger the localization, an imperfection has to be introduced. In
this paper, a notch is introduced at the bottom left of the specimen. This enables
to have the same deformation pattern in all the tests and to obtain stress-strain
diagrams that can be compared (Besuelle et al, 2006).

The effect of the THM couplings on the response of the material is shown in
Fig. 24. The test taking into account only the mechanical equations corresponds to
an isothermal and drained material. In the THM model, we consider the feedback
of the evolution of the temperature and pore pressure on the mechanical behavior.
We observe softening due to the thermal pressurization phenomenon, but it is
not very pronounced as the plastic strain remains small and the magnitude of
temperature and pore pressure fields are not high enough to strongly affect the
mechanical response. However, in the case of the shearing of an infinite layer
modeling a fault zone, the effect of thermal pressurization is much more significant
as described in the next section.

4.2 Shearing of a fluid saturated mature fault zone

Observations of faults from drilling or outcrops show the formation of a slip zone
of finite but very small thickness, composed of cataclastic material due to exces-
sive shearing, called gouge material (Sibson, 2003). These zones are of primary
importance as they accommodate most of the slip during a seismic event. Fur-
ther investigations indicate that an even thinner zone of ultracataclastic material,
called the Principal Slip Zone (PSZ) exists inside the gouge (Rice, 2006a). The
thickness of these shear bands is a key parameter for understanding fault behavior
(Kanamori and Brodsky, 2004) as it is related to the triggering and evolution of
various multiphysical couplings and to the energy dissipation during seismic slip.

A substantial grain size reduction (grain cataclasis) is usually used as a marker
to identify the principal slip zone (Sammis and Ben-Zion, 2008). Moreover, many
physical processes are directly affected by grain size evolution. First of all, the
production of fine particles can significantly weaken the material. Previous studies
have shown that the production of nanograins during slip reduces the friction
coefficient due the lubrication of the slip surface (Han et al, 2010; Di Toro et al,
2011). The grain size affects the frictional properties (Anthony and Marone, 2005)
and the strength of the gouge (Dieterich, 1981). Furthermore, grain size also has
an effect on the dissolution or dehydration reactions occuring in faults as chemical
reactions kinetics depend on the specific surface (Hu and Hueckel, 2007; Stefanou
and Sulem, 2014b). Therefore, it is necessary to include information about the size
of the microstructure and its evolution in the constitutive model of a gouge.

In order to describe the influence of weakening processes and of the size of the
microstructure in a gouge during a seismic event, a THM model of a fault gouge
is developed in this section. The fault zone is modeled here as a saturated infinite
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parameters values units parameters values units
K 20 x 103 MPa 1 0.5
G 10 x 103 MPa B 0
Gce 5x 103 MPa A 7.4 %1072 /°C
R 10 pm pC 2.8 MPa/°C
) 2500 kg/m3 Cth 1 mm? /s
B* 82x 107 | MPa~! Chy 12 mm? /s
n 0.04 a 2.5 x 107° /°C

Table 2 Numerical values for the parameters of a deep rock gouge from (Sulem et al, 2011,
Rice, 2006b).

layer sheared at its top with a constant velocity of 1m/s, a typical rate reached
during a seismic slip.

The values of the different parameters are retrieved from Rattez et al (2017)
and Rice (2006a) for a gouge material lying at 7km, a centroidal depth for crustal
faults. These values are summarized in Table 2. Considering the great depth of
the fault, zero dilatancy is assumed here (cf. Sleep (1999)).

In order to emphasize the role of the softening due to thermal pressurization,
perfect plasticity is considered (Fig. 25). For the shearing of a gouge considering
only the mechanical equations, no softening is observed as expected. Whereas with
THM couplings a significant decrease of the shear stress appears in the plastic
regime. However, it requires a sufficient accumulated slip before a notable THM
softening takes place. With this set of parameters, for a decrease of 10% of the
shear stress, a shear deformation of 30% of the layer is necessary.

The hydraulic parameters of fault gouges are poorly constrained (Segall and
Rice, 2006) and are central in the behavior of a fault. For instance, the thermal
pressurization weakening is magnified by the capacity of the porous space to trap
a pressurized heated pore fluid. If the fluid can diffuse in the surrounding medium,
the pressurization is precluded and cannot operate efficiently causing the insta-
bility propagation to terminate (Wibberley et al, 2008). Thus, we investigate the
influence of the permeability on the response of the gouge material in Fig. 26.

The permeability of fault zones depends on many parameters such as the rock
type, the stress state, the fault architecture, among others (Wibberley and Shi-
mamoto, 2003). Moreover, its value is not constant along the fault and evolve
during shearing (Sulem and Famin, 2009). A parametric study on this parameter
is consequently conducted for typical values ranging from 107" m? to 10~ *m? in
Fig. 26. For higher permeabilities, the softening is less severe as the shear band
is thicker. Indeed, the diffusion of the pore fluid tends to enlarge the band. This
outcome is illustrated in Fig. 27. The deformed mesh for two different perme-
abilities are plotted for the same level of deformation and exhibit different shear
band thicknesses. For lower permeabilities the pressurization inside the shear band
is stronger enhancing softening (see also Scuderi and Collettini (2016) for recent
experimental evidence).

5 Concluding Remarks

A numerical model for Thermo-Hydro-Mechanical (THM) couplings in Cosserat
continua is presented, implemented and validated in this paper. The fully coupled
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nonlinear set of equations is integrated using an incremental finite element solver.
Notice that staggered (sequential) schemes may lead to peculiar numerical artifacts
and instabilities.

The implementation is thoroughly tested in order to certify the results obtained
afterwards. The proposed tests can be used also as guidelines for implementations
of other THM codes. A particular attention is given to the coupling terms related
to temperature and pore pressure evolution and their impact on the mechanical
behavior.

Thereafter, the numerical tool is used to study biaxial tests for sandstones
using a hyperbolic law to describe their softening. The influence of the size of the
microstructure on the shear band thickness and, as a result, on the stress-strain
diagram is shown. However, as the range of deformation of these tests remains
limited, the thermal pressurization weakening effect is rather small.

Finally, the problem of a sheared saturated mature fault zone is studied. A
perfect plastic law is introduced to exhibit clearly the role of the THM couplings
on the softening behavior of the material, which are significant. A parametric study
on the role of the permeability is carried out and highlights the major role played
by the diffusion processes on the strain localization phenomenon.
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Fig. 1 Representation of stress and couple-stress components in a Cosserat continuum.
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Fig. 2 Boundary conditions for the simple shear of a layer consisting of linear elastic Cosserat
material (Boundary layer effect)
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Fig. 3 (a) Results of the FEM simulation for the elasticity test with 50 elements in the vertical
direction (Deformation Scale Factor: 20) (b) Comparison of the profiles of the Cosserat rotation
w§ obtained from the analytical solution and the FEM simulation with 50 points in the x2-
direction
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Fig. 4 Relative error of the results obtained by FEM for the Cosserat rotation w§(z2 = 0,9)
as a function of the number of elements in the x2-axis direction
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Fig. 5 Pure shear of an infinite layer with Cosserat microstructure. Notations and boundary
conditions for the plasticity tests.
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Cosserat rotation is

plotted on the deformed mesh with 80 elements in the vertical direction

(112 = 26MPa, Deformation Scale Factor: 1). (b)Stress-strain response of the layer plotted for
different number of elements in the vertical direction.

height (mm)

Fig. 7 Shear strain

60t
50/
40
300
20f

10h

0.05 0.10 0.15 0.20 T2

profile 12 from FEM simulations of an elasto-plastic infinite layer plotted

for different number of elements in the vertical direction (712 = 26MPa).



24 Hadrien Rattez et al.

(a) (b)
712 (MPa) 7 (MPa)
120 120 ¢
100 f T 100
80 F 80
60 | S 60
7777777777777777777 B —— dB hard
a0l —— dB hard 40+ — dB soft
— dBsoft —— M&V hard
20 —— M&V hard 20 —— M&V soft
—— M&V soft u
. . . . A u . . . ! »
0.01 0.02 0.03 0.04 0.05 0.06 h 0.01 0.02 0.03 0.04 ’

Fig. 8 FEM results for the shearing of one element: (a) Stress-strain response and (b) Shear
stress invariant as a function of the plastic shear strain invariant, with coefficients of Miithlhaus
and Vardoulakis (1987) (“M&V”) and de Borst (1991) (“dB”).
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Fig. 9 Geometry and boundary conditions for the rod used in the first test for Thermo-
Mechanical couplings.
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Fig. 10 Results of the FEM simulations for the heated rod (c;;, = 1 mm?2/s): (a) Temperature
evolution in the middle of the rod with time compared to the analytical solution, (b) Normal
displacement at the end of the rod usz(x3 = L) due to thermal dilation.
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Fig. 11 Geometry and boundary conditions for the second rod used in the tests for Thermo-
Mechanical couplings.
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Fig. 12 Results for the heated elastic confined rod: (a) stress 711 as a function of time, (b)
displacement us at the end of the rod as a function of time.
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Fig. 13 Comparison of results for (a) the displacement usg(x3 = L) and (b) the stress 711, for
the heated confined rod in elasticity and plasticity.
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Fig. 14 Comparison of the temperature increment as a function of time for the shearing test
with the mechanical dissipation term considered in the energy balance equation.
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Fig. 17 Evolution of the stresses with time in a undrained oedometric test: (a)Comparison of
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Fig. 20 Stress-strain responses of undrained biaxial tests on sandstones for different meshes
identified by the number of elements in the vertical direction n, (R=2mm, K; = 10).
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Fig. 21 Stress-strain responses of undrained biaxial tests on sandstones for different values
of the parameter Hs in the parabolic hardening evolution (R=2mm, n, = 30).
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Fig. 22 Stress-strain responses of undrained biaxial tests on sandstones for different values
of the characteristic size of the microstructure R (K1 = 10, ny = 30).

R=2mm R=0.2mm

plastic strain

| 0.20

0.1575
0.115
. 0.0725

0.03

Fig. 23 Deformed mesh of biaxial tests on sandstones for different values of the characteristic
size of the microstructure R.
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Fig. 24 Comparison of the stress-strain responses of biaxial tests for sandstones taking into
account THM couplings or only the mechanical behavior (M) (K1 = 10, R=2mm and n, = 30).
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Fig. 25 Comparison of the stress-strain responses of fault zones modeled as infinite sheared
layers taking into account THM couplings or only the mechanical behavior considering perfect
plasticity and the parameters summarized in Table 2
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Fig. 26 Stress-strain response of a fault zone modeled as an infinite sheared layer taking into
account THM couplings for different values of the permeability x.
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Fig. 27 FEM results of the plastic strain profile plotted on the deformed mesh for two different
values of the permeability x.
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