J. J. Leary, M. Subic, A. Gibson, and M. A. , A review of shape memory alloy research, applications and opportunities, Materials & Design, vol.56, pp.1078-1113, 2014.

G. Eggeler, E. Hornbogen, and A. Yawny, Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering: A, vol.378, issue.1-2, pp.24-33, 2004.
DOI : 10.1016/j.msea.2003.10.327

, REFERENCES

S. Robertson, A. Pelton, and R. Ritchie, Mechanical fatigue and fracture of Nitinol, International Materials Reviews, vol.5, issue.1, pp.1-37, 2012.
DOI : 10.1016/j.jvir.2008.09.032

X. Feng and Q. Sun, Shakedown analysis of shape memory alloy structures, International Journal of Plasticity, vol.23, issue.2, pp.183-206, 2007.
DOI : 10.1016/j.ijplas.2006.04.001

J. Van-humbeek, CYCLING EFFECTS, FATIGUE AND DEGRADATION OF SHAPE MEMORY ALLOYS, Le Journal de Physique IV, vol.01, issue.C4, pp.189-197, 1991.
DOI : 10.1051/jp4:1991429

G. Z. Kang, Q. H. Kan, and L. M. Qian, Ratchetting deformation of super-elastic and shape-memory NiTi alloys, Mechanics of Materials, vol.41, issue.2, pp.139-153, 2009.
DOI : 10.1016/j.mechmat.2008.09.001

S. Miyazaki, K. Mizukoshi, and T. Ueki, Fatigue life of Ti???50 at.% Ni and Ti???40Ni???10Cu (at.%) shape memory alloy wires, Materials Science and Engineering: A, vol.273, issue.275, pp.273-275658, 1999.
DOI : 10.1016/S0921-5093(99)00344-5

H. Tobushi, T. Nakahara, and Y. Shimeno, Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life, Journal of Engineering Materials and Technology, vol.30, issue.2, pp.186-191, 1999.
DOI : 10.1016/S0167-6636(98)00041-6

X. Wang, B. Xu, and Z. Yue, Phase transformation behavior of pseudoelastic NiTi shape memory alloys under large strain, Journal of Alloys and Compounds, vol.463, issue.1-2, pp.417-422, 2008.
DOI : 10.1016/j.jallcom.2007.09.029

M. Arrigoni, F. Auricchio, V. Cacciafesta, L. Petrini, and R. Pietrabissa, Cyclic effects in shape-memory alloys: a one-dimensional continuum model, Journal de Physique IV France, vol.11, pp.577-582, 2001.

J. S. Owusu-danquah and A. F. Saleeb, On the cyclic stability of the thermomechanical behavior of NiTi shape memory cylindrical actuators, European Journal of Mechanics - A/Solids, vol.64, pp.143-159, 2017.
DOI : 10.1016/j.euromechsol.2017.02.005

H. Reginald, F. Bimber-beth, A. Andani-mohsen-taheri, and E. Mohammad, Multi-scale shape memory effect recovery in niti alloys additive manufactured by selective laser melting and laser directed energy deposition, Journal of Materials Processing Technology, vol.250, pp.55-64, 2017.

F. Auricchio, A. Reali, and U. Stefanelli, A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity, International Journal of Plasticity, vol.23, issue.2, pp.207-226, 2007.
DOI : 10.1016/j.ijplas.2006.02.012

D. Jiang and C. M. Landis, A constitutive model for isothermal pseudoelasticity coupled with plasticity. Shape Memory and Superelasticity, pp.360-370, 2016.
DOI : 10.1007/s40830-016-0078-8

URL : https://link.springer.com/content/pdf/10.1007%2Fs40830-016-0078-8.pdf

N. Barrera, P. Biscari, and M. F. Urbano, Macroscopic modeling of functional fatigue in shape memory alloys, European Journal of Mechanics - A/Solids, vol.45, pp.101-109, 2014.
DOI : 10.1016/j.euromechsol.2013.11.015

D. Hartl, G. Chatzigeorgiou, and D. Lagoudas, Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys, International Journal of Plasticity, vol.26, issue.10, pp.1485-1507, 2010.
DOI : 10.1016/j.ijplas.2010.01.002

L. Saint-sulpice, A. Chirani, S. Calloch, and S. , A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mechanics of Materials, vol.41, issue.1, pp.12-26, 2009.
DOI : 10.1016/j.mechmat.2008.07.004

URL : https://hal.archives-ouvertes.fr/hal-00449131

W. Zaki and Z. Moumni, A 3D model of the cyclic thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2427-2454, 2007.
DOI : 10.1016/j.jmps.2007.03.011

X. Peng, B. Chen, X. Chen, J. Wang, and H. Wang, A constitutive model for transformation, reorientation and plastic deformation of shape memory alloys, Acta Mechanica Solida Sinica, vol.28, issue.2, pp.285-298, 2012.
DOI : 10.1080/14786437308217452

Z. Bo and D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect, International Journal of Engineering Science, vol.37, issue.9, pp.1175-1203, 1999.
DOI : 10.1016/S0020-7225(98)00115-3

C. Cheikh, Z. Wael, and . Zineb-tarak-ben, A review of constitutive models and modeling techniques for shape memory alloys, International Journal of Plasticity, vol.76, pp.244-284, 2016.

J. Waimann, P. Junker, and K. Hackl, Modeling the cyclic behavior of shape memory alloys. Shape Memory and Superelasticity, pp.124-138, 2017.
DOI : 10.1007/s40830-017-0105-4

A. Paiva, M. A. Savi, A. M. Braga, and P. M. Pacheco, A constitutive model for shape memory alloys considering tensile???compressive asymmetry and plasticity, International Journal of Solids and Structures, vol.42, issue.11-12, pp.3439-3457, 2005.
DOI : 10.1016/j.ijsolstr.2004.11.006

L. Petrini, A. Bertini, F. Berti, G. Pennati, and F. Migliavacca, The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices, Proceedings of the Institution of Mechanical Engineers, pp.391-404
DOI : 10.1088/0964-1726/18/10/104017

S. Govindjee and E. P. Kasper, A Shape Memory Alloy Model for Uranium-Niobium Accounting for Plasticity, Journal of Intelligent Material Systems and Structures, vol.18, issue.10, pp.815-823, 1997.
DOI : 10.1007/BF02648337

D. C. Lagoudas and P. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs, Mechanics of Materials, vol.36, issue.9, pp.865-892, 2004.
DOI : 10.1016/j.mechmat.2003.08.006

M. Peigney, Shakedown theorems and asymptotic behaviour of solids in non-smooth mechanics, European Journal of Mechanics - A/Solids, vol.29, issue.5, pp.784-793, 2010.
DOI : 10.1016/j.euromechsol.2010.03.011

URL : https://hal.archives-ouvertes.fr/hal-00839292

M. Peigney, On shakedown of shape memory alloys structures, Annals of Solid and Structural Mechanics, vol.290, issue.15, pp.17-28, 2014.
DOI : 10.1016/j.cma.2012.03.004

URL : https://hal.archives-ouvertes.fr/hal-01093232

X. Gu, Z. Moumni, W. Zaki, and W. Zhang, Shakedown based model for high-cycle fatigue of shape memory alloys, Smart Materials and Structures, vol.25, issue.11, pp.1-15, 2016.
DOI : 10.1088/0964-1726/25/11/115012

F. Auricchio, A. Constantinescu, C. Menna, and G. Scalet, A shakedown analysis of high cycle fatigue of shape memory alloys, International Journal of Fatigue, vol.87, pp.112-123, 2016.
DOI : 10.1016/j.ijfatigue.2016.01.017

URL : https://hal.archives-ouvertes.fr/hal-01282081

D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, International Journal of Plasticity, vol.32, issue.33, pp.32-33155, 2012.
DOI : 10.1016/j.ijplas.2011.10.009

W. Zaki, Time integration of a model for martensite detwinning and reorientation under nonproportional loading using Lagrange multipliers, International Journal of Solids and Structures, vol.49, issue.21, pp.2951-2961, 2012.
DOI : 10.1016/j.ijsolstr.2012.05.038

URL : https://doi.org/10.1016/j.ijsolstr.2012.05.038

P. Sedlák, M. Frost, B. Benesová, T. Zineb, . Ben et al., Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, International Journal of Plasticity, vol.39, pp.132-151, 2012.
DOI : 10.1016/j.ijplas.2012.06.008

S. Stupkiewicz and H. Petryk, A robust model of pseudoelasticity in shape memory alloys, International Journal for Numerical Methods in Engineering, vol.85, issue.15, pp.747-769, 2013.
DOI : 10.1016/0045-7825(91)90022-X

E. Artioli and P. Bisegna, An incremental energy minimization state update algorithm for 3D phenomenological internal-variable SMA constitutive models based on isotropic flow potentials, International Journal for Numerical Methods in Engineering, vol.57, issue.7, pp.197-220, 2015.
DOI : 10.1002/nme.718

G. Scalet and M. Peigney, A robust and efficient radial return algorithm based on incremental energy minimization for the 3D Souza-Auricchio model for shape memory alloys, European Journal of Mechanics - A/Solids, vol.61, pp.364-382, 2017.
DOI : 10.1016/j.euromechsol.2016.10.013

URL : https://hal.archives-ouvertes.fr/hal-01420193

M. Peigney, J. P. Seguin, and E. Hervé-luanco, Numerical simulation of shape memory alloys structures using interior-point methods, International Journal of Solids and Structures, vol.48, issue.20, pp.2791-2799, 2011.
DOI : 10.1016/j.ijsolstr.2011.05.017

URL : https://hal.archives-ouvertes.fr/hal-00875256

, REFERENCES

M. Peigney and J. P. Seguin, An incremental variational approach to coupled thermo-mechanical problems in anelastic solids. Application to shape-memory alloys, International Journal of Solids and Structures, vol.50, issue.24, pp.4043-4054, 2013.
DOI : 10.1016/j.ijsolstr.2013.08.013

URL : https://hal.archives-ouvertes.fr/hal-01111474

A. Souza, E. Mamiya, and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations, European Journal of Mechanics - A/Solids, vol.17, issue.5, pp.789-806, 1998.
DOI : 10.1016/S0997-7538(98)80005-3

A. R. Pelton, V. Schroeder, M. R. Mitchell, X. Gong, M. Barney et al., Fatigue and durability of Nitinol stents, Journal of the Mechanical Behavior of Biomedical Materials, vol.1, issue.2, pp.153-164, 2008.
DOI : 10.1016/j.jmbbm.2007.08.001

M. Elahinia, Shape memory alloy actuators: Design, fabrication and experimental evaluation, 2016.
DOI : 10.1002/9781118426913

H. Brézis, Opérateurs maximum monotones et semigroupes de contractions dans les espaces de Hilbert: North-Holland, 1972.

R. T. Rockafellar, Convex analysis, 1970.
DOI : 10.1515/9781400873173

B. Halphen and Q. S. Nguyen, Sur les matériaux standard généralisés, Journal de mécanique, vol.14, pp.39-63, 1975.

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems, International Journal for Numerical Methods in Engineering, vol.61, issue.6, pp.807-836, 2004.
DOI : 10.1002/nme.1086

M. N. Vrahatis, G. D. Magoulas, and V. P. Plagianakos, From linear to nonlinear iterative methods, Applied Numerical Mathematics, vol.45, issue.1, pp.59-77, 2003.
DOI : 10.1016/S0168-9274(02)00235-0

P. Mejzlik, A bisection method to find all solutions of a system of nonlinear equations, Contemporary Mathematics, vol.180, pp.277-282, 1994.
DOI : 10.1090/conm/180/01982

. Abaqus, Abaqus, analysis user's manual, 2010.

E. Boatti, M. Ferraro, G. Scalet, and F. Auricchio, Development of an effective and user-friendly numerical framework for the simulation of complex smart material components and devices, Abstract of the First International Conference on Materials Design and Applications, 2016.

J. Korelc and P. Wriggers, Automation of finite element methods, 2016.
DOI : 10.1007/978-3-319-39005-5